Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged fossil

Rss Feed Group items tagged

Jan Wyllie

Cap & Share: simple is beautiful [22Jul11] - 0 views

  • Cap: The total carbon emissions are limited (capped) in a simple, no-nonsense way Share: The huge amounts of money involved are shared equally by the population
  • The primary fossil-fuel suppliers (e.g. oil companies) are required to acquire permits in order to introduce fossil fuels into the economy (by importing them or extracting them from the ground).
  • Next, the Share. Since the fossil fuel suppliers have to buy the permits, they will pass on this cost by increasing the fuel price. This flows through the economy (like a carbon tax), making carbon-intensive goods cost more.
  • ...7 more annotations...
  • But the trick this time is to share out the money paid by the fossil-fuel suppliers, back to the people, which compensates for the price rises.
  • These certificates are then sold to the primary fossil-fuel suppliers (through market intermediaries such as banks) and become the permits.
  • Cap & Share in a nutshell
  • To many people, however, the ‘obvious’ mechanism is not Cap & Share but either a carbon tax (discussed below) or a version of cap and trade applied ‘downstream’ where the emissions take place. Such a cap and trade system has two parts, as follows. The first applies to the fossil fuels we buy directly (petrol, gas, coal) and burn ourselves, causing emissions; these direct emissions account for half of our ‘carbon footprint’. For these direct emissions, some form of personal carbon trading is envisaged, typically based on ideas of ‘rationing’ familiar from petrol and food rationing during the Second World War. Personal Carbon Allowances (PCAs) typically involve giving an equal allowance to each adult citizen, and each purchase of petrol, oil or gas is deducted from the allowance (typically using swipe card technology). The other half of our carbon footprint consists of indirect emissions, the ‘embedded’ emissions in goods and services, which arise when companies produce these goods and services on our behalf. These indirect emissions are controlled with an Emissions Trading System (ETS) for companies
  • scientific realism will trump political realism in the end.
  • At the moment, the populations of most countries are largely in psychological denial, ‘yearning to be free’ of the knowledge, deep down, that we are collectively on the wrong road.
  • ut we will also need a dramatic change in global popular opinion — a change of world-view. Adoption of a simple, fair and realistic framework for cutting global carbon emissions — such as Cap & Share — would be inspirational, resonating with this change and with efforts to solve the other problems that face us collectively on our finite planet.
D'coda Dcoda

The Intermittency of Fossil Fuels & Nuclear [19Aug11] - 0 views

  • You’ve likely heard this argument before: “The wind doesn’t always blow and the sun doesn’t always shine, so we can’t rely on renewable energy.” However, a series of recent events undermine the false dichotomy that renewable energies are unreliable and that coal, nuclear and natural gas are reliable.
  • There are too many reasons to list in a single blogpost why depending on fossil and nuclear energies is dangerous, but one emerging trend is that coal, natural gas and even nuclear energy are not as reliable as they are touted to be. Take for instance the nuclear disaster still unfolding in Japan. On March 11, that country experienced a massive earthquake and the resulting tsunami knocked out several nuclear reactors on the coast. Three days later, an operator of a nearby wind farm in Japan restarted its turbines - turbines that were intentionally turned off  immediately after the earthquake. Several countries, including France and Germany, are now considering complete phase-outs of nuclear energy in favor of offshore wind energy in the aftermath of the Japanese disaster. Even China has suspended its nuclear reactor plans while more offshore wind farms are being planned off that country’s coast.
  • In another example much closer to home, here in the Southeast, some of TVA’s nuclear fleet is operating at lower levels due to extreme temperatures. When the water temperatures in the Tennessee River reach more than 90 degrees, the TVA Browns Ferry nuclear reactors cannot discharge the already-heated power plant water into the river. If water temperatures become too high in a natural body of water, like a river, the ecosystem can be damaged and fish kills may occur. This problem isn’t limited to nuclear power plants either.
  • ...5 more annotations...
  • Texas has been experiencing a terrible heat wave this summer - along with much of the rest of the country. According to the Dallas Morning News, this heat wave has caused more than 20 power plants to shut down, including coal and natural gas plants. On the other hand, Texan wind farms have been providing a steady, significant supply of electricity during the heat wave, in part because wind farms require no water to generate electricity. The American Wind Energy Association (AWEA) noted on their blog: “Wind plants are keeping the lights on and the air conditioners running for hundreds of thousands of homes in Texas.”
  • This near-threat of a blackout is not a one-time or seasonal ordeal for Texans. Earlier this year, when winter storms were hammering the Lone Star State, rolling blackouts occurred due to faltering fossil fuel plants. In February, 50 power plants failed and wind energy helped pick up the slack.
  • Although far from the steady winds of the Great Plains, Cape Wind Associates noted that if their offshore wind farm was already operational, the turbines would have been able to harness the power of the heat wave oppressing the Northeast, mostly at full capacity. Cape Wind, vying to be the nation’s first offshore wind farm, has a meteorological tower stationed off Nantucket Sound in Massachusetts. If Cape Wind had been built, it could have been using these oppressive heat waves to operate New England’s cooling air conditioners. These three examples would suggest that the reliability of fossil fuels and nuclear reactors has been overstated, as has the variability of wind.
  • So just how much electricity can wind energy realistically supply as a portion of the nation’s energy? A very thorough report completed by the U.S. Department of Energy in 2008 (completed during President George W. Bush’s tenure) presents one scenario where wind energy could provide 20% of the U.S.’s electrical power by 2030. To achieve this level, the U.S. Department of Energy estimates energy costs would increase only 50 cents per month per household. A more recent study, the Eastern Wind Integration and Transmission Study (EWITS), shows that wind could supply 30% of the Eastern Interconnect’s service area (all of the Eastern U.S. from Nebraska eastward) with the proper transmission upgrades. As wind farms become more spread out across the country, and are better connected to each other via transmission lines, the variability of wind energy further decreases. If the wind isn’t blowing in Nebraska, it may be blowing in North Carolina, or off the coast of Georgia and the electricity generated in any state can then be transported across the continent. A plan has been hatched in the European Union to acquire 50% of those member states’ electricity from wind energy by 2050 - mostly from offshore wind farms, spread around the continent and heavily connected with transmission lines.
  • With a significant amount of wind energy providing electricity in the U.S., what would happen if the wind ever stops blowing? Nothing really - the lights will stay on, refrigerators will keep running and air conditions will keep working. As it so happens, wind energy has made the U.S. electrical supply more diversified and protects us against periodic shut downs from those pesky, sometimes-unreliable fossil fuel power plants and nuclear reactors.
  •  
    a series of recent events undermine the false dichotomy that renewable energies are unreliable and that coal, nuclear and natural gas are reliable.
D'coda Dcoda

The Environmental Case for Nuclear Energy - Korea [26Sep11] - 0 views

  • Six months after the Fukushima disaster, the repercussions of history’s second-largest nuclear meltdown are still being felt, not only in Japan but around the world. Predictably, people are rethinking the wisdom of relying on nuclear power. The German and Swiss governments have pledged to phase out the use of nuclear power, and Italy has shelved plans to build new reactors. Public debate on future nuclear energy use continues in the United Kingdom, Japan, Finland, and other countries.So far, it is unclear what the reaction of the Korean government will be. Certainly, the public backlash to nuclear energy that has occurred elsewhere in the world is also evident in Korea; according to one study, opposition to nuclear energy in Korea has tripled since the Fukushima disaster. However, there are countervailing considerations here as well, which have caused policy-makers to move cautiously. Korea’s economy is often seen as particularly reliant on the use of nuclear power due to its lack of fossil fuel resources, while Korean companies are some of the world’s most important builders (and exporters) of nuclear power stations.
  • There are three primary reasons why nuclear power is safer and greener than power generated using conventional fossil fuels. First ― and most importantly ― nuclear power does not directly result in the emission of greenhouse gases. Even when you take a life-cycle approach and factor in the greenhouse gas emissions from the construction of the plant, there is no contest. Fossil fuels ― whether coal, oil, or natural gas ― create far more global warming.
  • The negative effects of climate change will vastly outweigh the human and environmental consequences of even a thousand Fukushimas. This is not the place to survey all the dire warnings that have been coming out of the scientific community; suffice it to quote U.N. Secretary General Ban Ki-moon’s concise statement that climate change is the world’s “only one truly existential threat … the great moral imperative of our era.” A warming earth will not only lead to death and displacement in far-off locales, either. Typhoons are already hitting the peninsula with greater intensity due to the warming air, and a recent study warns that global warming will cause Korea to see greatly increased rates of contagious diseases such as cholera and bacillary dysentery.
  • ...5 more annotations...
  • As the world’s ninth largest emitter of greenhouse gases, it should be (and is) a major priority for Korea to reduce emissions, and realistically that can only be accomplished by increasing the use of nuclear power. As Barack Obama noted with regard to the United States’ energy consumption, “Nuclear energy remains our largest source of fuel that produces no carbon emissions. It’s that simple. (One plant) will cut carbon pollution by 16 million tons each year when compared to a similar coal plant. That’s like taking 3.5 million cars off the road.” Environmentalists have traditionally disdained nuclear power, but even green activists cannot argue with that logic, and increasing numbers of them ― Patrick Moore, James Lovelock, Stewart Brand and the late Bishop Hugh Montefiore being prominent examples ― have become supporters of the smart use of nuclear power.
  • Second, the immediate dangers to human health of conventional air pollution outweigh the dangers of nuclear radiation. In 2009, the Seoul Metropolitan Government measured an average PM10 (particulate) concentration in the city of 53.8 g/m3, a figure that is roughly twice the level in other developed nations. According to the Gyeonggi Research Institute, PM10 pollution leads to 10,000 premature deaths per year in and around Seoul, while the Korea Economic Institute has estimated its social cost at 10 trillion won. While sulfur dioxide levels in the region have decreased significantly since the 1980s, the concentration of nitrogen dioxide in the air has not decreased, and ground-level ozone levels remain high. Unlike fossil fuels, nuclear power does not result in the release of any of these dangerous pollutants that fill the skies around Seoul, creating health hazards that are no less serious for often going unnoticed.
  • And third, the environmental and safety consequences of extracting and transporting fossil fuels are far greater than those involved with the production of nuclear power. Korea is one of the largest importers of Indonesian coal for use in power plants, for example. This coal is not always mined with a high level of environmental and safety protections, with a predictable result of air, water, and land pollution in one of Asia’s most biologically sensitive ecosystems. Coal mining is also one of the world’s more dangerous occupations, as evidenced by the many tragic disasters involving poorly managed Chinese mines. While natural gas is certainly a better option than coal, its distribution too can be problematic, whether by ship or through the recently proposed pipeline that would slice down through Siberia and North Korea to provide direct access to Russian gas.
  • What about truly green renewable energy, some might ask ― solar, wind, geothermal, hydroelectric, and tidal energy? Of course, Korea would be a safer and more sustainable place if these clean renewable resources were able to cover the country’s energy needs. However, the country is not particularly well suited for hydroelectric projects, while the other forms of renewable energy production are expensive, and are unfortunately likely to remain so for the foreseeable future. The fact is that most Koreans will not want to pay the significantly higher energy prices that would result from the widespread use of clean renewables, and in a democratic society, the government is unlikely to force them to do so. Thus, we are left with two realistic options: fossil fuels or nuclear. From an environmental perspective, it would truly be a disaster to abandon the latter.
  • By Andrew Wolman Andrew Wolman is an assistant professor at the Hankuk University of Foreign Studies Graduate School of International and Area Studies, where he teaches international law and human rights.
D'coda Dcoda

US Thirst for Fossil Fuels is Decimating Nature's Wildlife: Report [19Jan12] - 0 views

  • The day after the Obama administration rejected a proposal for the Keystone XL tar sands pipeline -- a move widely, if cautiously, applauded by environmental groups and advocates of renewable energy -- a new report highlights the destructive impact of fossil fuel consumption in the United States. The report, called Fueling Extinction: How Dirty Energy Drives Wildlife to the Brink, highlights the top 10 US species whose survival is most threatened by the development, extraction, transportation, and consumption of fossil fuels.
  • The report itself does not shy away from pointing its finger directly at the profit-driven aspect of the fossil fuel industry, nor its dependence on taxpayer-funded subsidies:
  • The animals (and one plant) highlighted by the group range from the relatively unknown and small Tan Riffleshell, a freshwater mussel found in only five rivers in the eastern US, to the large and majestic Bowhead Whale, believed to be among the oldest mammals on earth and the only whale that lives exclusively in arctic waters.  The other eight species examined in the report include: the Dunes Sagebrush Lizard, the Graham’s Penstemon (a wildflower), the Greater Sage Grouse, the Kemp’s Ridley Sea Turtle, the Kentucky Arrow Darter, the Spectacled Eider, the Whooping Crane, and the Wyoming Pocket Gopher. Receiving the 'activist's choice award' from the voting members was the Polar Bear, chosen because it was "the species they were most concerned about."
D'coda Dcoda

Smoking Gun - Jan Lundberg antinuclear activist & heir to petroleum wealth [18Jul11] - 0 views

  • A ‘smoking gun’ article is one that reveals a direct connection between a fossil fuel or alternative energy system promoter and a strongly antinuclear attitude. One of my guiding theories about energy is that a great deal of the discussion about safety, cost, and waste disposal is really a cover for a normal business activity of competing for market share.
  • This weekend, I came across a site called Culture Change that provides some strong support for my theory about the real source of strength for the antinuclear industry. According to the information at the bottom of the home page, Culture Change was founded by Sustainable Energy Institute (formerly Fossil Fuels Policy Action), a nonprofit organization.Jan Lundberg, who has led the organization and its predecessor organizations since 1988, grew up in a wealthy family with a father who was a popular and respected petroleum industry analyst.
  • Lundberg tells an interesting story about his initial fundraising activities for his new non-profit group.Setting out to become a clearinghouse for energy data and policy, we had a tendency to go along with the buzzword “natural gas as a bridge fuel” — especially when my previous clients serving the petroleum industry until 1988 included natural gas utilities. They were and are represented by the American Gas Association, where I knew a few friendly executives. Upon starting a nonprofit group for the environment with an energy focus, I met with the AGA right away. I was anticipating one of their generous grants they were giving large environmental groups who were trumpeting the “natural gas is a bridge fuel” mantra.
  • ...5 more annotations...
  • Before entering into the non-profit world, he entered into the family business of oil industry analysis and claims to have achieved a fair amount of financial success. As Lundberg tells the tale, he stopped “punching the corporate time clock” in 1988 to found Fossil Fuels Policy Action.I had just learned about peak oil. Upon my press conference announcing the formation of Fossil Fuels Policy Action, USA Today’s headline was “Lundberg Lines up with Nature.” My picture with the story looked like I was a corporate fascist, not an acid-tripping hippie. The USA Today story led to an invitation to review Beyond Oil: The Threat to Food and Fuel in the Coming Decades, for the quarterly Population and Environment journal. In learning for the first time about peak oil (although I had questioned long-term growth in petroleum supplies), I was awakened to the bigger picture as never before. Natural gas was no answer. And I already knew that the supply crisis to come — I had helped predict the 1970s oil shocks — was to be a liquid fuels crisis.
  • As Oil Guru, Dan [Lundberg, my father] earned a regular Nightly Business Report commentary spot on the Public Broadcasting System television network in the early and mid-1980s. I helped edit or proof-read just about every one of those commentaries, and we delighted in the occasional opportunity to attack gasohol and ethanol for causing “agricultural strip mining” (as we did in the Lundberg Letter).
  • I slept on it and decided that I would not participate in this corrupt conspiracy. Instead, I had fun writing one of Fossil Fuels Policy Action’s first newsletters about this “bridge” argument and the background story that the gas industry was really competing with fuel oil for heating. I brought up the AGA’s funding for enviros and said I was rejecting it. I was crazy, I admit, for I was starting a new career with almost no savings and no guarantees. So I was not surprised when my main contact at AGA called me up and snarled, “Jan, are you on acid?!
  • Here is a quote from his July 10, 2011 post titled Nuclear Roulette: new book puts a nail in coffin of nukesCulture Change went beyond studying the problem soon after its founding in 1988: action and advocacy must get to the root of the crises to assure a livable future. Also, information overload and a diet of bad news kills much activism. So it’s hard to find reading material to strongly recommend. But the new book Nuclear Roulette: The Case Against the “Nuclear Renaissance” is must-have if one is fighting nukes today.
  • He goes to say the following:The uneconomic nature of nuclear power, and the lack of energy gain compared to cheap oil, are two huge reasons for society to quit flirting with more nuclear power, never mind the catastrophic record and certainty of more to come. Somehow the evidence and true track record of dozens of accidents and perhaps 300,000 to nearly 1,000,000 deaths from just Chernobyl, are brushed aside by corporate media and most governments. So, imaginative means of helping to end nuclear proliferation are crucial, the most careful and reasonable-sounding ones being included in summary form in Nuclear Roulette.
D'coda Dcoda

Energy Forecast: Fracking in China, Nuclear Uncertain, CO2 Up [09Nov11] - 0 views

  • This year’s World Energy Outlook report has been published by the International Energy Agency, and says wealthy and industrializing countries are stuck on policies that threaten to lock in “an insecure, inefficient and high-carbon energy system.”You can read worldwide coverage of the report here. Fiona Harvey of the Guardian has a piece on the report that focuses on the inexorable trajectories for carbon dioxide, driven by soaring energy demand in Asia.A variety of graphs and slides can be reviewed here:
  • According to the report, Russia will long remain the world’s leading producer of natural gas, but exploitation of shale deposits in the United States, and increasingly in China, will greatly boost production in those countries (which will be in second and third place for gas production in 2035).Last month, in an interview with James Kanter of The Times and International Herald Tribune, the new head of the energy agency, Maria van der Hoeven, discussed one point made in the report today — that concerns raised by the damage to the Fukushima Daiichi power plant could continue to dampen expansion of nuclear power and add to the challenge of avoiding a big accumulation of carbon dioxide, saying: “Such a reduction would certainly make it more difficult for the world to meet the goal of stabilizing the rise in temperature to 2 degrees Centigrade.”
  • Here’s the summary of the main points, released today by the agency: “Growth, prosperity and rising population will inevitably push up energy needs over the coming decades. But we cannot continue to rely on insecure and environmentally unsustainable uses of energy,” said IEA Executive Director Maria van der Hoeven. “Governments need to introduce stronger measures to drive investment in efficient and low-carbon technologies. The Fukushima nuclear accident, the turmoil in parts of the Middle East and North Africa and a sharp rebound in energy demand in 2010 which pushed CO2 emissions to a record high, highlight the urgency and the scale of the challenge.”
  • ...5 more annotations...
  • In the WEO’s central New Policies Scenario, which assumes that recent government commitments are implemented in a cautious manner, primary energy demand increases by one-third between 2010 and 2035, with 90% of the growth in non-OECD economies. China consolidates its position as the world’s largest energy consumer: it consumes nearly 70% more energy than the United States by 2035, even though, by then, per capita demand in China is still less than half the level in the United States. The share of fossil fuels in global primary energy consumption falls from around 81% today to 75% in 2035. Renewables increase from 13% of the mix today to 18% in 2035; the growth in renewables is underpinned by subsidies that rise from $64 billion in 2010 to $250 billion in 2035, support that in some cases cannot be taken for granted in this age of fiscal austerity. By contrast, subsidies for fossil fuels amounted to $409 billion in 2010.
  • Short-term pressures on oil markets are easing with the economic slowdown and the expected return of Libyan supply. But the average oil price remains high, approaching $120/barrel (in year-2010 dollars) in 2035. Reliance grows on a small number of producers: the increase in output from Middle East and North Africa (MENA) is over 90% of the required growth in world oil output to 2035. If, between 2011 and 2015, investment in the MENA region runs one-third lower than the $100 billion per year required, consumers could face a near-term rise in the oil price to $150/barrel.Oil demand rises from 87 million barrels per day (mb/d) in 2010 to 99 mb/d in 2035, with all the net growth coming from the transport sector in emerging economies. The passenger vehicle fleet doubles to almost 1.7 billion in 2035. Alternative technologies, such as hybrid and electric vehicles that use oil more efficiently or not at all, continue to advance but they take time to penetrate markets.
  • The use of coal – which met almost half of the increase in global energy demand over the last decade – rises 65% by 2035. Prospects for coal are especially sensitive to energy policies – notably in China, which today accounts for almost half of global demand. More efficient power plants and carbon capture and storage (CCS) technology could boost prospects for coal, but the latter still faces significant regulatory, policy and technical barriers that make its deployment uncertain.Fukushima Daiichi has raised questions about the future role of nuclear power. In the New Policies Scenario, nuclear output rises by over 70% by 2035, only slightly less than projected last year, as most countries with nuclear programmes have reaffirmed their commitment to them. But given the increased uncertainty, that could change. A special Low Nuclear Case examines what would happen if the anticipated contribution of nuclear to future energy supply were to be halved. While providing a boost to renewables, such a slowdown would increase import bills, heighten energy security concerns and make it harder and more expensive to combat climate change.
  • The future for natural gas is more certain: its share in the energy mix rises and gas use almost catches up with coal consumption, underscoring key findings from a recent WEO Special Report which examined whether the world is entering a “Golden Age of Gas”. One country set to benefit from increased demand for gas is Russia, which is the subject of a special in-depth study in WEO-2011. Key challenges for Russia are to finance a new generation of higher-cost oil and gas fields and to improve its energy efficiency. While Russia remains an important supplier to its traditional markets in Europe, a shift in its fossil fuel exports towards China and the Asia-Pacific gathers momentum. If Russia improved its energy efficiency to the levels of comparable OECD countries, it could reduce its primary energy use by almost one-third, an amount similar to the consumption of the United Kingdom. Potential savings of natural gas alone, at 180 bcm, are close to Russia’s net exports in 2010.
  • In the New Policies Scenario, cumulative CO2 emissions over the next 25 years amount to three-quarters of the total from the past 110 years, leading to a long-term average temperature rise of 3.5°C. China’s per-capita emissions match the OECD average in 2035. Were the new policies not implemented, we are on an even more dangerous track, to an increase of 6°C.“As each year passes without clear signals to drive investment in clean energy, the “lock-in” of high-carbon infrastructure is making it harder and more expensive to meet our energy security and climate goals,” said Fatih Birol, IEA Chief Economist. The WEO presents a 450 Scenario, which traces an energy path consistent with meeting the globally agreed goal of limiting the temperature rise to 2°C. Four-fifths of the total energy-related CO2 emissions permitted to 2035 in the 450 Scenario are already locked-in by existing capital stock, including power stations, buildings and factories. Without further action by 2017, the energy-related infrastructure then in place would generate all the CO2 emissions allowed in the 450 Scenario up to 2035. Delaying action is a false economy: for every $1 of investment in cleaner technology that is avoided in the power sector before 2020, an additional $4.30 would need to be spent after 2020 to compensate for the increased emissions.
D'coda Dcoda

Nuclear electricity: a fallen dream? [28Sep11] - 0 views

  • Nuclear power is no magic solution, argues Pervez Hoodbhoy — it's not safe, or cheap, and it leads to weapons programmes. A string of energy-starved developing countries have looked at nuclear power as the magic solution. No oil, no gas, no coal needed – it's a fuel with zero air pollution or carbon dioxide emissions. High-tech and prestigious, it was seen as relatively safe. But then Fukushima came along. The disaster's global psychological impact exceeded Chernobyl's, and left a world that's now unsure if nuclear electricity is the answe
  • Core concerns The fire that followed the failure of emergency generators at the Daiichi nuclear complex raised the terrifying prospect of radiation leaking and spreading. The core of the Unit 1 reactor melted, and spent nuclear fuel, stored under pools of water, sprang to life as cooling pumps stopped. Fukushima's nuclear reactors had been built to withstand the worst, including earthquakes and tsunamis. Sensors successfully shut down the reactors, but when a wall of water 30 feet high crashed over the 20-foot protective concrete walls, electrical power, essential for cooling, was lost. The plume of radiation reached as far as Canada. Closer, it was far worse. Japan knows that swathes of its territory will be contaminated, perhaps uninhabitable, for the rest of the century. In July, for example, beef, vegetables, and ocean fish sold in supermarkets were found to have radioactive caesium in doses several times the safe level. [1]
  • The Japanese have been careful. In the country of the hibakusha (surviving victims of Hiroshima and Nagasaki), all reactors go through closer scrutiny than anywhere else. But this clearly wasn't enough. Other highly developed countries — Canada, Russia, UK, and US — have also seen serious reactor accidents. What does this mean for a typical developing country? There, radiation dangers and reactor safety have yet to enter public debate. Regulatory mechanisms are strictly controlled by the authorities, citing national security reasons. And individuals or nongovernmental organisations are forbidden from monitoring radiation levels near any nuclear facility. Poor and powerless village communities in India and Pakistan, that have suffered health effects from uranium and thorium mining, have been forced to withdraw their court cases.
  • ...6 more annotations...
  • The aftermath of a Fukushima-type incident might look very different in many developing countries. With volatile populations and little disaster management capability, the social response would probably be quite different. In Japan, tsunami survivors helped each other, relief teams operated unobstructed, and rescuers had full radiation protection gear. No panic, and no anti-government demonstrations followed the reactor explosions. Questions about cost
  • Is nuclear energy cost efficient? A 2009 Massachusetts Institute of Technology study, which strongly recommended enhancing the role of nuclear power to offset climate change [2], found that nuclear electricity costs more per kilowatt-hour (kWh): 8.4 cents versus 6.2/6.5 cents for coal/gas. It suggested that as fossil fuel depletes, the nuclear-fossil price ratio will turn around. But it hasn't yet. The World Bank has labelled nuclear plants "large white elephants". [3] Its Environmental Assessment Source Book says: "Nuclear plants are thus uneconomic because at present and projected costs they are unlikely to be the least-cost alternative.
  • There is also evidence that the cost figures usually cited by suppliers are substantially underestimated and often fail to take adequately into account waste disposal, decommissioning, and other environmental costs." [4] According to the US Nuclear Regulatory Commission, the cost of permanently shutting down a reactor ranges from US$300 million to US$400 million. [5] This is a hefty fraction of the reactor's original cost (20–30 per cent). While countries like France or South Korea do find nuclear energy profitable, they may be exceptions to a general rule. Countries that lack engineering capacity to make their own reactors will pay more to import and operate the technology.
  • Poor track record, military ambitions The track record of nuclear power in developing countries scarcely inspires confidence. Take the case of Pakistan, which still experiences long, daily electricity blackouts. Forty years ago, the Pakistan Atomic Energy Commission had promised that the country's entire electricity demand would be met from nuclear reactors. Although the commission helped produce 100 nuclear bombs, and employs over 30,000 people, it has come nowhere close to meeting the electricity target. Two reactors combine to produce about 0.7 GW, which meets around 2 per cent of Pakistan's electricity consumption.
  • India's record is also less than stellar. In 1962, it announced that installed nuclear capacity would be 18–20 GW by 1987; but it could reach only 1.48 GW by that year. Today, only 2.7 per cent of India's electricity comes from nuclear fuels. In 1994, an accident during the construction of two reactors at the Kaiga Generating Station pushed up their cost to four times the initial estimate. Cost overruns and delays are frequent, not just in India. And some developing countries' interest in nuclear technology for energy could mask another purpose. India and Pakistan built their weapon-making capacity around their civilian nuclear infrastructure. They were not the first, and will not be the last.
  • Warning bells ring loud and clear when big oil-producing countries start looking to build nuclear plants. Iran, with the second largest petroleum reserves in the world, now stands at the threshold of making a bomb using low enriched uranium fuel prepared for its reactors. Saudi Arabia, a rival which will seek its bomb if Iran makes one, has plans to spend over US$300 billion to build 16 nuclear reactors over the next 20 years. Climate change gives urgency to finding non-fossil fuel energy alternatives. But making a convincing case for nuclear power is getting harder. Neither cheap nor safe, it faces an uphill battle. Unless there is a radical technical breakthrough — such as a workable reactor fuelled by nuclear fusion rather than nuclear fission — its prospects for growth look bleak. Pervez Hoodbhoy received his PhD in nuclear physics from the Massachusetts Institute of Technology, USA. He teaches at the School of Science and Engineering at LUMS (Lahore) and at Quaid-e-Azam University, Islamabad, Pakistan.
D'coda Dcoda

Nuclear Power And South Africa's Climate Change Policy [23Oct11] - 0 views

  • The South African government released its official climate change response policy this week and while it contains many positives, many environmentalists, myself included, are very concerned about the fact that it contains a continued and increased commitment to nuclear energy. First, some of the good news. In the National Climate Change Response White Paper, the government reiterates its conviction, based on the research of the vast majority of the world’s climate scientists, that climate change is happening, that human activities such as the burning of fossil fuels and deforestation are the main causes and that there will be very severe consequences if the international community does not take decisive collective action to halt it. That’s great. There’s not denying that. What’s more, the South African government acknowledges that, while Africa as a continent has been a relatively minor contributor to climate change, South Africa itself is a significant emitter of greenhouse gases (GHG), largely as a result of its energy-intensive, fossil fuel powered economy. If nothing is done, the country’s emissions are projected to quadruple by 2050.
  • Electricity generation accounts for about 40% of all of South Africa’s GHG emissions and clearly this represents a major opportunity for future reductions. More than 90% of the country’s electricity is produced by coal-fired power stations. The French-built Koeberg plant outside Cape Town, which dates back to the Apartheid era, remains the country’s only commercial nuclear energy facility. It’s interesting to take a look at how a major new nuclear energy construction program has become an integral part of South Africa’s climate change policy. The ruling African National Congress, in power since the first democratic elections in 1994, used to be a staunch opponent of atomic energy. When the organization was in exile some of its underground operatives even sabotaged Koeberg while it was being built.
  • These days, however, the ANC government is a very strong proponent of nuclear energy. Critics believe that this is mainly the result of effective lobbying by the international nuclear industry and the country’s main industrial and mining electricity consumers. This week, Minister of Energy, Dipuo Peters confirmed that plans to construct 6 new nuclear plants with a combined capacity of 9 600 megawatts would cost something like R1 trillion (about $125 billion). The formal acceptance of nuclear energy into South Africa’s climate change policy can be traced back to a study of so-called long term mitigation scenarios (LTMS) which modeled various actions that could be taken to bring the country’s GHG emission under control in line with what is required internationally to prevent catastrophic climate change.
  • ...1 more annotation...
  • It’s quite clear that South Africa, a country with vast solar and wind energy potential, could make a transition to a clean, green economy free of environmentally dubious nuclear power and fossil fuels within a reasonable time frame. But since the government-sanctioned LTMS study did not provide this as an option, it seems not to have been considered by the powers that be. Even though the authors of the study emphasize that it was not a decision-making process in itself and was only meant to present policy-makers with options, the fact that the options it presented were severely limited meant that its recommendations became policy and nuclear energy became part of South Africa’s Integrated Resource Plan defining electricity generation until 2030 as well as the national climate change response policy. Unless anti-nuclear campaigners make some serious progress soon, nuclear energy will play a very significant role in South Africa’s future.
D'coda Dcoda

The High Cost of Freedom from Fossil Fuels [10Nov11] - 0 views

shared by D'coda Dcoda on 11 Nov 11 - No Cached
  • During the 1970s and 1980s, at the peak of the nuclear reactor construction, organized groups of protestors mounted dozens of anti-nuke campaigns. They were called Chicken Littles, the establishment media generally ignored their concerns, and the nuclear industry trotted out numerous scientists and engineers from their payrolls to declare nuclear energy to be safe, clean, and inexpensive energy that could reduce America’s dependence upon foreign oil. Workers at nuclear plants are highly trained, probably far more than workers in any other industry; operating systems are closely regulated and monitored. However, problems caused by human negligence, manufacturing defects, and natural disasters have plagued the nuclear power industry for its six decades. It isn’t alerts like what happened at San Onofre that are the problem; it’s the level 3 (site area emergencies) and level 4 (general site emergencies) disasters. There have been 99 major disasters, 56 of them in the U.S., since 1952, according to a study conducted by Benjamin K. Sovacool Director of the Energy Justice Program at Institute for Energy and Environment  One-third of all Americans live within 50 miles of a nuclear plant.
  • At Windscale in northwest England, fire destroyed the core, releasing significant amounts of Iodine-131. At Rocky Flats near Denver, radioactive plutonium and tritium leaked into the environment several times over a two decade period. At Church Rock, New Mexico, more than 90 million gallons of radioactive waste poured into the Rio Puerco, directly affecting the Navajo nation. In the grounds of central and northeastern Pennsylvania, in addition to the release of radioactive Cesium-137 and Iodine-121, an excessive level of Strontium-90 was released during the Three Mile Island (TMI) meltdown in 1979, the same year as the Church Rock disaster. To keep waste tanks from overflowing with radioactive waste, the plant’s operator dumped several thousand gallons of radioactive waste into the Susquehanna River. An independent study by Dr. Steven Wing of the University of North Carolina revealed the incidence of lung cancer and leukemia downwind of the TMI meltdown within six years of the meltdown was two to ten times that of the rest of the region.
  • Although nuclear plant security is designed to protect against significant and extended forms of terrorism, the NRC believes as many as one-fourth of the 104 U.S. nuclear plants may need upgrades to withstand earthquakes and other natural disasters, according to an Associated Press investigation. About 20 percent of the world’s 442 nuclear plants are built in earthquake zones, according to data compiled by the International Atomic Energy Agency. The NRC has determined that the leading U.S. plants in the Eastern Coast in danger of being compromised by an earthquake are in the extended metropolitan areas of Boston, New York City, Philadelphia, Pittsburgh, and Chattanooga. Tenn. The highest risk, however, may be California’s San Onofre and Diablo Canyon plants, both built near major fault lines. Diablo Canyon, near San Luis Obispo, was even built by workers who misinterpreted the blueprints.  
  • ...2 more annotations...
  • A Department of Energy analysis revealed the budget for 75 of the first plants was about $45 billion, but cost overruns ran that to $145 billion. The last nuclear power plant completed was the Watts Bar plant in eastern Tennessee. Construction began in 1973 and was completed in 1996. Part of the federal Tennessee Valley Authority, the Watts Bar plant cost about $8 billion to produce 1,170 mw of energy from its only reactor. Work on a second reactor was suspended in 1988 because of a lack of need for additional electricity. However, construction was resumed in 2007, with completion expected in 2013. Cost to complete the reactor, which was about 80 percent complete when work was suspended, is estimated to cost an additional $2.5 billion. The cost to build new power plants is well over $10 billion each, with a proposed cost of about $14 billion to expand the Vogtle plant near Augusta, Ga. The first two units had cost about $9 billion.
  • Added to the cost of every plant is decommissioning costs, averaging about $300 million to over $1 billion, depending upon the amount of energy the plant is designed to produce. The nuclear industry proudly points to studies that show the cost to produce energy from nuclear reactors is still less expensive than the costs from coal, gas, and oil. The industry also rightly points out that nukes produce about one-fifth all energy, with no emissions, such as those from the fossil fuels. For more than six decades, this nation essentially sold its soul for what it thought was cheap energy that may not be so cheap, and clean energy that is not so clean. It is necessary to ask the critical question. Even if there were no human, design, and manufacturing errors; even if there could be assurance there would be no accidental leaks and spills of radioactivity; even if there became a way to safely and efficiently dispose of long-term radioactive waste; even if all of this was possible, can the nation, struggling in a recession while giving subsidies to the nuclear industry, afford to build more nuclear generating plants at the expense of solar, wind, and geothermal energy?
D'coda Dcoda

Saudi Arabia's nuclear energy ambitions [18Aug11] - 0 views

  • The Kingdom of Saudi Arabia (KSA) plans to build 16 nuclear reactors over the next 20 years spending an estimated $7 billion on each plant. The $112 billion investment, which includes capacity to become a regional exporter of electricity, will provide one-fifth of the Kingdom’s electricity for industrial and residential use and, critically, for desalinization of sea water.
  • dom’s electricity for industrial and residential use and, critically, for desalinization of sea water.
  • This past April, the Saudi government announced the development of a nuclear city to train and house the technical workforce that will be needed to achieve these ambitions. It is clear that KSA’s plans for spending its sovereign wealth fund will be mostly focused on the home front. At the same time, a former Saudi ambassador to the United States , Prince Turki al-Faisal (served 2005-2006), has warned that a regional nuclear arms race could start if Iran does not curb its nuclear efforts. He told the Wall Street Journal on July 20, “It is in our interest that Iran does not develop a nuclear weapon, for their doing so would compel Saudi Arabia … to pursue policies that could lead to untold and possibly dramatic consequences.”
  • ...8 more annotations...
  • According to the WSJ, the Saudi government said the former ambassador does not speak for it in an official capacity. Al-Faisal, however, is widely believed to be on a short list to be the next foreign minister of KSA. How credible his claim is about the potential for a regional arms race remains to be seen. Swapping nukes for oil drums
  • The main driver for KSA’s plans to build reactors is that at the rate that it is burning its own oil, it may have substantially less to export in just a decade or so. At a minimum, it may lose the excess capacity the rest of the world relies on when there are disruptions in supplies from other countries. One scenario suggested by energy analysts that follow oil markets is that within two decades most of the KSA output would be used for domestic consumption. Total Saudi reserves are estimated at 267 billion barrels. Debates rage in the news media over so-called peak oil, but energy experts discount them as speculative at best, and fantastic or worse on the downside.
  • Current production estimates put total KSA production capacity at 12.5 million barrels a day with a maximum output of 15 million barrels a day. The Wall Street Journal reported in April 2011 that production was running at 8 million-9 million barrels a day compared to 11 million barrels a day in 2010 reported by the Energy Information Administration. The difference is the global economic downturn has reduced demand. What’s got the attention of energy planners is that domestic use in KSA could grow from 3.4 million barrels of oil a day in 2009 to 8.3 million barrels a day by 2028.
  • The official Saudi press agency said in April 2010 that it was “alarmed” by increasing oil and gas consumption for domestic use and the resulting impact on export revenues. Reduction of consumption, which pushes up use of fossil fuel to produce electricity, is not an option for both economic and political reasons. In 2011, the Saudi government has increased its subsidies of energy supplies by $100 million for domestic use, in part to dampen any possibilities of social unrest like that which toppled regimes in Tunisia and Egypt.
  • Like other Arab countries, KSA has a large population of unemployed young people who have better than average educations.  This is a volatile mix and the arch conservatives that run KSA have defused it with lavish subsidies.
  • Electricity demand is predicted to increase from 75 GWe by 2018 to more than 120 Gwe by 2030. This growth can’t be sustained by fossil fuel alone and also maintain the income stream the nation depends on from oil exports. Nuclear reactors are an obvious choice to intervene in an unsustainable growth scenario.
  • This outlook is sending the Saudi government down a path to develop nuclear energy. In April, it announced that it was setting up the King Abdullah City for Atomic and Renewable Energy (KA-CARE) to pursue this objective. Saudi Arabia is building up its transmission and distribution grids to interconnect with the UAE on the east and Oman to the south.  It is developing its so-called empty quarter which Middle East experts point out isn’t as empty as it sounds.
  • The new city’s charter states that nuclear and renewable energies, especially solar, would be developed to ensure continued supplies of drinking water and electricity to its growing population and save hydrocarbon resources such as petroleum and gas for use by future generations. The objective is to make them a source of income for a much longer period.
D'coda Dcoda

Early Fossil Fuel & Nuclear Energy Subsidies Crush Early Renewable Energy Subsidies [28... - 0 views

  • [T]he federal commitment to [oil & gas] was five times greater than the federal commitment to renewables during the first 15 years of each subsidies’ life, and it was more than 10 times greater for nuclear.
  • The political reaction to the Solyndra scandal has been laughably devoid of both short-term and long-term historical perspective. In an attempt to exploit a political opportunity, many House Republicans are railing against government investments in the renewable energy sector. However, those same politicians requested millions of dollars for cleantech projects in their own states just a year or two before.This bad case of amnesia stretches far beyond the last two years. Apparently, many in Congress have forgotten about the last 100 years of government investments in oil, gas and nuclear — all of which have far outpaced investments in renewable energy like solar PV, solar thermal, geothermal and wind.
  • A new study with terrific charts, “What Would Jefferson Do? The Historical Role of Federal Subsidies inShaping America’s ERnergy Future,” released by the venture capital firm DBL Investors, attempts to quantify and contrast those government investments. The researchers looked at the vast array of federal incentives — tax credits, land grants, tariffs, R&D, and direct investments — and found that renewables have received far less support than any other sector:
  • ...5 more annotations...
  • As a percentage of inflation-adjusted federal spending, nuclear subsidies accounted for more than 1% of the federal budget over their first 15 years, and oil and gas subsidies made up half a percent of the total budget, while renewables have constituted only about a tenth of a percent. [See graph above.]
  • The researchers are somewhat selective about which subsidies they factor in. In order to come to directly-comparable figures, they outline four criteria for evaluating subsidies: The subsidy is designed to increase production of the targeted resource; all the data for the subsidy is available; the subsidy existed during the early stages of of domestic production; the inclusion of the subsidy allows for meaningful comparison across different sectors.When adding them all up over time, the report’s authors found that on an average yearly basis, renewables represent a small fraction of the total government investments in the energy sector.  Here are two great charts that make that clear:
  • Note:  The above chart is average annual support.  The cumulative spending numbers are thus even more disparate:
  • I have some issues with this report, however. Firstly, the authors stop tracking the numbers in 2009 and leave out the billions invested through the stimulus package. They claim to do this because of the temporary nature of the stimulus package. While it’s true that many of those programs are already phased out or will be gone by next year, the stimulus is still a very important piece of early-stage investments in the sector. Why leave it out?The researchers also neglect to include the short burst of federal renewable energy investment in the late 1970s. While those tax credits and R&D programs lasted only a short while, they still contribute to the overall figures.
  • Finally, in an attempt to make clear distinctions between the renewable fuel and electricity sectors, the report separates biofuels from the renewables category (wind, solar, geothermal). That separation also changes the numbers and makes the renewables subsidy figures much lower than they otherwise would be.
  •  
    charts on site
D'coda Dcoda

The nuclear power plans that have survived Fukushima [28Sep11] - 0 views

  • SciDev.Net reporters from around the world tell us which countries are set on developing nuclear energy despite the Fukushima accident. The quest for energy independence, rising power needs and a desire for political weight all mean that few developing countries with nuclear ambitions have abandoned them in the light of the Fukushima accident. Jordan's planned nuclear plant is part of a strategy to deal with acute water and energy shortages.
  • The Jordan Atomic Energy Commission (JAEC) wants Jordan to get 60 per cent of its energy from nuclear by 2035. Currently, obtaining energy from neighbouring Arab countries costs Jordan about a fifth of its gross domestic product. The country is also one of the world's most water-poor nations. Jordan plans to desalinate sea water from the Gulf of Aqaba to the south, then pump it to population centres in Amman, Irbid, and Zarqa, using its nuclear-derived energy. After the Fukushima disaster, Jordan started re-evaluating safety procedures for its nuclear reactor, scheduled to begin construction in 2013. The country also considered more safety procedures for construction and in ongoing geological and environmental investigations.
  • The government would not reverse its decision to build nuclear reactors in Jordan because of the Fukushima disaster," says Abdel-Halim Wreikat, vice Chairman of the JAEC. "Our plant type is a third-generation pressurised water reactor, and it is safer than the Fukushima boiling water reactor." Wreikat argues that "the nuclear option for Jordan at the moment is better than renewable energy options such as solar and wind, as they are still of high cost." But some Jordanian researchers disagree. "The cost of electricity generated from solar plants comes down each year by about five per cent, while the cost of producing electricity from nuclear power is rising year after year," says Ahmed Al-Salaymeh, director of the Energy Centre at the University of Jordan. He called for more economic feasibility studies of the nuclear option.
  • ...20 more annotations...
  • And Ahmad Al-Malabeh, a professor in the Earth and Environmental Sciences department of Hashemite University, adds: "Jordan is rich not only in solar and wind resources, but also in oil shale rock, from which we can extract oil that can cover Jordan's energy needs in the coming years, starting between 2016 and 2017 ... this could give us more time to have more economically feasible renewable energy."
  • Finance, rather than Fukushima, may delay South Africa's nuclear plans, which were approved just five days after the Japanese disaster. South Africa remains resolute in its plans to build six new nuclear reactors by 2030. Katse Maphoto, the director of Nuclear Safety, Liabilities and Emergency Management at the Department of Energy, says that the government conducted a safety review of its two nuclear reactors in Cape Town, following the Fukushima event.
  • Vietnam's nuclear energy targets remain ambitious despite scientists' warning of a tsunami risk. Vietnam's plan to power 10 per cent of its electricity grid with nuclear energy within 20 years is the most ambitious nuclear energy plan in South-East Asia. The country's first nuclear plant, Ninh Thuan, is to be built with support from a state-owned Russian energy company and completed by 2020. Le Huy Minh, director of the Earthquake and Tsunami Warning Centre at Vietnam's Institute of Geophysics, has warned that Vietnam's coast would be affected by tsunamis in the adjacent South China Sea.
  • Larkin says nuclear energy is the only alternative to coal for generating adequate electricity. "What other alternative do we have? Renewables are barely going to do anything," he said. He argues that nuclear is capable of supplying 85 per cent of the base load, or constantly needed, power supply, while solar energy can only produce between 17 and 25 per cent. But, despite government confidence, Larkin says that a shortage of money may delay the country's nuclear plans.
  • The government has said yes but hasn't said how it will pay for it. This is going to end up delaying by 15 years any plans to build a nuclear station."
  • The Ninh Thuan nuclear plant would sit 80 to 100 kilometres from a fault line on the Vietnamese coast, potentially exposing it to tsunamis, according to state media. But Vuong Huu Tan, president of the state-owned Vietnam Atomic Energy Commission, told state media in March, however, that lessons from the Fukushima accident will help Vietnam develop safe technologies. And John Morris, an Australia-based energy consultant who has worked as a geologist in Vietnam, says the seismic risk for nuclear power plants in the country would not be "a major issue" as long as the plants were built properly. Japan's nuclear plants are "a lot more earthquake prone" than Vietnam's would be, he adds.
  • Undeterred by Fukushima, Nigeria is forging ahead with nuclear collaborations. There is no need to panic because of the Fukushima accident, says Shamsideen Elegba, chair of the Forum of Nuclear Regulatory Bodies in Africa. Nigeria has the necessary regulatory system to keep nuclear activities safe. "The Nigerian Nuclear Regulatory Authority [NNRA] has established itself as a credible organisation for regulatory oversight on all uses of ionising radiation, nuclear materials and radioactive sources," says Elegba who was, until recently, the NNRA's director general.
  • Vietnam is unlikely to experience much in the way of anti-nuclear protests, unlike neighbouring Indonesia and the Philippines, where civil society groups have had more influence, says Kevin Punzalan, an energy expert at De La Salle University in the Philippines. Warnings from the Vietnamese scientific community may force the country's ruling communist party to choose alternative locations for nuclear reactors, or to modify reactor designs, but probably will not cause extreme shifts in the one-party state's nuclear energy strategy, Punzalan tells SciDev.Net.
  • Will the Philippines' plans to rehabilitate a never-used nuclear power plant survive the Fukushima accident? The Philippines is under a 25-year moratorium on the use of nuclear energy which expires in 2022. The government says it remains open to harnessing nuclear energy as a long-term solution to growing electricity demand, and its Department of Science and Technology has been making public pronouncements in favour of pursuing nuclear energy since the Fukushima accident. Privately, however, DOST officials acknowledge that the accident has put back their job of winning the public over to nuclear by four or five years.
  • In the meantime, the government is trying to build capacity. The country lacks, for example, the technical expertise. Carmencita Bariso, assistant director of the Department of Energy's planning bureau, says that, despite the Fukushima accident, her organisation has continued with a study on the viability, safety and social acceptability of nuclear energy. Bariso says the study would include a proposal for "a way forward" for the Bataan Nuclear Power Plant, the first nuclear reactor in South East Asia at the time of its completion in 1985. The $2.3-billion Westinghouse light water reactor, about 60 miles north of the capital, Manila, was never used, though it has the potential to generate 621 megawatts of power. President Benigno Aquino III, whose mother, President Corazon Aquino, halted work on the facility in 1986 because of corruption and safety issues, has said it will never be used as a nuclear reactor but could be privatised and redeveloped as a conventional power plant.
  • But Mark Cojuangco, former lawmaker, authored a bill in 2008 seeking to start commercial nuclear operations at the Bataan reactor. His bill was not passed before Congress adjourned last year and he acknowledges that the Fukushima accident has made his struggle more difficult. "To go nuclear is still the right thing to do," he says. "But this requires a societal decision. We are going to spark public debates with a vengeance as soon as the reports from Fukushima are out." Amended bills seeking both to restart the reactor, and to close the issue by allowing either conversion or permanent closure, are pending in both the House and the Senate. Greenpeace, which campaigns against nuclear power, believes the Fukushima accident has dimmed the chances of commissioning the Bataan plant because of "increased awareness of what radioactivity can do to a place". Many parts of the country are prone to earthquakes and other natural disasters, which critics say makes it unsuitable both for the siting of nuclear power stations and the disposal of radioactive waste.
  • In Kenya, nuclear proponents argue for a geothermal – nuclear mix In the same month as the Fukushima accident, inspectors from the International Atomic Energy Agency approved Kenya's application for its first nuclear power station (31 March), a 35,000 megawatt facility to be built at a cost of Sh950 billion (US$9.8 billion) on a 200-acre plot on the Athi Plains, about 50km from Nairobi
  • The plant, with construction driven by Kenya's Nuclear Electricity Project Committee, should be commissioned in 2022. The government claims it could satisfy all of Kenya's energy needs until 2040. The demand for electricity is overwhelming in Kenya. Less than half of residents in the capital, Nairobi, have grid electricity, while the rural rate is two per cent. James Rege, Chairman of the Parliamentary Committee on Energy, Communication and Information, takes a broader view than the official government line, saying that geothermal energy, from the Rift Valley project is the most promising option. It has a high production cost but remains the country's "best hope". Nuclear should be included as "backup". "We are viewing nuclear energy as an alternative source of power. The cost of fossil fuel keeps escalating and ordinary Kenyans can't afford it," Rege tells SciDev.Net.
  • Hydropower is limited by rivers running dry, he says. And switching the country's arable land to biofuel production would threaten food supplies. David Otwoma, secretary to the Energy Ministry's Nuclear Electricity Development Project, agrees that Kenya will not be able to industrialise without diversifying its energy mix to include more geothermal, nuclear and coal. Otwoma believes the expense of generating nuclear energy could one day be met through shared regional projects but, until then, Kenya has to move forward on its own. According to Rege, much as the nuclear energy alternative is promising, it is extremely important to take into consideration the Fukushima accident. "Data is available and it must be one step at a time without rushing things," he says. Otwoma says the new nuclear Kenya can develop a good nuclear safety culture from the outset, "but to do this we need to be willing to learn all the lessons and embrace them, not forget them and assume that won't happen to us".
  • But the government adopted its Integrated Resource Plan (IRP) for 2010-2030 five days after the Fukushima accident. Elliot Mulane, communications manager for the South African Nuclear Energy Corporation, (NECSA) a public company established under the 1999 Nuclear Energy Act that promotes nuclear research, said the timing of the decision indicated "the confidence that the government has in nuclear technologies". And Dipuo Peters, energy minister, reiterated the commitment in her budget announcement earlier this year (26 May), saying: "We are still convinced that nuclear power is a necessary part of our strategy that seeks to reduce our greenhouse gas emissions through a diversified portfolio, comprising some fossil-based, renewable and energy efficiency technologies". James Larkin, director of the Radiation and Health Physics Unit at the University of the Witwatersrand, believes South Africa is likely to go for the relatively cheap, South Korean generation three reactor.
  • It is not only that we say so: an international audit came here in 2006 to assess our procedure and processes and confirmed the same. Elegba is firmly of the view that blame for the Fukushima accident should be allocated to nature rather than human error. "Japan is one of the leaders not only in that industry, but in terms of regulatory oversight. They have a very rigorous system of licensing. We have to make a distinction between a natural event, or series of natural events and engineering infrastructure, regulatory infrastructure, and safety oversight." Erepamo Osaisai, Director General of the Nigeria Atomic Energy Commission (NAEC), has said there is "no going back" on Nigeria's nuclear energy project after Fukushima.
  • Nigeria is likely to recruit the Russian State Corporation for Atomic Energy, ROSATOM, to build its first proposed nuclear plant. A delegation visited Nigeria (26- 28 July) and a bilateral document is to be finalised before December. Nikolay Spassy, director general of the corporation, said during the visit: "The peaceful use of nuclear power is the bedrock of development, and achieving [Nigeria's] goal of being one of the twenty most developed countries by the year 2020 would depend heavily on developing nuclear power plants." ROSATOM points out that the International Atomic Energy Agency monitors and regulates power plant construction in previously non-nuclear countries. But Nnimmo Bassey, executive director of the Environmental Rights Action/Friends of the Earth Nigeria (ERA/FoEN), said "We cannot see the logic behind the government's support for a technology that former promoters in Europe, and other technologically advanced nations, are now applying brakes to. "What Nigeria needs now is investment in safe alternatives that will not harm the environment and the people. We cannot accept the nuclear option."
  • Thirsty for electricity, and desirous of political clout, Egypt is determined that neither Fukushima ― nor revolution ― will derail its nuclear plans. Egypt was the first country in the Middle East and North Africa to own a nuclear programme, launching a research reactor in 1961. In 2007 Egypt 'unfroze' a nuclear programme that had stalled in the aftermath of the Chernobyl disaster. After the Egyptian uprising in early 2011, and the Fukushima accident, the government postponed an international tender for the construction of its first plant.
  • Yassin Ibrahim, chairman of the Nuclear Power Plants Authority, told SciDev.Net: "We put additional procedures in place to avoid any states of emergency but, because of the uprising, the tender will be postponed until we have political stability after the presidential and parliamentary election at the end of 2011". Ibrahim denies the nuclear programme could be cancelled, saying: "The design specifications for the Egyptian nuclear plant take into account resistance to earthquakes and tsunamis, including those greater in magnitude than any that have happened in the region for the last four thousand years. "The reactor type is of the third generation of pressurised water reactors, which have not resulted in any adverse effects to the environment since they began operation in the early sixties."
  • Ibrahim El-Osery, a consultant in nuclear affairs and energy at the country's Nuclear Power Plants Authority, points out that Egypt's limited resources of oil and natural gas will run out in 20 years. "Then we will have to import electricity, and we can't rely on renewable energy as it is still not economic yet — Egypt in 2010 produced only two per cent of its needs through it." But there are other motives for going nuclear, says Nadia Sharara, professor of mineralogy at Assiut University. "Owning nuclear plants is a political decision in the first place, especially in our region. And any state that has acquired nuclear technology has political weight in the international community," she says. "Egypt has the potential to own this power as Egypt's Nuclear Materials Authority estimates there are 15,000 tons of untapped uranium in Egypt." And she points out it is about staying ahead with technology too. "If Egypt freezes its programme now because of the Fukushima nuclear disaster it will fall behind in many science research fields for at least the next 50 years," she warned.
D'coda Dcoda

Fukushima and the Doomsday Clock | Bulletin of the Atomic Scientists [11Aug11] - 0 views

  • When dreadful events occur, reporters, readers, and interested citizens contact the Bulletin of the Atomic Scientists asking whether we will move the minute hand of the Doomsday Clock. The alarming nuclear disaster at the Fukushima Daiichi Power Station on March 11 prompted e-mails and calls to our office seeking the Bulletin's reaction as well as accurate information about what was happening in Japan. The Bulletin responded by devoting its website to daily briefings from experts in Japan and to news from Bulletin writers on what they were hearing about this second-worst disaster in the history of the nuclear power industry. Additionally, the Bulletin will take deeper dives into the lessons and impacts of Fukushima in the September/October issue of its digital journal. Still, the larger question remains: Should we move the hand of the Doomsday Clock? What does the Fukushima event imply for humanity's future on the planet?
  • How do we determine the time? In annual Clock discussions, the Bulletin's Science and Security Board -- the keepers of the Clock -- reviews the trends and current events that reveal how well or how poorly humanity regulates the perilous forces unleashed by our own ingenuity and industry. Moving the minute hand of the Doomsday Clock is a judgment, then, an assessment of the human capacity to control technologies that can lead to irreversible catastrophe -- to the end of civilization. With growing worldwide interest in nuclear energy for economic development, it's important to know how well firms and societies are handling this dangerous technology
  • Questions for a post-Fukushima world. The Bulletin's Board members are following the events at the Fukushima Daiichi nuclear power plant in Japan very closely. Questions about the continuing disaster range from the detailed and technical to the societal and ethical; the answers will have implications for any long-term commitment to nuclear power.
  • ...4 more annotations...
  • On the technical end, it appears that the underlying cause of the three core meltdowns, the hydrogen explosions, and the subsequent release of radioactive material was the loss of coolant to the nuclear cores, which was ultimately due to the loss of electrical power to the reactors. Without power to circulate the water that cooled the fuel rods, nothing could have prevented the core meltdowns. In light of this failure, questions center on reactor design and handling of nuclear fuel. Can reactors be designed without a reliance on electrical power to maintain the proper core temperature? In the event of system failure, are there better alternatives to human intervention? Stronger safety designs have been proposed in the past -- ones that are more straightforward and less Rube Goldberg-like than the complicated systems currently used. Why haven't they been developed? Meanwhile, the handling of nuclear fuel continues to defy logic: Why is spent fuel still stored at power plants -- raising the odds of damage and the subsequent release of radioactive materials in accidents? What exactly are the obstacles to placing spent fuel in long-term storage repositories?
  • A second set of questions focuses on operations, regulation, and public knowledge about nuclear reactors. How can regulatory agencies maintain independence from the nuclear industry and enforce rigorous safety standards? What prevents the industry from being more transparent about operations, especially when leaks and mishaps occur? If existing regulatory arrangements appear inadequate, then could a different structure of economic incentives encourage utilities to make their nuclear power plants safer and more secure? In the United States, for example, current law limits industry liability in the event of an accident. Does the limit on legal liability in the event of an accident reduce firms' incentives not only to develop the safest designs possible but also to ensure the most rigorous oversight of maintenance and operations?
  • More broadly, how can societies and communities meet their energy needs with the least risk and the greatest payoff for economic development? Are there alternatives based on precautionary principles -- first do no harm -- that involve less peril to safety, health, and community than nuclear or fossil-fueled power? Are we locked into the current energy development path? How should we think about the trade-offs between injury and disruption from energy technologies and future injury and disruption from climate change?
  • But have we learned anything? These questions are difficult to answer and the trade-offs nearly impossible to calculate. Even harder, however, will be implementing policy recommendations in a world of vested interests tied to old technologies. Over the past 100 years or so, the world's "energy portfolio" did not diversify very much -- as electric and gas-fueled engines powered industrial development. Renewable energy technologies like wind, solar, and biofuels hold great potential, but require much more rapid development to substitute for fossil fuels and nuclear power in the near term. So it appears now that there are few good choices: Either warm the planet's atmosphere and oceans, with dire consequences for human societies as the climate rapidly changes, or place communities in jeopardy from nuclear plant accidents and releases of deadly radioactive materials. However, in January 2012, when the Bulletin deliberates about moving the hand of the Doomsday Clock, the most important question will be: What have governments, firms, and citizens learned from the Fukushima disaster about managing Earth-altering technologies? And will they act on what they have learned in time to avert future disaster?
D'coda Dcoda

France Commits to Nuclear Future [07Jul11] - 0 views

  • As a long time proponent of nuclear power, last week France announced that it will invest $1.4 billion in its nuclear energy program, diverging from contentious deliberation from neighboring states on nuclear energy policy after the earthquake and tsunami in Japan that damaged the Fukushima Daiichi plant in March. The President of France, Nicholas Sarkozy, issued a strong commitment announcing the energy funding package by declaring there is “no alternative to nuclear energy today.” With the capital used to fund fourth generation nuclear power plant technology, focusing research development in nuclear safety, the announcement validates many decades of energy infrastructure and legacy expansion. France currently operates the second largest nuclear fleet in the world with 58 reactors, responsible for supplying more than 74 percent of domestic electricity demand supplied to the world’s fifth largest economy last year. At the end of last month, French uranium producer, Areva Group (EPA:AREVA), and Katko announced plans to increase production to 4,000 tonnes of uranium next year.  Katco is a joint venture for Areva, the world’s largest builder of nuclear power plants, and Kazatomprom the national operator for uranium prospecting, exploration and production for Kazakhstan.
  • German closure The pronouncement to maintain the nuclear prominence in France provides a strong counterweight to other countries in the region. Germany recently announced the phased shutdown of its 17 nuclear power stations by 2022.  Last week, Germany’s federal parliament voted overwhelmingly to close its remaining nine active plants according to a preset 11 year schedule. A Federal Network Agency, which oversees German energy markets, will decide by the end of September whether one of the eight nuclear plants already closed in recent months should be kept ready on a “cold reserve” basis, to facilitate the transition for national energy supply. The German commitment to an energy policy transition indicates that the national power mix towards renewable sources will have to double from its present range of 17 percent to an ambitious 35 percent. Subsidies for hydro electric and geothermal energy will increase; however, financial support for biomass, solar, and wind energy will be reduced. German Chancellor Angela Merkel has said she would prefer for utility suppliers not to make up any electrical shortfalls after 2022 by obtaining nuclear power from neighboring countries like France. Germany will require an expansive supergrid to effectively distribute electricity from the north to growing industrial urban centers like Munich, in the south. In order to execute this plan the new laws call for the addition of some 3,600 kilometers of high capacity power lines. Germany’s strategy will partially include the expansion of wind turbines on the North Sea, enabling some 25,000 megawatts’ worth of new offshore wind power which will have to be developed by 2030. Nuclear persistence in the United Kingdom Last month, the government in the United Kingdom maintained its strong commitment to nuclear energy, confirming a series of potential locations for new nuclear builds.  The national policy statements on energy said renewables, nuclear and fossil fuels with carbon capture and storage “all have a part to play in delivering the United Kingdom’s decarbonisation objectives,” and confirmed eight sites around the country as suitable for building new nuclear stations by 2025. The statements, which are to be debated in Parliament, include a commitment for an additional 33,000 megawatts of renewable energy capacity, while the government said more than $160 billion will be required to replace around 25 percent of the country’s generating capacity, due to close by 2020. The Scottish government has also softened its tough opposition to nuclear power, following recognition by the energy minister of a “rational case” to extend operations at Scotland’s two nuclear plants. Additional Eurozone participation In June, Italian voters rejected a government proposal to reintroduce nuclear power. The plan by Prime Minister Silvio Berlusconi to restart Italy’s nuclear energy program abandoned during the 1980s, was rejected by 94 percent of voters in the referendum. Another regional stakeholder, the Swiss government has decided not to replace the four nuclear power plants that supply about 40 percent of the country’s electricity. The last of Switzerland’s power nuclear plants is expected to end production by 2034, leaving time for the country to develop alternative power sources. Although the country is home to the oldest nuclear reactor presently in operation, the Swiss Energy Foundation has stated an objective to work for “an ecological, equitable and sustainable energy policy”. Its “2000 watt society” promotes energy solutions which employ renewable energy resources other than fossil fuels or nuclear power.
D'coda Dcoda

Another blogger for nuclear energy - Decarbonise SA [08Jul11] - 0 views

  • I have just spent a pleasant hour perusing a fascinating site called Decarbonise SA (where SA = South Australia). Ben Heard, an Australian who operates a consultancy named ThinkClimate Consulting is the force behind the site. He is a man on a mission – to move South Australia’s electric power system to zero carbon dioxide emissions as quickly as possible.
  • Ben Heard, an Australian who operates a consultancy named ThinkClimate Consulting is the force behind the site. He is a man on a mission – to move South Australia’s electric power system to zero carbon dioxide emissions as quickly as possible
  • Like a growing number of thinking people who are deeply concerned by the realization that business as usual in our energy supply system is putting future generations at grave risk of a greatly changed environment, Ben evaluated all of the possible actions that might avert danger, including taking the time to reevaluate why he was reflexively opposed to nuclear energy. Though his story is told in a completely different manner than the way that Gwyneth Cravens described her own journey from antinuclear activist to pronuclear advocate in Power to Save the World, the journey of discovery was similar.
  • ...8 more annotations...
  • Ben has produced and continues to refine a PowerPoint Presentation that is worth a look. He calls it Nuclear Power from Opponent to Proponent and he is working to find ever larger audiences to hear him tell that story.
  • His most recent post is titled Why pro-nuclear has failed when anti-nuclear has succeeded. It is an intriguing essay that points out a key factor – the antinuclear message is so simple that it can be stated in a single word that can be grasped and repeated by any two-year-old – “NO”. That is a message that is easy to propagate. In contrast, Ben believes that nuclear supporters have never developed a strong sales message.
  • Here is a copy of the comment that I left on Decarbonise SA
  • Your analysis leaves open an important question whose answer offers the key to pronuclear success – “Why?”
  • The mission of the antinuclear movement is clear enough, as you stated. It is a simple “NO”. However, pronuclear activists hand that opposition all of the moral strength that they need by accepting the premise that the basis for the “NO” is fear of radiation or fear of the bomb or fear of the possibility of a massively damaging accident that never seems to actually happen.
  • The real strength of the opposition to nuclear comes from the people who derive their wealth and power from the whole range of economic activities required to extract, refine, transport, distribute and consume the hydrocarbons that produce the emissions that you want to stop. Fossil fuel pushers have a fundamental reason for disliking clean, concentrated, abundant, affordable nuclear energy. They hold sway in a LOT of decision making bodies that can delay nuclear projects and add to their cost. They have influence in the media due to their continuous use of paid advertising campaigns sustained over many decades. They have influence in foundations that have been formed from fossil fuel derived wealth and they have influence in powerful unions like those associated with the railroads that derive most of their steady income from moving bulky fuels like oil and coal.
  • Your message of DecarboniseSA scares the heck out of the very rich and powerful people who are rich and powerful because THEY SELL CARBON!
  • The real way to defeat the “NO” to nuclear energy is to find people who benefit from “YES” to nuclear energy. The fuel suppliers have concentrated strength, but the majority of the world’s population does not supply fuel; they consume fuel and have to pay high prices, accept nasty pollution, and suffer through periods of supply constraints. Some of those consumers are major corporations in their own right and have a lot of sway – they just need to be told (over and over again) why fission is so much better than combustion.
Dan R.D.

Renewable energy tops nuclear power in the US [09Jul11] - 0 views

  • A report produced on behalf of Bloomberg says that investments in renewable energy have gone up by roughly a third over the last year, to $211 billion. Led by China's renewable push, the world is now on a trajectory that will see its investments in renewable electricity surpass those in fossil fuels within a year or two. As a result of these investments, the US is now producing more renewable energy than nuclear power.
  • Any way you look at things, the numbers make it clear just how significant renewables have become. Excluding hydropower, renewables made up about 35 percent of the power capacity added worldwide last year, and produced over five percent of the total power. Investments directed toward this new capacity (excluding things like mergers) hit $187 billion, and are closing in fast on the spending on fossil fuel power plants, cutting the gap in spending to $31 billion, down from $74 billion. At that pace, we'll be investing more in renewables either this year or next.
  • Part of the reason is cost. Although wind turbines are very mature technology now, their cost per MW still fell by 18 percent over the last two years; photovoltaics have dropped a staggering 60 percent in that time.
  • ...4 more annotations...
  • That will be a major transition, but another one took place already this past year: more financing went to utility-scale projects in the developing economies than in the industrialized ones. That change is driven by China, where investments were up by about 30 percent, reaching $49 billion.
  • The US, despite seeing a jump of 60 percent, still trailed far behind, with only about $25 billion in these investments.
  • Renewables are also becoming a major factor outside of the BrIC countries (Brazil, India, China). Latin American investments tripled to clear $6 billion, and other Asian nations saw 30 percent growth to $4 billion. But the big story is Africa, led by Egypt and Kenya, where investments were up nearly five-fold, reaching $3.6 billion.
  • Electricity generated by nuclear plants has held steady at about 8,400 quadrillion BTUs for the last several years, while renewables have experienced strong growth, reaching just over 8,000 Quads last year.
D'coda Dcoda

Let's go forward, the future will catch up later [12Oct11] - 0 views

shared by D'coda Dcoda on 12 Oct 11 - No Cached
  • That slogan in the title above is posted at the headquarters building of Enel in Rome. Enel is one of the leading European energy companies, and European Energy Review has just published an interview with CEO Fulvio Conti where he mentioned that particular fact. I like that slogan. Conti also said that investments in the energy sector need to look ahead for a long time. It can take ten years from decision to realization of some project, which will be operating for another 40 years, so in the planning stage you need to be able to look 50 years ahead.
  • Enel has a total production capacity of 97 GW, of which 34 GW are renewable energy. Only 22 percent of the revenue from renewable is from subsidies. As Conti said:
  • In renewables, we go where the natural resources offer the best returns, e.g. in Brazil or Mexico for solar and wind power. Subsidies will come and go. Our investments are for the long term. We need to be able to get a return on our investments without subsidies. With our renewable power portfolio, only 22% of our revenues came from subsidies last year. But we are moving through difficult times, with slower growth. I wonder how the natural resources of Mongolia compare to Brazil or Mexico. There seems to be some major untapped potential in the Gobi.
  • ...3 more annotations...
  • And if you are looking fifty years ahead, fossil fuel will only become more expensive. Competing against oil is much more fun with prices at over $100 a barrel right now than at the $17 to 19 in 2008 dollars a barrel cost in 1960, when OPEC was founded.
  • The business case for solar and wind energy will always include the fact that fuel is free. The importance of that fact varies with the cost of fossil fuels, even when not factoring in the costs of global warming. Another quote from the interview:
  • The target of the EU is to see the electricity sector almost completely decarbonised by 2050. Is that achievable? 2050 is a good time span, assuming that technology will continue to improve. Today we at Enel deliver 48% of our power carbon-free. We need technological development to do away with the other 52%. This could be through renewables, but also carbon capture and storage. There will be countries that will still depend on coal and gas, so we cannot rule out CCS. We are working on CCS, it’s there, but you have to prove you can do it economically. We have 40 years for the whole development towards carbon-free electricity generation. We undertook that commitment and I am sticking to it.
D'coda Dcoda

German Nuclear Decommissioning and Renewables Build-Out [23Oct11] - 0 views

  • Germany will be redirecting its economy towards renewable energy, because of the political decision to decommission its nuclear plants, triggered by the Fukushima event in Japan and subsequent public opposition to nuclear energy. Germany's decision would make achieving its 2020 CO2 emission reduction targets more difficult.   To achieve the CO2 emissions reduction targets and replace nuclear energy, renewable energy would need to scale up from 17% in 2010 to 57% of total electricity generation of 603 TWh in 2020, according to a study by The Breakthrough Institute. As electricity generation was 603 TWh in 2010, increased energy efficiency measures will be required to flat-line electricity production during the next 9 years.   Germany has 23 nuclear reactors (21.4 GW), 8 are permanently shut down (8.2 GW) and 15 (13.2 GW) will be shut down by 2022. Germany will be adding a net of 5 GW of coal plants, 5 GW of new CCGT plants and 1.4 GW of new biomass plants in future years. The CCGT plants will reduce the shortage of quick-ramping generation capacity for accommodating variable wind and solar energy to the grid.
  • Germany is planning a $14 billion build-out of transmission systems for onshore and future offshore wind energy in northern Germany and for augmented transmission with France for CO2-free hydro and nuclear energy imports to avoid any shortages.    Germany had fallen behind on transmission system construction in the north because of public opposition and is using the nuclear plant shutdown as leverage to reduce public opposition. Not only do people have to look at a multitude of 450-ft tall wind turbines, but also at thousands of 80 to 135 ft high steel structures and wires of the transmission facilities.   The $14 billion is just a minor down payment on the major grid reorganization required due to the decommissioning of the nuclear plants and the widely-dispersed build-outs of renewables. The exisitng grid is mostly large-central-plant based. 
  • This article includes the estimated capital costs of shutting down Germany's nuclear plants, reorganizing the grids of Germany and its neighbors, and building out renewables to replace the nuclear energy.    Germany’s Renewable Energy Act (EEG) in 2000, guarantees investors above-market fees for solar power for 20 years from the point of installation. In 2010, German investments in  renewables was about $41.2 billion, of which about $36.1 billion in 7,400 MW of solar systems ($4,878/kW). In 2010, German incentives for all renewables was about $17.9 billion, of which about half was for solar systems.   The average subsidy in 2010 was about ($9 billion x 1 euro/1.4 $)/12 TWh = 53.6 eurocents/kWh; no wonder solar energy is so popular in Germany. These subsidies are rolled into electric rates as fees or taxes, and will ultimately make Germany less competitive in world markets.   http://thebreakthrough.org/blog//2011/06/analysis_germanys_plan_to_phas-print.html http://mobile.bloomberg.com/news/2011-05-31/merkel-faces-achilles-heel-in-grids-to-unplug-german-nuclear.html http://www.theecologist.org/News/news_analysis/829664/revealed_how_your_country_compares_on_renewable_investment.html http://en.wikipedia.org/wiki/Solar_power_in_Germany  
  • ...12 more annotations...
  • SUMMARY OF ESTIMATED CAPITAL AND OTHER COSTS   The estimated capital costs and other costs for decommissioning the nuclear plants, restoring the sites, building out renewables, wind and solar energy balancing plants, and reorganizing electric grids over 9 years are summarized below.    The capital cost and subsidy cost for the increased energy efficiency measures was not estimated, but will likely need to be well over $180 billion over 9 years, or $20 billion/yr, or $20 b/($3286 b in 2010) x 100% = 0.6% of GDP, or $250 per person per yr.     Decommission nuclear plants, restore sites: 23 @ $1 billion/plant = $23 billion Wind turbines, offshore: 53,300 MW @ $4,000,000/MW = $213.2 billion   Wind turbines, onshore: 27,900 MW @ $2,000,000/MW = $55.8 billion Wind feed-in tariff extra costs rolled into electric rates over 9 years: $200 billion  Solar systems: 82,000 MW @ $4,500,000/MW = $369 billion Solar feed-in tariff extra costs rolled into electric rates over 9 years = $250 billion. Wind and solar energy balancing plants: 25,000 MW of CCGTs @ $1,250,000/MW = $31.3 billion Reorganizing European elecric grids tied to German grids: $150 billion
  • RENEWABLE ENERGY AND ENERGY EFFICIENCY TARGETS   In September 2010 the German government announced the following targets:   Renewable electricity - 35% by 2020 and 80% by 2050 Renewable energy - 18% by 2020, 30% by 2030, and 60% by 2050 Energy efficiency - Reducing the national electricity consumption 50% below 2008 levels by 2050.  http://en.wikipedia.org/wiki/Renewable_energy_in_Germany   Germany has a target to reduce its nation-wide CO2 emissions from all sources by 40% below 1990 levels by 2020 and 80-85% below 1990 levels by 2050. That goal could be achieved, if 100% of electricity is generated by renewables, according to Mr. Flasbarth. Germany is aiming to convince the rest of Europe to follow its lead.
  • Biomass: At the end of 2010, about 5,200 MW of biomass was installed at a capital cost of about $18 billion. Biomass energy produced was 33.5 TWh, or 5.5% of production. Plans are to add 1,400 MW of biomass plants in future years which, when fully implemented, would produce about 8.6 TWh/yr.   Solar: At the end of 2010, about 17,320 MW of PV solar was installed in Germany at a capital cost of about $100 billion. PV solar energy produced was 12 TWh, or 2% of total production. The excess cost of the feed-in-tariff energy bought by utilities and rolled into the electricity costs of rate payers was about $80 billion during the past 11 years.   Most solar panels are in southern Germany (nation-wide solar CF 0.095). When skies are clear, the solar production peaks at about 7 to 10 GW. Because of insufficient capacity of transmission and quick-ramping gas turbine plants, and because curtailment is not possible, part of the solar energy, produced at a cost to the German economy of about 30 to 50 eurocent/kWh is “sold” at European spot prices of about 5 eurocent/kWh to France which has significant hydro capacity for balancing the variable solar energy. http://theenergycollective.com/willem-post/46142/impact-pv-solar-feed-tariffs-germany  
  • Wind: At the end of 2010, about 27,200 MW of onshore and offshore wind turbines was installed in Germany at a capital cost of about $50 billion. Wind energy produced was 37.5 TWh, or 6.2% of total production. The excess cost of the feed-in-tariff energy bought by utilities and rolled into electricity costs of rate payers was about $50 billion during the past 11 years.   Most wind turbines are in northern Germany. When wind speeds are higher wind curtailment of 15 to 20 percent takes place because of insufficient transmission capacity and quick-ramping gas turbine plants. The onshore wind costs the Germany economy about 12 eurocent/kWh and the offshore wind about 24 eurocent/kWh. The owners of the wind turbines are compensated for lost production.   The alternative to curtailment is to “sell” the energy at European spot prices of about 5 eurocent/kWh to Norway and Sweden which have significant hydro capacity for balancing the variable wind energy; Denmark has been doing it for about 20 years.   As Germany is very marginal for onshore wind energy (nation-wide onshore wind CF 0.167) and nearly all of the best onshore wind sites have been used up, or are off-limits due to noise/visual/environmental impacts, most of the additional wind energy will have to come from OFFSHORE facilities which produce wind energy at about 2 to 3 times the cost of onshore wind energy. http://theenergycollective.com/willem-post/61774/wind-energy-expensive
  • A 2009 study by EUtech, engineering consultants, concluded Germany will not achieve its nation-wide CO2 emissions target; the actual reduction will be less than 30%. The head of Germany's Federal Environment Agency (UBA), Jochen Flasbarth, is calling for the government to improve CO2 reduction programs to achieve targets. http://www.spiegel.de/international/germany/0,1518,644677,00.html   GERMAN RENEWABLE ENERGY TO-DATE   Germany announced it had 17% of its electrical energy from renewables in 2010; it was 6.3% in 2000. The sources were 6.2% wind, 5.5% biomass, 3.2% hydro and 2.0% solar. Electricity consumption in 2010 was 603 TWh (production) - 60 TWh (assumed losses) = 543 TWh http://www.volker-quaschning.de/datserv/ren-Strom-D/index_e.php  
  • Hydro: At the end of 2010, about 4,700 MW of hydro was installed. Hydro energy produced was 19.5 TWh, or 3.2% of production. Hydro growth has been stagnant during the past 20 years. See below website.   As it took about $150 billion of direct investment, plus about $130 billion excess energy cost during the past 11 years to achieve 8.2% of total production from solar and wind energy, and assuming hydro will continue to have little growth, as was the case during the past 20 years (almost all hydro sites have been used up), then nearly all of the renewables growth by 2020 will be mostly from wind, with the remainder from solar and biomass. http://www.renewableenergyworld.com/rea/news/article/2011/03/new-record-for-german-renewable-energy-in-2010??cmpid=WNL-Wednesday-March30-2011   Wind and Solar Energy Depend on Gas: Wind and solar energy is variable and intermittent. This requires quick-ramping gas turbine plants to operate at part-load and quickly ramp up with wind energy ebbs and quickly ramp down with wind energy surges; this happens about 100 to 200 times a day resulting in increased wear and tear. Such operation is very inefficient for gas turbines causing them to use extra fuel/kWh and emit extra CO2/kWh that mostly offset the claimed fuel and CO2 reductions due to wind energy. http://theenergycollective.com/willem-post/64492/wind-energy-reduces-co2-emissions-few-percent  
  • Wind energy is often sold to the public as making a nation energy independent, but Germany will be buying gas mostly from Russia supplied via the newly constructed pipeline under the Baltic Sea from St. Petersburg to Germany, bypassing Poland.   GERMANY WITHOUT NUCLEAR ENERGY   A study performed by The Breakthrough Institute concluded to achieve the 40% CO2 emissions reduction target and the decommissioning of 21,400 MW of nuclear power plants by 2022, Germany’s electrical energy mix would have to change from 60% fossil, 23% nuclear and 17% renewables in 2010 to 43% fossil and 57% renewables by 2020. This will require a build-out of renewables, reorganization of Europe’s electric grids (Europe’s concurrence will be needed) and acceleration of energy efficiency measures.   According to The Breakthrough Institite, Germany would have to reduce its total electricity consumption by about 22% of current 2020 projections AND achieve its target for 35% electricity generated from renewables by 2020. This would require increased energy efficiency measures to effect an average annual decrease of the electricity consumption/GDP ratio of 3.92% per year, significantly greater than the 1.47% per year decrease assumed by the IEA's BAU forecasts which is based on projected German GDP growth and current German efficiency policies.
  • The Breakthrough Institute projections are based on electricity consumption of 544  and 532 TWh  in 2008 and 2020, respectively; the corresponding production is 604 TWh in 2008 and 592 TWh in 2020.   http://thebreakthrough.org/blog//2011/06/analysis_germanys_plan_to_phas-print.html http://www.iea.org/textbase/nppdf/free/2007/germany2007.pdf   Build-out of Wind Energy: If it is assumed the current wind to solar energy ratio is maintained at 3 to 1, the wind energy build-out will be 80% offshore and 20% onshore, and the electricity production will be 592 TWh, then the estimated capital cost of the offshore wind turbines will be [{0.57 (all renewables) - 0.11 (assumed biomass + hydro)} x 592 TWh x 3/4] x 0.8 offshore/(8,760 hr/yr x average CF 0.35) = 0.0533 TW offshore wind turbines @ $4 trillion/TW = $213 billion and of the onshore wind turbines will be [{0.57 (all renewables) - 0.11 (assumed biomass + hydro)} x 592 TWh x 3/4] x 0.2 onshore/(8,760 hr/yr x average CF 0.167) = 0.279 TW of wind turbines @ $2 trillion/TW = $56 billion, for a total of $272 billion. The feed in tariff subsidy for 9 years, if maintained similar to existing subsidies to attract adequate capital, will be about $150 billion offshore + $50 billion onshore, for a total of $200 billion.    
  • Note: The onshore build-out will at least double Germany’s existing onshore wind turbine capacity, plus required transmission systems; i.e., significant niose, environmental and visual impacts over large areas.   Recent studies, based on measured, real-time, 1/4-hour grid operations data sets of the Irish, Colorado and Texas grids, show wind energy does little to reduce CO2 emissions. Such data sets became available during the past 2 to 3 years. Prior studies, based on assumptions, estimates, modeling scenarios, and statistics, etc., significantly overstate CO2 reductions.  http://theenergycollective.com/willem-post/64492/wind-energy-reduces-co2-emissions-few-percent   Build-out of PV Solar Energy: The estimated capital cost of the PV solar capacity will be [{0.57 (all renewables) - 0.11 (assumed biomass + hydro)} x 592 TWh x 1/4]/(8,760 hr/yr x average CF 0.095) = 0.082 TW @ $4.5 trillion/TW = $369 billion. The feed in tariff subsidy, if maintained similar to existing subsidies to attract adequate capital, will be about $250 billion.   Reorganizating Electric Grids: For GW reasons, a self-balancing grid system is needed to minimize CO2 emissions from gas-fired CCGT balancing plants. One way to implement it is to enhance the interconnections of the national grids with European-wide HVDC overlay systems (owning+O&M costs, including transmission losses), and with European-wide selective curtailment of wind energy, and with European-wide demand management and with pumped hydro storage capacity. These measures will reduce, but not eliminate, the need for balancing energy, at greater wind energy penetrations during high-windspeed weather conditions, as frequently occur in Iberia (Spain/Portugal).  
  • European-wide agreement is needed, the capital cost will be in excess of $150 billion and the adverse impacts on quality of life (noise, visuals, psychological), property values and the environment will be significant over large areas.    Other Capital Costs: The capacity of the quick-ramping CCGT balancing plants was estimated at 25,000 MW; their capital cost is about 25,000 MW x $1,250,000/MW = $31.3 billion. The capital costs of decommissioning and restoring the sites of the 23 nuclear plants will be about $23 billion.   Increased Energy Efficiency: Increased energy efficiency would be more attractive than major build-outs of renewables, because it provides the quickest and biggest "bang for the buck", AND it is invisible, AND it does not make noise, AND it has minimal environmental impact, AND it usually reduces at least 3 times the CO2 per invested dollar, AND it usually creates at least 3 times the jobs per invested dollar, AND it usually creates at least 3 times the energy reduction per invested dollar, AND it does all this without public resistance and controversy.   Rebound, i.e., people going back to old habits of wasting energy, is a concept fostered by the PR of proponents of conspicuous consumption who make money on such consumption. People with little money love their cars getting 35-40 mpg, love getting small electric and heating bills. The rebound is mostly among people who do not care about such bills.
  • A MORE RATIONAL APPROACH   Global warming is a given for many decades, because the fast-growing large economies of the non-OECD nations will have energy consumption growth far outpacing the energy consumption growth of the slow-growing economies of the OECD nations, no matter what these OECD nations do regarding reducing CO2 emissions of their economies.   It is best to PREPARE for the inevitable additional GW by requiring people to move away from flood-prone areas (unless these areas are effectively protected, as in the Netherlands), requiring new  houses and other buildings to be constructed to a standard such as the Passivhaus standard* (such buildings stay cool in summer and warm in winter and use 80 to 90 percent less energy than standard buildings), and requiring the use of new cars that get at least 50 mpg, and rearranging the world's societies for minimal energy consumption; making them walking/bicycling-friendly would be a good start.   If a nation, such as the US, does not do this, the (owning + O&M) costs of its economy will become so excessive (rising resource prices, increased damage and disruptions from weather events) that its goods and services will become less competitive and an increasing percentage of its population will not be able to afford a decent living standard in such a society.   For example: In the US, the median annual household income (inflation-adjusted) was $49,445, a decline of 7% since 2000. As the world’s population increases to about 10 billion by 2050, a triage-style rationing of resources will become more prevalent. http://www.usatoday.com/news/nation/story/2011-09-13/census-household-income/50383882/1
  • * A 2-year-old addition to my house is built to near-Passivhaus standards; its heating system consists of a thermostatically-controlled 1 kW electric heater, set at 500 W, that cycles on/off on the coldest days for less than 100 hours/yr. The addition looks inside and out entirely like standard construction. http://theenergycollective.com/willem-post/46652/reducing-energy-use-houses
  •  
    Excellent, lengthy article , lots of data
Dan R.D.

NEI Nuclear Notes: Will Europe Struggle to Keep the Lights On? [28Oct11] - 0 views

  • A new study from consulting company Capgemini said that Europe may have trouble “keeping the lights on” this winter thanks to the nuclear phase-out in Germany.
  • Following its reactor shutdowns, Germany began to import electricity from its neighbors, including more than 2,000 MW per day from France. During the winter electricity peak, France mainly imports electricity from Germany and this will no longer be possible in coming years. This represents a real threat to some countries “keeping the lights on” for winter 2011/2012 and future winters.
  • The report sums it up well: without German nuclear generation, energy security is down, emissions are up. First, security. The Europeans better cozy up to the Russians because they will be more dependent on them than ever.
  • ...3 more annotations...
  • taking Germany further away from its climate goals.
  • The Breakthrough Institute had this to say in its analysis of the German government plan to phase out nuclear.  
  • The plan indicates that--in the absence of nuclear power--Germany will continue to be heavily reliant on fossil-fuel generation for the bulk of its electricity supply.
D'coda Dcoda

Decision to build Bellefonte 1 [04Nov11] - 0 views

  • Tennessee Valley Authority has decided to complete a nuclear reactor at Bellefonte - selling and leasing back another new reactor to pay for it.
  • Tennessee Valley Authority has decided to complete a nuclear reactor at Bellefonte - selling and leasing back another new
  • To pay for all this, TVA will raise cash by selling two new power plants it is now in the process of building before leasing them back from the new owners. One comprises two gas turbines at the John Sevier fossil power plant, the other is Watts Bar 2, another large nuclear reactor TVA is completing. The plants will be sold separately, most likely to financial institutions interested in holding industrial assets. TVA will continue to control, maintain and operate them.   Chief financial officer John Thomas said TVA had to use alternative methods to finance its investment because of statutory limits on the amount of bonds it could issue. The leaseback option would be "slightly more expensive" than bonds, he said, but would be cheaper overall than increasing public and commercial rates by more than the 2% approved yesterday. The final analysis will not come until buyers have been found for the new power plants at the end of a competitive process.
  • ...2 more annotations...
  • The decision yesterday by TVA's board brings to an end some five years of deliberation by the non-profit firm that manages power, water and other resources in the US state. Bellefonte 1 is a Babcock & Wilcox pressurized water reactor currently considered 55% complete. A $4.9 billion project should see it begin operation by 2020 to generate 1260 MWe.   At the same time, TVA will purchase a 900 MWe combined-cycle gas power plant from a subsidiary of Kelson Energy. It is also going to fit sulphur dioxide and particulate control systems to its older Gallatin and Allen coal power plants to bring them up to "clean standards."
  • TVA's president and CEO, Tom Kilgore, said completing Bellefonte 1 was cheaper on a per-MW basis than the cost of replacing any of its fossil plants. The $4.9 billion project works out at a cost of $3888 per kilowatt of installed capacity. As essentially a brand-new reactor, the sale of Watts Bar 2 will be unprecedented and the price is impossible to predict. In the last decade prices seen in the US for old reactors, normally after some 30 years of service, have trended upwards from less than $400 to over $874 per kilowatt. Exceptionally, EDF paid some $2253 per kilowatt overall for its shares in Calvert Cliffs, Nine Mile Point and RE Ginna plants in 2009 when investing in Constellation Energy.
1 - 20 of 58 Next › Last »
Showing 20 items per page