Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged disposal

Rss Feed Group items tagged

Dan R.D.

Environmental Racism, Tribal Sovereignty and Nuclear Waste [15Feb01] - 0 views

  • The tiny Skull Valley Band of Goshute Indians Reservation in Utah is targeted for a very big nuclear waste dump. Private Fuel Storage (PFS), a limited liability corporation representing eight powerful nuclear utilities, wants to "temporarily" store 40,000 tons of commercial high-level radioactive waste (nearly the total amount that presently exists in the U.S.) next to the two-dozen tribal members who live on the small reservation.
  • At the same time, the nuclear power industry contributed large sums to Congressional and Presidential campaigns, and lobbied hard on Capitol Hill to establish a "temporary storage site" at the Nevada nuclear weapons test site, not far from the proposed federal permanent underground dump for high-level atomic waste at Yucca Mountain, Nevada. Both these proposed "temporary" and permanent dump sites would be on Western Shoshone land, as affirmed by the 1863 Treaty of Ruby Valley. Yucca Mountain is sacred to the Western Shoshone, and their National Council has long campaigned to prevent nuclear dumping there.
  • Having lost its bid to "temporarily" store its deadly wastes on Western Shoshone land near Yucca Mountain, nuclear utilities have re-focused their hopes for "interim" relief on Nevada’s neighbor, Utah. PFS must have done its homework: it would be hard to find a community more economically and politically vulnerable than the Skull Valley Goshutes to the Faustian bargain of getting "big bucks" in exchange for hosting the nation’s deadliest poisons.
Dan R.D.

Energy CEOs Urge Court To End Nuclear Waste Fee [25Oct11] - 0 views

  • A Department of Energy fee that costs nuclear power utilities some $750 million a year should be suspended because a nuclear-waste program the fee is designed to pay for does not exist, opponents said in a new court filing.
  • The National Association of Regulatory Utility Commissioners and the Nuclear Energy Institute, a policy organization for the industry, urged a Washington DC appeals court to order the DOE to stop collecting the fee for the federally mandated Nuclear Waste Fund which grows by about $1 billion a year and is expected to total $28.3 billion by the end of fiscal 2012.
  • The fund was intended to pay for the development and maintenance of a planned repository for nuclear waste at Yucca Mountain in Nevada, a long-delayed program that was effectively killed when the Obama administration cut off funding and support for it.
  • ...4 more annotations...
  • In the latest filing, NARUC and NEI accuse the DOE of ignoring the size of the fund, the costs of the program it is intended to pay for, and the revenues already collected to pay those costs.
  • The White House initiative prompted NARUC and NEI to sue in March this year, arguing that the fee, which has been in effect since 1983, should be suspended because there was no justification for it.
  • In their latest legal brief, filed on Oct. 20, and released by NARUC on Monday, the petitioners substantiate their claims that the DOE's determination in December 2010 to leave the fee unchanged is not in compliance with the 1982 Nuclear Waste Policy Act, which requires the department to regularly assess whether the fees are too high, too low, or necessary at all.
  • "Rather than complying with the NWPA requirement to annually evaluate the costs of the nuclear waste disposal program and determine whether the fees that have been and are being collected from ratepayers and utilities offset those costs, DOE has concluded that it must continue collecting the same fee it has been collecting since 1983 because it cannot determine that too much or too little revenue is being collected," the brief said.
Dan R.D.

Magnox waste contract for Babcock [11Feb11] - 0 views

  • Babcock has been awarded a framework contract for the management of intermediate-level waste (ILW) at all of the UK's Magnox plant sites.
  • It and five other companies will bid for portions of a £300 million ($480 million) work program.
  • The owner of the UK's Magnox plants, the Nuclear Decommissioning Authority (NDA), has mandated the implementation of the 'Mini Store' option of managing its ILW. Under this option - which is more cost-effective than other options - the waste is placed in cast iron, self-shielding boxes weighing 18 tonnes and capable of holding almost three cubic-metres of waste. A concrete waste store approach had previously been chosen.
  • ...2 more annotations...
  • to retrieve and process the various waste streams for storage in self-shielding waste containers for final disposal
  • Once filled with waste, the Mini Stores can then be kept on-site or easily transported to another site for storage. When an ILW repository becomes available, the containers could simply be placed within it. The German nuclear industry has been using this method of ILW management for more than 20 years.
D'coda Dcoda

CPS must die [24Oct07} - 0 views

  • Collectively, Texas eats more energy than any other state, according to the U.S. Department of Energy. We’re fifth in the country when it comes to our per-capita energy intake — about 532 million British Thermal Units per year. A British Thermal Unit, or Btu, is like a little “bite” of energy. Imagine a wooden match burning and you’ve got a Btu on a stick. Of course, the consumption is with reason. Texas, home to a quarter of the U.S. domestic oil reserves, is also bulging with the second-highest population and a serious petrochemical industry. In recent years, we managed to turn ourselves into the country’s top producer of wind energy. Despite all the chest-thumping that goes on in these parts about those West Texas wind farms (hoist that foam finger!), we are still among the worst in how we use that energy. Though not technically “Southern,” Texans guzzle energy like true rednecks. Each of our homes use, on average, about 14,400 kilowatt hours per year, according to the U.S. Energy Information Administration. It doesn’t all have to do with the A/C, either. Arizonans, generally agreed to be sharing the heat, typically use about 12,000 kWh a year; New Mexicans cruise in at an annual 7,200 kWh. Don’t even get me started on California’s mere 6,000 kWh/year figure.
  • Let’s break down that kilowatt-hour thing. A watt is the energy of one candle burning down. (You didn’t put those matches away, did you?) A kilowatt is a thousand burnin’ candles. And a kilowatt hour? I think you can take it from there. We’re wide about the middle in Bexar, too. The average CPS customer used 1,538 kilowatt hours this June when the state average was 1,149 kWh, according to ERCOT. Compare that with Austin residents’ 1,175 kWh and San Marcos residents’ 1,130 kWh, and you start to see something is wrong. So, we’re wasteful. So what? For one, we can’t afford to be. Maybe back when James Dean was lusting under a fountain of crude we had if not reason, an excuse. But in the 1990s Texas became a net importer of energy for the first time. It’s become a habit, putting us behind the curve when it comes to preparing for that tightening energy crush. We all know what happens when growing demand meets an increasingly scarce resource … costs go up. As the pressure drop hits San Anto, there are exactly two ways forward. One is to build another massively expensive power plant. The other is to transform the whole frickin’ city into a de-facto power plant, where energy is used as efficiently as possible and blackouts simply don’t occur.
  • Consider, South Texas Project Plants 1&2, which send us almost 40 percent of our power, were supposed to cost $974 million. The final cost on that pair ended up at $5.5 billion. If the planned STP expansion follows the same inflationary trajectory, the price tag would wind up over $30 billion. Applications for the Matagorda County plants were first filed with the Atomic Energy Commission in 1974. Building began two years later. However, in 1983 there was still no plant, and Austin, a minority partner in the project, sued Houston Power & Lighting for mismanagement in an attempt to get out of the deal. (Though they tried to sell their share several years ago, the city of Austin remains a 16-percent partner, though they have chosen not to commit to current expansion plans).
  • ...17 more annotations...
  • CPS didn’t just pull nukes out of a hat when it went looking for energy options. CEO Milton Lee may be intellectually lazy, but he’s not stupid. Seeking to fulfill the cheap power mandate in San Antonio and beyond (CPS territory covers 1,566 square miles, reaching past Bexar County into Atascosa, Bandera, Comal, Guadalupe, Kendall, Medina, and Wilson counties), staff laid natural gas, coal, renewables and conservation, and nuclear side-by-side and proclaimed nukes triumphant. Coal is cheap upfront, but it’s helplessly foul; natural gas, approaching the price of whiskey, is out; and green solutions just aren’t ready, we’re told. The 42-member Nuclear Expansion Analysis Team, or NEAT, proclaimed “nuclear is the lowest overall risk considering possible costs and risks associated with it as compared to the alternatives.” Hear those crickets chirping?
  • NEAT members would hold more than a half-dozen closed-door meetings before the San Antonio City Council got a private briefing in September. When the CPS board assembled October 1 to vote the NRG partnership up or down, CPS executives had already joined the application pending with the U.S. Nuclear Regulatory Commission. A Supplemental Participation Agreement allowed NRG to move quickly in hopes of cashing in on federal incentives while giving San Antonio time to gather its thoughts. That proved not too difficult. Staff spoke of “overwhelming support” from the Citizen’s Advisory Board and easy relations with City staff. “So far, we haven’t seen any fatal flaws in our analysis,” said Mike Kotera, executive vice president of energy development for CPS. With boardmember and Mayor Phil Hardberger still in China inspecting things presumably Chinese, the vote was reset for October 29.
  • No one at the meeting asked about cost, though the board did request a month-by-month analysis of the fiasco that has been the South Texas Project 1&2 to be delivered at Monday’s meeting. When asked privately about cost, several CPS officers said they did not know what the plants would run, and the figure — if it were known — would not be public since it is the subject of contract negotiations. “We don’t know yet,” said Bob McCullough, director of CPS’s corporate communications. “We are not making the commitment to build the plant. We’re not sure at this point we really understand what it’s going to cost.” The $206 million outlay the board will consider on Monday is not to build the pair of 1,300-megawatt, Westinghouse Advanced Boiling Water Reactors. It is also not a contract to purchase power, McCullough said. It is merely to hold a place in line for that power.
  • It’s likely that we would come on a recurring basis back to the board to keep them apprised of where we are and also the decision of whether or not we think it makes sense for us to go forward,” said Larry Blaylock, director of CPS’s Nuclear Oversight & Development. So, at what point will the total cost of the new plants become transparent to taxpayers? CPS doesn’t have that answer. “At this point, it looks like in order to meet our load growth, nuclear looks like our lowest-risk choice and we think it’s worth spending some money to make sure we hold that place in line,” said Mark Werner, director of Energy Market Operations.
  • Another $10 million request for “other new nuclear project opportunities” will also come to the board Monday. That request summons to mind a March meeting between CPS officials and Exelon Energy reps, followed by a Spurs playoff game. Chicago-based Exelon, currently being sued in Illinois for allegedly releasing millions of gallons of radioactive wastewater beneath an Illinois plant, has its own nuclear ambitions for Texas. South Texas Project The White House champions nuclear, and strong tax breaks and subsidies await those early applicants. Whether CPS qualifies for those millions remains to be seen. We can only hope.
  • CPS has opted for the Super Honkin’ Utility model. Not only that — quivering on the brink of what could be a substantial efficiency program, CPS took a leap into our unflattering past when it announced it hopes to double our nuclear “portfolio” by building two new nuke plants in Matagorda County. The utility joined New Jersey-based NRG Energy in a permit application that could fracture an almost 30-year moratorium on nuclear power plant creation in the U.S.
  • After Unit 1 came online in 1988, it had to be shut down after water-pump shaft seared off in May, showering debris “all over the place,” according to Nucleonics Week. The next month two breakers failed during a test of backup power, leading to an explosion that sheared off a steam-generator pump and shot the shaft into the station yard. After the second unit went online the next year, there were a series of fires and failures leading to a half-million-dollar federal fine in 1993 against Houston Power. Then the plant went offline for 14 months. Not the glorious launch the partnership had hoped for. Today, CPS officials still do not know how much STP has cost the city, though they insist overall it has been a boon worth billions. “It’s not a cut-and-dried analysis. We’re doing what we can to try to put that in terms that someone could share and that’s a chore,” said spokesman McCollough. CPS has appealed numerous Open Records requests by the Current to the state Attorney General. The utility argues that despite being owned by the City they are not required to reveal, for instance, how much it may cost to build a plant or even how much pollution a plant generates, since the electricity market is a competitive field.
  • How do we usher in this new utopia of decentralized power? First, we have to kill CPS and bury it — or the model it is run on, anyway. What we resurrect in its place must have sustainability as its cornerstone, meaning that the efficiency standards the City and the utility have been reaching for must be rapidly eclipsed. Not only are new plants not the solution, they actively misdirect needed dollars away from the answer. Whether we commit $500 million to build a new-fangled “clean-coal” power plant or choose to feed multiple billions into a nuclear quagmire, we’re eliminating the most plausible option we have: rapid decentralization.
  • A 2003 study at the Massachusetts Institute of Technology estimates the cost of nuclear power to exceed that of both coal and natural gas. A U.S. Energy Information Administration report last year found that will still be the case when and if new plants come online in the next decade. If ratepayers don’t pay going in with nuclear, they can bet on paying on the way out, when virtually the entire power plant must be disposed of as costly radioactive waste. The federal government’s inability to develop a repository for the tens of thousands of tons of nuclear waste means reactors across the country are storing spent fuel in onsite holding ponds. It is unclear if the waste’s lethality and tens of thousands of years of radioactivity were factored into NEAT’s glowing analysis.
  • The federal dump choice, Nevada’s Yucca Mountain, is expected to cost taxpayers more than $60 billion. If it opens, Yucca will be full by the time STP 3&4 are finished, requiring another federal dump and another trainload of greenbacks. Just the cost of Yucca’s fence would set you back. Add the price of replacing a chain-link fence around, let’s say, a 100-acre waste site. Now figure you’re gonna do that every 50 years for 10,000 years or more. Security guards cost extra. That is not to say that the city should skip back to the coal mine. Thankfully, we don’t need nukes or coal, according to the American Council for an Energy-Efficient Economy, a D.C.-based non-profit that champions energy efficiency. A collection of reports released this year argue that a combination of ramped-up efficiency programs, construction of numerous “combined heat and power” facilities, and installation of on-site renewable energy resources would allow the state to avoid building new power plants. Texas could save $73 billion in electric generation costs by spending $50 billion between now and 2023 on such programs, according to the research group. The group also claims the efficiency revolution would even be good for the economy, creating 38,300 jobs. If ACEEE is even mostly right, plans to start siphoning millions into a nuclear reservoir look none too inspired.
  • To jump tracks will take a major conversion experience inside CPS and City Hall, a turning from the traditional model of towering plants, reels of transmission line, and jillions of dependent consumers. CPS must “decentralize” itself, as cities as close as Austin and as far away as Seattle are doing. It’s not only economically responsible and environmentally sound, but it is the best way to protect our communities entering what is sure to be a harrowing century. Greening CPS CPS is grudgingly going greener. In 2004, a team of consultants, including Wisconsin-based KEMA Inc., hired to review CPS operations pegged the utility as a “a company in transition.” Executives interviewed didn’t understand efficiency as a business model. Even some managers tapped to implement conservation programs said such programs were about “appearing” concerned, according to KEMA’s findings.
  • While the review exposed some philosophical shortcomings, it also revealed for the first time how efficiency could transform San Antonio. It was technically possible, for instance, for CPS to cut electricity demand by 1,935 megawatts in 10 years through efficiency alone. While that would be accompanied with significant economic strain, a less-stressful scenario could still cut 1,220 megawatts in that period — eliminating 36 percent of 2014’s projected energy use. CPS’s current plans call for investing $96 million to achieve a 225-megawatt reduction by 2016. The utility plans to spend more than four times that much by 2012 upgrading pollution controls at the coal-fired J.T. Deely power plant.
  • In hopes of avoiding the construction of Spruce 2 (now being built, a marvel of cleanliness, we are assured), Citizen Oversight Committee members asked KEMA if it were possible to eliminate 500 megawatts from future demand through energy efficiency alone. KEMA reported back that, yes, indeed it was possible, but would represent an “extreme” operation and may have “unintended consequences.” Such an effort would require $620 million and include covering 90 percent of the cost of efficiency products for customers. But an interesting thing happens under such a model — the savings don’t end in 2012. They stretch on into the future. The 504 megawatts that never had to be generated in 2012 end up saving 62 new megawatts of generation in 2013 and another 53 megawatts in 2014. With a few tweaks on the efficiency model, not only can we avoid new plants, but a metaphorical flip of the switch can turn the entire city into one great big decentralized power generator.
  • Even without good financial data, the Citizen’s Advisory Board has gone along with the plan for expansion. The board would be “pennywise and pound foolish” not to, since the city is already tied to STP 1&2, said at-large member Jeannie O’Sullivan. “Yes, in the past the board of CPS had been a little bit not as for taking on a [greater] percentage of nuclear power. I don’t know what their reasons were, I think probably they didn’t have a dialogue with a lot of different people,” O’Sullivan said.
  • For this, having a City-owned utility offers an amazing opportunity and gives us the flexibility to make most of the needed changes without state or federal backing. “Really, when you start looking, there is a lot more you can do at the local level,” said Neil Elliott of the ACEEE, “because you control building codes. You control zoning. You can control siting. You can make stuff happen at the local level that the state really doesn’t have that much control of.” One of the most empowering options for homeowners is homemade energy provided by a technology like solar. While CPS has expanded into the solar incentives field this year, making it only the second utility in the state to offer rebates on solar water heaters and rooftop panels, the incentives for those programs are limited. Likewise, the $400,000 CPS is investing at the Pearl Brewery in a joint solar “project” is nice as a white tiger at a truck stop, but what is truly needed is to heavily subsidize solar across the city to help kickstart a viable solar industry in the state. The tools of energy generation, as well as the efficient use of that energy, must be spread among the home and business owners.
  • Joel Serface, with bulb-polished pate and heavy gaze, refers to himself as a “product of the oil shock” who first discovered renewables at Texas Tech’s summer “geek camp.” The possibilities stayed with him through his days as a venture capitalist in Silicon Valley and eventually led him to Austin to head the nation’s first clean-energy incubation center. Serface made his pitch at a recent Solar San Antonio breakfast by contrasting Texas with those sun-worshipping Californians. Energy prices, he says, are “going up. They’re not going down again.” That fact makes alternative energies like solar, just starting to crack the 10-cent-per-killowatt barrier, financially viable. “The question we have to solve as an economy is, ‘Do we want to be a leader in that, or do we want to allow other countries [to outpace us] and buy this back from them?’” he asked.
  • To remain an energy leader, Texas must rapidly exploit solar. Already, we are fourth down the list when it comes not only to solar generation, but also patents issued and federal research awards. Not surprisingly, California is kicking silicon dust in our face.
Dan R.D.

Fukushima towns struggle to store radioactive waste | Reuters [29Oct11] - 0 views

  • (Reuters) - Japanese officials in towns around the crippled Fukushima nuclear plant reacted guardedly to plans announced on Saturday to build facilities to store radioactive waste from the clean-up around the plant within three years.
  • Japan aims to halve radiation over two years in places contaminated by the crisis. To do so, it may have to remove and dispose of massive amounts of radioactive soil, possibly enough to fill 23 baseball stadiums.
  • Towns near the crippled nuclear plant have barely been able to start cleaning up until now because they have been unable to convince residents about where to store the radioactive waste.
  • ...3 more annotations...
  • "The biggest problem is whether we can win the residents' consensus," said Kazuhiro Shiga, an official working on decontamination at Minami Soma city, about 25 km (15 miles)northwest of the Fukushima Daiichi plant.
  • The government has so far raised 220 billion yen ($2.9 billion) for decontamination work and the environment ministry has requested about another 460 billion yen in the budget for the fiscal year from next April. Some experts say the cleanup will cost trillions of yen.
  • The U.N. atomic watchdog suggested this month that Japan should be less conservative in cleaning up vast contaminated areas, saying that there are cleanup methods that do not require storage.
Dan R.D.

Yucca Mountain cost estimate rises to $96 billion [06Aug08] - 0 views

  • The US Department of Energy (DoE) has issued a revised total cost estimate for the planned national used nuclear fuel and high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada.    Yucca Mountain (Image: DOE) The latest estimate puts the cost of research, construction and operation of the geologic repository over a 150 year period - from when work started in 1983 through to the facility's expected closure and decommissioning in 2133 - at $96.2 billion (in 2007 dollars). This is a 67% increase on the previous published estimate in 2001 of $57.5 billion. Excluding inflation, the new estimate increased 38% to $79.3 billion.   The new estimated cost of $96.2 billion includes some $13.5 billion that has already spent on the project; $54.8 billion for the construction, operation and decommissioning of the repository; $19.5 billion for transportation of the used fuel; and, $8.4 billion for other program activities.  
Dan R.D.

Face Off Over Nuclear Waste Storage Takes New Twist - 0 views

  • The Department of Energy (DOE) has been trying to close the Yucca mountain storage site, but South Carolina and Washington, both facing the challenges of storing growing numbers of spent nuclear fuel rods, have tried almost everything to maintain access to the dump.
  • On Friday, the US Court of Appeals in Washington D.C. threw out their case, ruling that the Nuclear Regulatory Commission (NRC) is the ultimate the authority on deciding the fate of the storage facility.
  • Like a recent Supreme Court decision about the role of the Environmental Protection Agency (EPA) in implementing greenhouse gas emissions policies, the Friday ruling reaffirmed the role of federal regulators--in this case the NRC--to call the shots on energy policy. But, similar to the EPA case, the judicial ruling added that states do have the right to take federal agencies to court when they believe regulators there have failed to do their job. "We will not permit an agency to insulate itself from judicial review by refusing to act," the court said in its ruling.
  • ...2 more annotations...
  • On Thursday, Senator Lisa Murkwosi (R-AK), who is also ranking member of the Senate Committee on Energy and Natural Resources, introduced a bill to open two temporary storage sites for spent rods. "This proposal addresses one of the most glaring failures of our national nuclear policy--what to do with nuclear fuel currently that is currently being stored at over 100 sites across the country," Murkowski said.
  • The federal government, she said, is responsible for finding a long-term solution for nuclear waste storage.
Dan R.D.

Columbia River Area To Be Contaminated With Nuclear Waste for Millennial [10Feb11] - 0 views

  • The federal government did an analysis of the damage to determine if capping and sealing off the waste would stop more of it from getting out, and also, if more waste could be imported to the site to be buried along with the original waste. The analysis also shows that the U.S. energy department's plan to import low-level and midlevel radioactive waste from other sites to Hanford after 2022 poses "completely unacceptable" risks, [assistant director of the Oregon Department of Energy Ken] Niles said. Washington is also raising concerns about importing more waste. […] Health risks from Hanford's contamination are long-term, not immediate. They're expressed in terms of cancer cases after a lifetime of drinking well water from the site, with a one in 10,000 risk considered high. But many of the contaminant levels at the site exceed health benchmarks by wide margins.
  • There wasn't much of a Yucca Mountain-type plan here, as the Oregonian states, “Some of the waste was dumped directly into ditches, some was buried in drums and some was stored in 177 huge underground tanks, including 149 leak-prone single-walled tanks.”
Dan R.D.

Despite billions spent on cleanup, Hanford won't be clean for thousands of years [09Fe... - 0 views

  • Some radioactive contaminants at the Hanford Nuclear Reservation will threaten the Columbia River for thousands of years, a new analysis projects, despite the multibillion-dollar cleanup efforts by the federal government.
  • The U.S. Department of Energy projections come from a new analysis of how best to clean up leaking storage tanks and manage waste at Hanford, a former nuclear weapons production site on 586 square miles next to the Columbia in southeastern Washington.
  • Oregon officials say the results, including contamination projections for the next 10,000 years, indicate the federal government needs to clean up more of the waste that has already leaked and spilled at Hanford instead of capping and leaving it, a less-expensive alternative.
  • ...8 more annotations...
  • "We think it should force a re-look at the long-term cleanup plan at Hanford," said Ken Niles, assistant director of the Oregon Department of Energy. "We don't want that level of contamination reaching the Columbia River."
  • The U.S. Department of Energy report says the risks from some high-volume radioactive elements, including tritium, strontium and cesium, have already peaked and should diminish relatively quickly. For all locations at Hanford, the peak radiological risk has already occurred, the report says.
  • Much of Hanford's radioactivity comes from strontium-90 and cesium-137, which have half-lives of roughly three decades, the GAO said, meaning much of the risk should fall relatively quickly.
  • Hanford produced nuclear materials from 1944 through 1988, operated nine nuclear reactors to produce plutonium and generated millions of gallons of radioactive and hazardous waste. Some of the waste was dumped directly into ditches, some was buried in drums and some was stored in 177 huge underground tanks, including 149 leak-prone single-walled tanks.
  • It's now the nation's most contaminated radioactive cleanup site.
  • A U.S. Government Accountability Office report in September on tank cleanup said the total estimated cost has risen dramatically and could go as high as $100 billion, well above the current $77 billion estimate. The latest deadline for completing cleanup is 2047, though cleanup dates have been steadily pushed back.
  • But Mary Beth Burandt, an Energy Department manager, said the agency is undecided and will likely propose steps to address public concerns. Such steps could include more treatment, barrier walls to block contaminant flows and limits on long-lived radioactive elements in incoming waste.
  • Health risks from Hanford's contamination are long-term, not immediate. They're expressed in terms of cancer cases after a lifetime of drinking well water from the site, with a one in 10,000 risk considered high. But many of the contaminant levels at the site exceed health benchmarks by wide margins.
Dan R.D.

TOWARD REAL ENVIRONMENTAL SUSTAINABILITY BY MOLECULAR NANOTECHNOLOGY - 0 views

  •  
    2.2.5. Nuclear Wastes MNT cannot treat nuclear wastes and render them harmless directly, for MNT only work with atoms and molecules, not nuclei.  Yet indirectly, by lowering the cost of energy and equipment, MNT can offer us the means for a clean, permanent solution to the untreatable nuclear wastes left over from the nuclear era. Nuclear wastes can be collected, concentrated by specific nanobots. Products of MNT could help with conventional approaches to dealing with nuclear waste, helping to store it in the most stable, reliable forms possible.  Using nanomachines, we could seal them in self-sealing containers and powered by cheap nano-solar energy (10).  These would be more secure than any passive rock or cask.  When MNT has developed cheap, reliable spacecraft, the concentrated nuclear wastes can be transported to the moon and bury them in moon's dead, dry rock by nanobots, or to other planets that still radioactive, or even shoot them directly into the sun. Underground nano-atom smasher powered by cheap solar cells can also be devised to treat nuclear wastes. This is a reverse process of nuclear engineering.  Instead of smashing nonradioactive target and harvesting for radioactive substance, the nanomachine will smash radioactive target and harvest for nonradioactive substance.  The smashing and harvesting process will continue stability is achieved.  Fig. 9 illustrates a few routes for resolving nuclear waste piles that accumulated in the environment and TDBT is at loss on dealing with them.
D'coda Dcoda

Intelligent absorbent removes radioactive material from water 01Nov11[ - 0 views

  • Nuclear power plants are located close to sources of water, which is used as a coolant to handle the waste heat discharged by the plants. This means that water contaminated with radioactive material is often one of the problems to arise after a nuclear disaster. Researchers at Australia's Queensland University of Technology (QUT) have now developed what they say is a world-first intelligent absorbent that is capable of removing radioactive material from large amounts of contaminated water, resulting in clean water and concentrated waste that can be stored more efficiently. The new absorbent, which was developed by a QUT research team led by Professor Huai-Yong Zhu working in collaboration with the Australian Nuclear Science and Technology Organisation (ANSTO) and Pennsylvania State University, uses titanate nanofiber and nanotube technology. Unlike current clean-up methods, such as a layered clays and zeolites, the new material is able to efficiently lock in deadly radioactive material from contaminated water and the used absorbents can then be safely disposed of without the risk of leakage - even if the material were to become wet.
  • When the contaminated water is run through the fine nanotubes and fibers, the radioactive Cesium (Cs+) ions are trapped through a structural change. Additionally, by adding silver oxide nanocrystals to the outer surface, the nanostructures are able to capture and immobilize radioactive iodine (I-) ions used in treatments for thyroid cancer, in probes and markers for medical diagnosis, and also found in leaks of nuclear accidents. "One gram of the nanofibres can effectively purify at least one ton of polluted water," Professor Zhu said. "This saves large amounts of dangerous water needing to be stored somewhere and also prevents the risk of contaminated products leaking into the soil." "Australia is one of the largest producers of titania that are the raw materials used for fabricating the absorbents of titanate nanofibres and nanotubes. Now with the knowledge to produce the adsorbents, we have the technology to do the cleaning up for the world," added Professor Zhu.
D'coda Dcoda

Radiation in Tokyo Bay 15x over Limit [02Nov11] - 0 views

  • Waste water discharged into Tokyo Bay from a cement plant has been found to contain radioactive cesium at much higher levels than the government-set limit for disposal. The plant in Chiba Prefecture, east of Tokyo, uses ash from incinerators in the prefecture to produce cement. The Chiba government says the plant operator checked waste water discharged from the plant into Tokyo Bay once in September and once in October. It found radioactive cesium at levels of 1,103 becquerels per kilogram, and 1,054 becquerels per kilogram respectively. The levels are 14 to 15 times higher than the limit set by the country's Nuclear Safety Commission. The water had been used to clean filters which remove toxic materials from ashes. The operator stopped discharging the waste water on Wednesday. The prefectural government has launched a survey of the seawater of Tokyo Bay
D'coda Dcoda

China environment minister says nuclear safety risks climbing [26Oct11] - 0 views

  • China is facing increasing safety risks from its nuclear power plants as existing facilities age and a large number of new reactors go into operation, the country's environmental minister said in comments published on Wednesday. "The safety standards of China's early-phase nuclear facilities are relatively low, operation times are long, some facilities are obsolete and the safety risks are increasing," said Zhou Shengxian in a speech published on the website of China's parliament, the National People's Congress (www.npc.gov.cn).Zhou told legislators that the scale and pace of nuclear construction had accelerated, a larger range of technologies had been introduced, and potential sources of radiation had become more widespread, making it harder to monitor safety.China has 13 nuclear reactors in operation and another 28 under construction, but it has suspended all new project approvals in the wake of the tsunami in northeast Japan, which left the Fukushima Daiichi reactor on the brink of meltdown.
  • After the suspension, Beijing launched a nationwide inspection of all nuclear sites, including reactors already operating and those under construction, and is drawing up comprehensive new industry guidelines.The government originally planned to increase capacity to more than 80 gigawatts by 2020, up from 10.9 gigawatts at the end of last year, but disquiet about safety in the wake of Fukushima disaster has forced it to revise its plans.Experts have expressed concern about the use of old second-generation reactor designs, a lack of qualified safety and operational staff, and construction of nuclear plants in earthquake and flood-prone regions in the country's interior.Zhou said the country was steadily improving its nuclear safety monitoring system and its ability to decommission and control pollution at aging nuclear facilities.
  • The government had already built 31 sites for radioactive waste storage and had gradually brought "high-risk" radioactive sources under control, but large amounts of material were still in urgent need of treatment and disposal, he said.
D'coda Dcoda

Interview: Local says 'unlisted' Fukushima radiation workers held captive until they di... - 0 views

  • Journalist: Iwakami Yasumi Man being interviewed: Mr. Sakuma, a Fukushima citizen who runs motorcycle shop. He has 30 million yen bank loan, which forced him to come back to Fukushima. Date filmed: Oct. 21, 2011 Excerpts from an overview of the interview, via Mochizuki - A 21 years old Fukushima worker died of cardiac trouble. It is not reported and police don’t perform an autopsy. He worked at the Fukushima plant from March to July. - In the most contaminated areas, “unlisted” workers are forced to work. One of his friends had to go into Reactor No. 3. When the person saw the area, it was full of debris and the counter showed about 1~2 Sv/hr.  The next morning, the area was perfectly clean. Because it needs sensitive work, it must have been done by humans. They say those disposable workers were forced to work in those situations, held captive until they die, and then marked as “missing”. - Police that guard within the 20km evacuation zone are not informed of the radiation level (about 100 microSv/h when Mr. Sakuma and his friend visited) and a lot of police are dead, but it is not reported either.
D'coda Dcoda

Russia agrees to build Bangladeshi nuclear [04Nov11] - 0 views

  • The agreement was signed by Sergei Kiriyenko, head of the Russian state nuclear energy corporation Rosatom, and Yafesh Osman, Bangladesh's minister of state for science, information and communication technologies. The signing ceremony was attended by dignitaries including Bangladeshi prime minister Sheikh Hasina.   Under the agreement, Russia will construct two 1000 MWe reactors at Rooppur, in Pabna district, about 200 km from the capital, Dhaka. It specifies that Rosatom's AtomStroyExport division will act as the contractor, while the Bangladesh Atomic Energy Commission will be the customer.   Russia will also support Bangladesh in developing the necessary infrastructure for the proposed plant. The agreement calls for Russia to provide fuel for the plant on a long-term basis, as well as taking back the used fuel for long-term management and permanent disposal. Russia will also train workers to operate the plant. A separate agreement will be signed for Russia to provide the necessary financing for the Rooppur plant’s construction.
D'coda Dcoda

Did Fukushima kill the nuclear renaissance No, that renaissance died right here at home... - 0 views

shared by D'coda Dcoda on 04 Nov 11 - No Cached
  • In the aftermath of the Fukushima Daiichi nuclear disaster in Japan, many wondered what the event’s impact would be on the nuclear renaissance in the United States. Those who follow the nuclear industry didn’t need eight months of hindsight to give an answer: what nuclear renaissance? The outlook for U.S. nuclear power has worsened considerably in the past five years. Where once there were plans for new reactors at more than 30 different sites, today there are only five, and even those planned reactors might disappear. Only one is actually under construction, and to credit the industry with breaking ground on a new reactor is overstating its prospects. However, none of this gloom is the result of Japan’s tsunami. On the eve of the Tohoku earthquake, U.S. nuclear power looked just as moribund as it is today. The cause of this decline is not renewed concerns about safety, or even that old red herring, waste disposal — instead, it is simple economics. Other technologies, particularly natural gas, offer much cheaper power than nuclear both today and in the foreseeable future.
  • In 2009, the MIT Future of Nuclear Power study released an update to its 2003 estimate of the costs of nuclear power. Estimating a capital cost of $4,000/kW and a fuel cost of $0.67/MMBtu, the study’s authors projected a cost of new nuclear power of 6.6 cents/kWh. Using the same modeling approach, the cost of electricity from a natural gas plant with capital costs of $850/kW and fuel costs of $5.16/MMBtu would be 4.4 cents/kWh. What’s worse, the estimate of 6.6 cents/kWh assumes that nuclear power is able to secure financing at the same interest rate as natural gas plants. In reality, credit markets assign a significant risk premium to nuclear power, bringing its total levelized cost of electricity to 8.4 cents/kWh, nearly twice the cost of natural gas power. Unless the capital costs of new nuclear power plants turn out to be significantly less than what experts expect, or natural gas prices rise considerably in the near future, there is little reason to believe that any new nuclear plants will be built without significant subsidies. This is not to say that nuclear power could not make a comeback within the next 10 to 20 years. But before nuclear can once again be considered a credible competitor to fossil fuels, four changes must happen.
  • The second problem facing nuclear power is its high borrowing costs. To some extent, this problem is a natural consequence of nuclear power plants taking a longer time to build than natural gas plants and having a much higher construction risk (the capital cost of natural gas plants is well-established relative to that of nuclear power). And likewise, to some extent, this problem might resolve itself over time, both as the completion of nuclear plants helps nail down the true capital cost of nuclear power, and as vendors add smaller, modular reactor designs to their list of offerings. But much of the reason behind the high interest rates on loans to nuclear construction is that the industry is scoring an own-goal. In the current relationship between utilities and reactor vendors, utilities are asked to absorb all of the costs of a vendor’s overruns — if a reactor ends up costing a couple billion dollars more than the vendor quotes, it’s the utility that is expected to make up the difference.
  • ...4 more annotations...
  • This is terrifying for a utility’s creditors. The largest utilities in the United States have market capitalizations in the area of $30 billion, while most hover closer to $5 billion. If a nuclear project should fail, the utility might go completely bankrupt, leaving nothing to those foolish enough to lend them money. Accordingly, nuclear projects face higher borrowing costs than other electric projects. It doesn’t have to be this way — if reactor vendors and construction companies helped share the project risks posed by nuclear plants, borrowing costs would be lower. It is also possible for the U.S. government to shoulder some of the risk — but after Solyndra, few legislators have an appetite for letting energy companies push their risks onto the taxpayer.
  • Next, the United States is going to have to adopt some form of carbon tax on electricity generation, or offer a comparable subsidy to the nuclear industry. An appropriately sized carbon tax of $20/ton CO2 would raise the cost of natural-gas-generated electricity by 0.7 cents/kWh, while having a negligible impact on nuclear power
  • And finally, the nuclear industry is just going to have to catch some luck and see natural gas prices rise. That’s a tall order, given the new resources being opened up by hydraulic fracturing and the slowed consumption of natural gas brought about by the recession. But it’s not entirely outside of the realm of possibility — the futures market for natural gas has been wrong before.
  • Nuclear power is down, but not out. With a proper R&D focus, good business practices, appropriate policy, and a little luck, the gulf that separates nuclear power from its competitors may yet be bridged.
« First ‹ Previous 81 - 96 of 96
Showing 20 items per page