Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged challenges

Rss Feed Group items tagged

D'coda Dcoda

If Indian Point Nuclear Closes, Plenty of Profits (for natural gas suppliers) [13Jul11] - 0 views

  •  
    (Diigo won't highlight this correctly, putting it in description!) "Matt Wald of the New York Times has finally figured out why there is such a strong push from well connected political types to close the Indian Point Nuclear Power Station. Unfortunately, he and his editor have chosen to put that answer at the very bottom of his recent article titled If Indian Point Closes, Plenty of Challenges . When the demand for natural gas increases, the balance between supply and demand shifts in favor of the sellers, so price inexorably increases. Here is the closing paragraph of that article. It should raise alarm bells for anyone who is a power purchaser instead of a power seller. That description applies to the vast majority of us; part of the challenge is that it only costs each of us a little while concentrating the spoils in the hands of a few victors. Closing the Indian Point reactors would, however, hardly be gloom and doom for everyone. Any company that runs a generator in downstate New York ends up selling its output at a higher price, and would share in the $1.4 billion a year that Con Edison says its customers will pay if the nuclear plant closes."
D'coda Dcoda

Energy Forecast: Fracking in China, Nuclear Uncertain, CO2 Up [09Nov11] - 0 views

  • This year’s World Energy Outlook report has been published by the International Energy Agency, and says wealthy and industrializing countries are stuck on policies that threaten to lock in “an insecure, inefficient and high-carbon energy system.”You can read worldwide coverage of the report here. Fiona Harvey of the Guardian has a piece on the report that focuses on the inexorable trajectories for carbon dioxide, driven by soaring energy demand in Asia.A variety of graphs and slides can be reviewed here:
  • According to the report, Russia will long remain the world’s leading producer of natural gas, but exploitation of shale deposits in the United States, and increasingly in China, will greatly boost production in those countries (which will be in second and third place for gas production in 2035).Last month, in an interview with James Kanter of The Times and International Herald Tribune, the new head of the energy agency, Maria van der Hoeven, discussed one point made in the report today — that concerns raised by the damage to the Fukushima Daiichi power plant could continue to dampen expansion of nuclear power and add to the challenge of avoiding a big accumulation of carbon dioxide, saying: “Such a reduction would certainly make it more difficult for the world to meet the goal of stabilizing the rise in temperature to 2 degrees Centigrade.”
  • Here’s the summary of the main points, released today by the agency: “Growth, prosperity and rising population will inevitably push up energy needs over the coming decades. But we cannot continue to rely on insecure and environmentally unsustainable uses of energy,” said IEA Executive Director Maria van der Hoeven. “Governments need to introduce stronger measures to drive investment in efficient and low-carbon technologies. The Fukushima nuclear accident, the turmoil in parts of the Middle East and North Africa and a sharp rebound in energy demand in 2010 which pushed CO2 emissions to a record high, highlight the urgency and the scale of the challenge.”
  • ...5 more annotations...
  • In the WEO’s central New Policies Scenario, which assumes that recent government commitments are implemented in a cautious manner, primary energy demand increases by one-third between 2010 and 2035, with 90% of the growth in non-OECD economies. China consolidates its position as the world’s largest energy consumer: it consumes nearly 70% more energy than the United States by 2035, even though, by then, per capita demand in China is still less than half the level in the United States. The share of fossil fuels in global primary energy consumption falls from around 81% today to 75% in 2035. Renewables increase from 13% of the mix today to 18% in 2035; the growth in renewables is underpinned by subsidies that rise from $64 billion in 2010 to $250 billion in 2035, support that in some cases cannot be taken for granted in this age of fiscal austerity. By contrast, subsidies for fossil fuels amounted to $409 billion in 2010.
  • Short-term pressures on oil markets are easing with the economic slowdown and the expected return of Libyan supply. But the average oil price remains high, approaching $120/barrel (in year-2010 dollars) in 2035. Reliance grows on a small number of producers: the increase in output from Middle East and North Africa (MENA) is over 90% of the required growth in world oil output to 2035. If, between 2011 and 2015, investment in the MENA region runs one-third lower than the $100 billion per year required, consumers could face a near-term rise in the oil price to $150/barrel.Oil demand rises from 87 million barrels per day (mb/d) in 2010 to 99 mb/d in 2035, with all the net growth coming from the transport sector in emerging economies. The passenger vehicle fleet doubles to almost 1.7 billion in 2035. Alternative technologies, such as hybrid and electric vehicles that use oil more efficiently or not at all, continue to advance but they take time to penetrate markets.
  • The use of coal – which met almost half of the increase in global energy demand over the last decade – rises 65% by 2035. Prospects for coal are especially sensitive to energy policies – notably in China, which today accounts for almost half of global demand. More efficient power plants and carbon capture and storage (CCS) technology could boost prospects for coal, but the latter still faces significant regulatory, policy and technical barriers that make its deployment uncertain.Fukushima Daiichi has raised questions about the future role of nuclear power. In the New Policies Scenario, nuclear output rises by over 70% by 2035, only slightly less than projected last year, as most countries with nuclear programmes have reaffirmed their commitment to them. But given the increased uncertainty, that could change. A special Low Nuclear Case examines what would happen if the anticipated contribution of nuclear to future energy supply were to be halved. While providing a boost to renewables, such a slowdown would increase import bills, heighten energy security concerns and make it harder and more expensive to combat climate change.
  • The future for natural gas is more certain: its share in the energy mix rises and gas use almost catches up with coal consumption, underscoring key findings from a recent WEO Special Report which examined whether the world is entering a “Golden Age of Gas”. One country set to benefit from increased demand for gas is Russia, which is the subject of a special in-depth study in WEO-2011. Key challenges for Russia are to finance a new generation of higher-cost oil and gas fields and to improve its energy efficiency. While Russia remains an important supplier to its traditional markets in Europe, a shift in its fossil fuel exports towards China and the Asia-Pacific gathers momentum. If Russia improved its energy efficiency to the levels of comparable OECD countries, it could reduce its primary energy use by almost one-third, an amount similar to the consumption of the United Kingdom. Potential savings of natural gas alone, at 180 bcm, are close to Russia’s net exports in 2010.
  • In the New Policies Scenario, cumulative CO2 emissions over the next 25 years amount to three-quarters of the total from the past 110 years, leading to a long-term average temperature rise of 3.5°C. China’s per-capita emissions match the OECD average in 2035. Were the new policies not implemented, we are on an even more dangerous track, to an increase of 6°C.“As each year passes without clear signals to drive investment in clean energy, the “lock-in” of high-carbon infrastructure is making it harder and more expensive to meet our energy security and climate goals,” said Fatih Birol, IEA Chief Economist. The WEO presents a 450 Scenario, which traces an energy path consistent with meeting the globally agreed goal of limiting the temperature rise to 2°C. Four-fifths of the total energy-related CO2 emissions permitted to 2035 in the 450 Scenario are already locked-in by existing capital stock, including power stations, buildings and factories. Without further action by 2017, the energy-related infrastructure then in place would generate all the CO2 emissions allowed in the 450 Scenario up to 2035. Delaying action is a false economy: for every $1 of investment in cleaner technology that is avoided in the power sector before 2020, an additional $4.30 would need to be spent after 2020 to compensate for the increased emissions.
D'coda Dcoda

The human element | Bulletin of the Atomic Scientists [01Sep11] - 0 views

  • Nuclear reactors are operated by fallible human beings, and at least two meltdowns have been caused by poor human decisions: the 1961 meltdown of an experimental military reactor in Idaho, which killed three operators when one of them withdrew a control rod six times as far as he was supposed to (carrying out a high-tech murder-suicide over a love triangle, according to some accounts), and the Chernobyl accident, which was caused by an ill-conceived experiment conducted outside approved protocols.
  • So, if nuclear safety is a matter of human behavior as well as sound technical infrastructure, we should look to the social sciences in addition to engineering to improve reactor safety. After all, the machines don't run themselves. The social sciences have five lessons for us here: The blind spot. In what we might call the frog-in-boiling-water syndrome, human cognition is such that, in the absence of a disaster, individuals often filter out accumulating indications of safety problems that look like obvious red flags in retrospect -- just as frogs do not jump out of a pot of water on a stove as long as the temperature goes up slowly. Diane Vaughan's award-winning book on the Challenger disaster demonstrates a clear pattern in earlier space shuttle launches of O-ring performance degrading in proportion to declining launch temperatures -- the problem that would ultimately kill Challenger's ill-fated crew. Some shuttle engineers had become concerned about this, but the organizational complex responsible for the space shuttle could not bring this problem into full cognitive focus as long as the missions were successful. Operational success created a blinding glow that made this safety issue hard to see.
  • The whistle-blower's dilemma. The space shuttle program provides another example of human fallibility, explored in William Langewische's account of the Columbia space shuttle accident: Large, technical organizations tend to be unfriendly to employees who harp on safety issues. The NASA engineers who warned senior management -- correctly, as it turned out -- that the Columbia shuttle was endangered by the foam it lost on takeoff were treated as pests. (The same is true of Roger Boisjoly, the Morton Thiokol engineer who was ostracized and punished for having warned correctly that the Challenger shuttle was likely to explode if launched at low temperature.) Large technical organizations prioritize meeting deadlines and fulfilling production targets, and their internal reward structures tend to reflect these priorities. This is especially true if the organizations operate in a market environment where revenue streams are at stake. In such organizations, bonuses tend not to go to those who cause the organization to miss targets and deadlines or spend extra money to prevent accidents that may seem hypothetical. It is not the safety engineers, after all, who become CEOs. Those with safety concerns report that they often censor themselves unless they are deeply convinced of the urgency of their cause. Indeed, there is -- sadly -- substantial literature on the various forms of mistreatment of engineers who do come forward with such concerns.
  • ...4 more annotations...
  • The wild card. Finally, human nature being what it is, there are always the wild cards: people who kill romantic rivals via nuclear meltdown, freelance experimenters, terrorists, operators who should never have made it through personnel screening, operators who are drunk on the job, operators whose performance has declined through laziness, depression, boredom, or any host of reasons.
  • Overwhelmed by speed and complexity. As Charles Perrow argues in his influential book Normal Accidents, which was inspired by the Three Mile Island accident, human operators function well in environments of routinized normality; but, when highly complex technical systems function in unpredicted ways -- especially if the jagged interactions between subsystems unfold very rapidly -- then the human capacity for cognitive processing is quickly overwhelmed. In other words, if a reactor is veering toward an accident caused by the failure of a single system in a way that operators have been trained to handle, then they are likely to retain control. But, if the accident-in-the-making involves unforeseen combinations of failures unfolding quickly and requires improvised responses rather than routinized ones, the outcome is far less hopeful.
  • The politics of oversight. Regulatory apparatuses tend to degrade over time -- especially in political systems such as America's, which tend to facilitate the corporate capture of government functions. Thanks to the leverage afforded by campaign donations and the revolving door between public and private employment, industries have become extremely skillful at inserting their former employees, future employees, and other allies into the very regulatory agencies that oversee them. A brilliant piece of investigative journalism on the Securities and Exchange Commission in the latest issue of Rolling Stone shows how this can reduce a regulatory agency to an empty husk. Whether it's the Nuclear Regulatory Commission, the Securities and Exchange Commission, or the Food and Drug Administration, the story is the same: Government agencies that started off as aggressive watchdogs have become absorbed over time by those over whom they have titular oversight. Americans recently saw the dire consequences of this trend in the banking meltdown of 2008.
  • The bottom line: Nuclear safety is threatened by human as well as technical malfunctions, and the risk of disaster can only be attenuated through attention to the principles of social engineering as well as nuclear engineering. While human behavior can always overflow the bounds of our plans for its containment, there are measures that can at least lower the risk of a nuclear disaster caused by human factors: First, the nuclear industry needs to do more to both protect and reward whistle-blowers; and, second, the industry needs regulators with a genuine desire to exercise oversight -- rather than people hoping to increase their income by later going to work for the very companies that they were regulating. Unfortunately, this goes against the ethos of the contemporary United States, where the trend-lines are going in the wrong direction.
D'coda Dcoda

Short-Termism and Energy Revolutions [30Sep11] - 0 views

  • The calls these days for a technological “energy revolution” are widespread. But how do you spark breakthroughs when the natural bias of businesses, investors and governments is toward the here and now? In governance, politics creates a bias toward the short term. This is why bridges sometimes fall down for lack of maintenance. That’s also why it’s so hard to sustain public investment in the research and intellectual infrastructure required to make progress on the frontiers of chemistry, biology and physics, even though it is this kind of work that could produce leaps in how we harvest, harness, store and move energy. (This is why I asked, “Are Chemists and Engineers on the Green Jobs List?” back in 2008.)
  • To get the idea, you only have to look at the sputtering state of President Obama’s mostly unfunded innovation hubs, or look once again at the energy sliver in the graph showing America’s half-century history of public investment in basic scientific research. (There’s not much difference in research patterns in most other industrialized countries.) You can also look at the first Quadrennial Technology Review produced by the Department of Energy (summarized by Climate Progress earlier this week). The review was conducted after the President’s Council of Advisers on Science and Technology wisely recommended regular reviews of this sort as part of its prescription for accelerating change in energy technologies.
  • This excerpt from the new review articulates the tension pretty transparently for a government report: There is a tension between supporting work that industry doesn’t— which biases the department’s portfolio toward the long term—and the urgency of the nation’s energy challenges. The appropriate balance requires the department to focus on accelerating innovation relevant to today’s energy technologies, since such evolutionary advances are more likely to have near- to mid-term impact on the nation’s challenges. We found that too much effort in the department is devoted to research on technologies that are multiple generations away from practical use at the expense of analyses, modeling and simulation, or other highly relevant fundamental engineering research activities that could influence the private sector in the nearer term.
  • ...16 more annotations...
  • In finding that balance, I’m not sure it’s possible to overcome the political pressures tugging agencies and officials to stress refinement and deployment of known and maturing technologies (even though that’s where industry and private investors are most focused).
  • On the left, the pressure is for resources to deploy today’s “green” technology. On the right, as illustrated in a Heritage Foundation report on ways to cut President Obama’s budget for the Energy Department, the philosophy seems to be to discourage all government spending on basic inquiry related to energy.
  • According to Heritage, science “in service of a critical national interest that is not being met by the private sector” is fine if that interest is national defense, but not fine if it’s finding secure and sustainable (environmentally and economically) sources of energy.
  • I solicited reactions to the Energy Department review from a variety of technology and innovation analysts. The first to weigh in are Daniel M. Kammen, an energy technology researcher at the University of California, Berkeley, who is on leave working for the World Bank, and Robert D Atkinson, the founder and president of the Information Technology and Innovation Foundation. Here’s Kammen: The idea of a regular review and status report on both energy innovation and deployment spending is a good one. Some of the findings in the QTR review are useful, although little is new. Overall, though, this is a useful exercise, and one that should be a requirement from any major programmatic effort.
  • he real need in the R&D sector is continuity and matching an increasing portfolio of strategic research with market expansion. My former student and colleague Greg Nemet have written consistently on this: - U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion - Reversing the Incredible Shrinking Energy R&D Budget
  • Perhaps the biggest worry in this report, however, is the missing logic and value of a ’shift to near term priorities in energy efficiency and in electric vehicles.’ This may be a useful deployment of some resources, but a range of questions are simply never addressed. Among the questions that need firmer answers are:
  • There are some very curious omissions from the report, such as more detail on the need to both generate and report on jobs created in this sector — a political ‘must’ these days (see, e.g., the “green jobs” review by the Renewable and Appropriate Energy Laboratory at Berkeley) — and straightforward comparisons in the way of ‘report cards’ on how the US is stacking up relative to other key players (e.g. China, Germany…).
  • given the state-by-state laboratories we already have of differing approaches to energy efficiency, the logic of spending in this area remains to be proven (as much as we all rightly love and value and benefit from energy efficiency).
  • Near-term electric vehicle deployment. A similar story could be told here. As the director of the University of California at Berkeley’s Transportation Sustainability Research Center (http://tsrc.berkeley.edu) I am huge believer in electric vehicles [EVs]. However, the review does not make clear what advances in this area are already supported through [the Advanced Research Projects Agency for Energy], and what areas of near-term research are also not best driven though regulation, such as low-carbon fuel standards, R&D tax credits, ‘feebates’ that transfer funds from those individuals who purchase inefficient vehicles to those who purchase efficient ones. Similar to the story in energy efficiency, we do have already an important set of state-by-state experiments that have been in place for some time, and these warrant an assessment of how much innovation they have driven, and which ones do and do not have an application in scale-up at the federal level.
  • Finally, the electric vehicle landscape is already very rich in terms of plans for deployment by automakers. What are the barriers five-plus years out that the companies see research-versus-deployment and market-expansion support as the most effective way to drive change in the industry? Where will this focus put the U.S. industry relative to China?
  • Following record levels funding made available to the energy industry through the [stimulus package of spending], what are the clearly identified market failures that exist in this area that added funding will solve? Funding is always welcome, but energy efficiency in particular, can be strongly driven by regulation and standards, and because good energy efficiency innovations have such rapid payback times, would regulatory approaches, or state-federal partnerships in regulation and incentives not accomplish a great deal of what can be done in this area? Congressman Holt raises a number of key questions on related issues, while pointing to some very hopeful experiences, notably in the Apollo program, in his 16 September editorial in Science.
  • Here’s Robert Atkinson: If DOE is shifting toward a more short-term focus, this is quite disturbing.  It would mean that DOE has given up on addressing the challenge of climate change and instead is just focused on the near term goal of reducing oil imports and modestly reducing the expansion the coal fired power plants. If DOE thinks it is still focused on climate change, do they think they are fighting “American warming”?
  • If so, cutting the growth of our emissions make sense.  But its global warming and solving this means supporting the development of scalable, cheap low or no-carbon energy so that every country, rich and poor, will have an economic incentive to transitioning to cheap energy.  Increasing building efficiency, modernizing the electric grid, alternative hydrocarbon fuels, and increasing vehicle efficiency do virtually nothing to meet this goal. They are “American warming” solutions.
  • This is also troubling because (as you point out) who else is going to invest in the long-term, more fundamental, high risk, breakthrough research than the U.S. government.  It certainly won’t be VCs. And it won’t be the Chinese who are principally interested in cutting their energy imports and exporting current generation clean energy, not developing technology to save the planet.  Of course all the folks out there who have been pushing the mistaken view that we have all the clean technologies we need, will hail this as the right direction.  But it’s doing what the rest of the market has been doing in recent years – shifting from high risk, long-term research to short-term, low risk.  If the federal government is doing this it is troubling to say the least.
  • or those seeking more, here are the slides used by Steven Koonin, the physicist and former BP scientist who now is under secretary for science at the department, in presenting the review earlier this week:
  • Rolling Out the Quadrennial Technology Review Report
D'coda Dcoda

PIL challenges nuclear civil liability law in SC [15Oct11] - 0 views

  • NEW DELHI: Two NGOs and prominent ex-bureaucrats on Friday moved a PIL in the Supreme Court challenging the constitutional validity of nuclear civil liability law and sought a comprehensive safety review of all nuclear installations in the country by an independent expert group. NGOs ‘Common Cause’ and Centre for Public Interest Litigation along with other petitioners, including former cabinet secretary T S R Subramaniam, former power secretary E A S Sarma and former CEC T Gopalaswami requested the court to cancel clearances given to proposed nuclear power plants till the safety assessment was carried out.
D'coda Dcoda

Shutdown of Fukushima Reactors Is Ahead of Schedule [Nov11] - 0 views

  • Editor's Note: This is part of the IEEE Spectrum special report: Fukushima and the Future of Nuclear Power.
  • This past April, when the Japanese government and Tokyo Electric Power Co. (TEPCO) jointly unveiled their plan to bring the damaged reactors of the Fukushima Dai-ichi nuclear power plant to a cold shutdown and gain control of the release of radioactive materials, they set a tentative completion date for mid-January 2012. And "tentative" had to be the operative word, for the obstacles TEPCO faced—and to some extent still does face—are challenging in the extreme. They include:
  • Fuel rod meltdowns in reactors 1, 2, and 3 due to loss of cooling systems following the 11 March earthquake and tsunami; Severe damage to the upper levels of reactor buildings 1, 3, and 4 and slight damage to building 2, stemming from hydrogen explosions; High levels of radiation and contaminated rubble, making working conditions hazardous and difficult; Thousands of metric tons of contaminated water accumulating on the site and leaking out of the reactors.
  • ...5 more annotations...
  • It appears, however, that the process is now ahead of schedule. Environment Minister Goshi Hosono, who is also in charge of the Fukushima nuclear accident recovery, told the International Atomic Energy Agency's annual general conference in Vienna on 19 September that Japan was now aiming to complete a cold shutdown of the Fukushima plant by December 2011, instead of mid-January 2012. Progress was already evident in July, when Hosono announced that workers had completed step 1 of the two-step road map on schedule, reducing radioactive emissions and starting to bring down the core temperatures in reactors 1, 2, and 3. Hosono attributed the success to the construction of a new cooling system, which had begun pumping water into all three damaged reactors. In addition to cooling, the system also decontaminates the water accumulating in the basements of the reactor and turbine buildings. The contamination is the result of injected water coming into contact with the molten fuel in the pressure vessels.
  • Critics, however, were quick to question the stability of the system and its ad hoc design. The combination of filtering and decontamination technologies—mainly from the French nuclear giant Areva and the U.S. nuclear waste management company Kurion—includes some 4 kilometers of piping. The critics have a point. Even with the addition of a reportedly more robust system (to be used in parallel or as backup as needed) from Toshiba and IHI Corp., TEPCO admits the system underwent 39 disruptions between 10 July and 8 September. One consequence is that roughly 100 000 metric tons of water still need to be decontaminated.
  • Disruptions and remaining challenges notwithstanding, TEPCO has been making progress toward step 2 of the road map: a cold shutdown. According to TEPCO, that means achieving and maintaining a temperature of less than 100 °C as measured at the bottom of a reactor pressure vessel—the steel vessel containing the fuel rods—which itself is enclosed inside a protective containment vessel. A major advance came at the beginning of September, when TEPCO was able to start up the core spray lines to cool reactors 1 and 3. The core spray lines apply water directly to the cores from above, while the system installed in July has been cooling the cores by injecting water from the bottom. TEPCO has also begun increasing the amount of water being injected into reactor 2. The core spray line could not be used until recently because TEPCO first had to survey the subsystem's piping and valves. Given the high radiation in the area, this was difficult, but workers completed the job in July and confirmed the system's operability in August.
  • By late September, as a result of these efforts, the temperatures in all three reactors had dropped below 100 °C for the first time since the accident. As of 29 September, the temperatures for reactors 1, 2, and 3, respectively, were 77.5 °C, 99.7 °C, and 78.7 °C. "We are steadily bringing the postaccident situation under control," says Hosono. "To achieve step 2 this year, we'll move the schedule forward and do our best." But Yoshinori Moriyama, deputy director-general of Japan's Nuclear and Industrial Safety Agency (NISA) is cautious. "We need to maintain this state over the midterm," he says. "Temporary lower temperatures and the nonrelease of radioactive substances do not immediately mean that this is a cold shutdown." In order for NISA to declare a cold shutdown, the temperatures must remain stable and below 100 °C into December. So NISA won't officially declare a cold shutdown until near the end of 2011.
  • Despite these positive developments, nuclear experts point out that achieving a cold shutdown does not make the troubled plant completely safe, given that even spent fuel continues to generate heat for years after use. And upon achieving a cold shutdown, TEPCO must take on a new series of challenges. These include finding where the injected water is escaping, stopping those leaks, dealing with the accumulated contaminated water, removing and storing the thousands of spent fuel rods from the pools in reactors 1 to 4, and then figuring out a way to remove the melted fuel. The last is a task that could take a decade or more, according to experts.
D'coda Dcoda

NYT: Experts suspect melted fuel may be threatening groundwater - "Battle of epic propo... - 0 views

  • Prime Minister Yoshihiko Noda of Japan has declared an end to the [...] nuclear crisis
  • Many experts still doubt the [...[ plant is [...] stable [Many experts] worry that officials are declaring victory only to appease public anger over the accident [Tepco] has acknowledged that the uranium fuel in three reactors has likely melted through their containments
  • Hiroaki Koide, assistant professor at Kyoto University’s Research Reactor Institute “There is absolutely no cold shutdown” “It is a term that has been trotted out to give the impression we are reaching some sort of closure” “We still face a long battle of epic proportions, and by the time it is really over, most of us will be long dead” Melted Fuel Threatens Groundwater
  • ...2 more annotations...
  • Some experts, including Koide suspect the fuel could be threatening groundwater
  • Experts have also expressed concern over signs of sporadic “recriticality” of the fuel [Meaning] nuclear fission resumes in melted nuclear fuel lying on the floor of a storage pool or reactor core Closing quote from Prime Minister Not all of our battles are over But we will fight to the end It is a challenge for Japan, a challenge for humanity
D'coda Dcoda

N.R.C. Chief Plans Quick Response to Post-Fukushima Study [18Jul11] - 0 views

  • The chairman of the Nuclear Regulatory Commission said Monday that it should decide within 90 days on how to address recommendations to be issued this week by a task force that examined the lessons of the Fukushima Daiichi nuclear accident in Japan. Almost simultaneously, House Republicans and the industry’s trade association warned him not to rush.
  • The chairman, Gregory B. Jaczko, speaking at the National Press Club, cast the March 11 earthquake and tsunami at Fukushima Daiichi, which produced three meltdowns, as a serious challenge for the American nuclear industry. “The history of nuclear power has also been punctuated by several significant events that challenged old truths and upended our understanding of nuclear safety,’’ he said.
  • The task force’s recommendations are to be issued on Tuesday. Mr. Jaczko did not say that the five-member commission should complete its work in 90 days, only that it should give strong direction on each recommendation by then. The work should be finished within five years, he said.
  • ...3 more annotations...
  • That may not sound like an urgent timetable to some people. But to put it into perspective, the commission is still struggling with issues raised by the Browns Ferry fire of 1975.
  • Mr. Jaczko cautioned that the nuclear safety effort should follow a principle used in medicine: first, do no harm. But the commission should exercise leadership promptly, he said. And the commission is trying to stick to its current schedule of issuing its first new construction license by the end of the year. But the industry, group, the Nuclear Energy Institute, took note of something else in the 90-day report: an observaiton that information from Japan was “unavailable, unreliable and ambiguous.”
  • changes in the hardened vents, which are supposed to route hydrogen out of the buildings before it can cause explosions, were premature because no one is sure what went wrong with the ones at Fukushima, Mr. Peterson said. Figuring that out could take years, he said.Meanwhile, leaders of the Republican majority on the House Energy and Commerce Committee released a letter they had sent to Mr. Jaczko warning him that “it is essential that the commission have the benefit of the full and deliberate process of review.’’
D'coda Dcoda

IEA - OECD: Nearly 25 Percent Of Global Electricity Could Be Generated From Nuclear Pow... - 0 views

  • The latest reactor designs, now under construction around the world, build on over 50 years of technology development. The roadmap notes that these designs will need to be fully established as reliable and competitive electricity generators over the next few years if they are to become the mainstays of nuclear expansion after 2020
  • Almost one quarter of global electricity could be generated from nuclear power by 2050, making a major contribution to cutting greenhouse gas emissions. This is the central finding of the Nuclear Energy Technology Roadmap, published by the International Energy Agency (IEA) and the OECD Nuclear Energy Agency (NEA). Such an expansion will require nuclear generating capacity to more than triple over the next 40 years, a target the roadmap describes as ambitious but achievable.
  • Speaking from the East Asia Climate Forum in Seoul, IEA Executive Director Nobuo Tanaka said: “Nuclear energy is one of the key low-carbon energy technologies that can contribute, alongside energy efficiency, renewable energies and carbon capture and storage, to the decarbonisation of electricity supply by 2050.” NEA Director General Luis Echávarri stated: “Nuclear is already one of the main sources of low-carbon energy today. If we can address the challenges to its further expansion, nuclear has the potential to play a larger role in cutting CO2 emissions.”
  • ...6 more annotations...
  • Financing the construction of new nuclear plants is expected to be a major challenge in many countries
  • No major technological breakthroughs will be needed to achieve the level of nuclear expansion envisaged, the roadmap finds. However, important policy-related, industrial, financial and public acceptance barriers to the rapid growth of nuclear power remain. The roadmap sets out an action plan with steps that will need to be taken by governments, industry and others to overcome these. A clear and stable policy commitment to nuclear energy as part of overall energy strategy is a pre requisite, as is gaining greater public acceptance for nuclear programmes. Progress in implementing plans for the disposal of high-level radioactive waste will also be vital. The international system of safeguards to prevent proliferation of nuclear technology and materials must be maintained and strengthened where necessary.
  • The latest reactor designs, now under construction around the world, build on over 50 years of technology development. The roadmap notes that these designs will need to be fully established as reliable and competitive electricity generators over the next few years if they are to become the mainstays of nuclear expansion after 2020.
  • For the longer term, the continued development of reactor and fuel cycle technologies will be important for maintaining the competitiveness of nuclear energy
  • The Nuclear Energy Technology Roadmap is the result of joint work by the IEA and the OECD Nuclear Energy Agency (NEA) and is one of a series being prepared by the IEA in co operation with other organisations and industry, at the request of the G8 summit at Aomori (Japan) in June 2008. The overall aim is to advance development and uptake of key low-carbon technologies needed to reach the goal of a 50% reduction in CO2 emissions by 2050.
  • Nuclear generating capacity worldwide is presently 370 gigawatts electrical (GWe), providing 14% of global electricity. In the IEA scenario for a 50% cut in energy-related CO2 emissions by 2050 (known as the “BLUE Map” scenario), on which the roadmap analysis is based, nuclear capacity grows to 1 200 GWe by 2050, providing 24% of global electricity at that time. Total electricity production in the scenario more than doubles, from just under 20 000 TWh in 2007 to around 41 000 TWh in 2050.
D'coda Dcoda

IAEA To Host Conference On Nuclear Power HR Development [31Dec09] - 0 views

  •  
    This won't highlight, here is an intro clip: "More than 50 Member States have recently approached the IAEA expressing interest in launching a nuclear power programme. In all cases the development of human resources capable of supporting the implementation of these programmes has been identified as one of the main challenges. Additionally, many of the 30 Member States that already have nuclear power programmes are either expanding, or considering the expansion of their programmes. For many of them this comes at the same time as there is a need to replace the generation of workers that commissioned the plants now in operation. Given these needs, the education, recruitment, selection, training, qualification and retention of human resources to support the introduction and expansion of nuclear power programmes has been a matter of concern for many national governments and has attracted a great deal of attention and support from industry and international organizations. The decline in the number of younger people studying nuclear sciences and a growing number of universities giving up or strongly limiting their nuclear education programmes have given rise to new initiatives for networking educational institutions, universities and industry training centres. New national and international "platforms" for sharing knowledge and expertise in nuclear education and training (WNU, ANENT, ENEN, ANSN, UNENE and others) have been established and have become the drivers renewed interest in nuclear education"
D'coda Dcoda

Fast reactor advocates throw down gauntlet to MIT authors[24Jul11] - 0 views

  • Near the end of 2010, the Massachusetts Institute of Technology released a summary of a report titled The Future of the Nuclear Fuel Cycle as part of its MIT Energy Initiative. The complete report was released a few months ago. The conclusions published that report initiated a virtual firestorm of reaction among the members of the Integral Fast Reactor (IFR) Study group who strongly disagreed with the authors.
  • the following quote from the “Study Context” provides a good summary of why the fast reactor advocates were so dismayed by the report.
  • For decades, the discussion about future nuclear fuel cycles has been dominated by the expectation that a closed fuel cycle based on plutonium startup of fast reactors would eventually be deployed. However, this expectation is rooted in an out-of-date understanding about uranium scarcity. Our reexamination of fuel cycles suggests that there are many more viable fuel cycle options and that the optimum choice among them faces great uncertainty—some economic, such as the cost of advanced reactors, some technical such as implications for waste management, and some societal, such as the scale of nuclear power deployment and the management of nuclear proliferation risks. Greater clarity should emerge over the next few decades, assuming that the needed research is carried out for technological alternatives and that the global response to climate change risk mitigation comes together. A key message from our work is that we can and should preserve our options for fuel cycle choices by continuing with the open fuel cycle, implementing a system for managed LWR spent fuel storage, developing a geological repository, and researching technology alternatives appropriate to a range of nuclear energy futures.
  • ...10 more annotations...
  • The group of fast reactor supporters includes some notable scientists and engineers whose list of professional accomplishments is at least as long as those of the people who produced the MIT report. In addition, it includes people like Charles Till and Yoon Chang who were intimately involved in the US’s multi-decade long fast reactor development and demonstration program that resulted in demonstrating a passively safe, sodium cooled reactor and an integral recycling system based on metallic fuel and pyroprocessing.
  • That effort, known as the Integral Fast Reactor, was not just based on an out-dated concept of uranium availability, but also on the keen recognition that the public wants a clear solution to “the nuclear waste issue” that does not look like a decision to “kick the can down the road.”
  • he Science Council for Global Initiatives produced a detailed critique of the MIT paper and published that on Barry Brook’s Brave New Climate blog at the end of May 2011. The discussion has a great deal of interest for technical specialists and is supporting evidence that belies the often asserted falsehood (by people who oppose nuclear technology) that the people interested in developing and deploying nuclear technology speak with a single, almost brainwashed voice.
  • In recent days, however, the controversy has become more interesting because the IFR discussion group has decided to issue a public debate challenge and to allow people like me to write about that challenge in an attempt to produce some response.
  • I think your team is dead wrong on your conclusion that we don’t need fast reactors/closed fuel cycle for decades.Your study fails to take into account the political landscape the competitive landscape the safety issue environmental issues with uranium miningIt is unacceptable to the public to not have a solution to the waste issue. Nuclear power has been around for over 50 years, and we STILL HAVE NO OPTION FOR THE WASTE today other than interim dry cask storage. There is no national repository. Without that, the laws in my state forbid construction of a new nuclear power plant.
  • Other countries are pursuing fast reactors, we are not. Russia has 30 years of commercial operating history with fast reactors. The US has zero.We invented the best Gen IV technology according to the study done by the Gen IV International Forum. So what did we do with it? After spending $5B on the project, and after proving it met all expectations, we CANCELLED it (although the Senate voted to fund it).
  • An average investment of $300M a year could re-start our fast reactor program with a goal of actually commercializing our best reactor design (the IFR according the GIF study).
  • At least we’d have a bird in the hand that we know works, largely solves the waste problem, since the fast reactor waste needs only to be stored for a few hundred years at most, and doesn’t require electric power or any active systems to safely shut down.
  • Investing lots of money in a project and pulling the funding right before completion is a bad strategy for technology leadership.
  • MIT should be arguing for focusing and finishing what we started with the IFR. At least we’d have something that addresses safety, waste, and environmental issues. Uranium is cheap because we don’t have to pay for the environmental impact of uranium mining.
D'coda Dcoda

4 Ways the Department of Energy Is Tapping Tech for a Greener Future [03Aug11] - 0 views

  • This week, the U.S. Department of Energy (DOE) re-launched its website, Energy.gov, to provide tools to help individuals and businesses better understand how to save energy and money. You can type your zip code into the site and get hyper-local information about your city, county and state, including information on tax credits, rebates and energy saving tips.
  • The site presents DOE data visually using the open source MapBox suite of tools, and localized data and maps can be shared or embedded on any website or blog. Other data sets the DOE is mapping include alternative fuel locations and per capita energy usage. Anyone can now compare how his state’s energy usage compares with others across the country. In addition to making the data more palatable for the public, the DOE is offering open data sets for others to use.
  • Our goal is simple — to improve the delivery of public services online. We’re using government data to go local in a way that’s never been possible before. We’re connecting the work of the Energy Department with what’s happening in your backyard,” says Cammie Croft, senior advisor and director of new media and citizen engagement at the DOE. “We’re making Energy.gov relevant and accessible to consumers and small businesses in their communities.”
  • ...16 more annotations...
  • How else is the Energy Department working to bring better information about energy, renewable energies and energy technology to the public? Here are a few examples.
  • 1. Your MPG
  • The “Your MPG” feature on the site lets you upload data about your own vehicle’s fuel usage to your “cyber” garage and get a better picture of how your vehicle is doing in terms of energy consumption. The system also aggregates the personal car data from all of the site’s users anonymously so people can share their fuel economy estimates. “You can track your car’s fuel economy over time to see if your efforts to increase MPG are working,” says David Greene, research staffer at Oak Ridge National Lab. “Then you can compare your fuel data with others and see how you are doing relative to those who own the same vehicle.”
  • In the works for the site is a predictive tool you can use when you are in the market for a new or used vehicle to more accurately predict the kind of mileage any given car will give you, based on your particular driving style and conditions. The system, says Greene, reduces the +/- 7 mpg margin of error of standard EPA ratings by about 50% to give you a more accurate estimate of what your MPG will be.
  • Solar Decathlon
  • In response to the White House’s Startup America program supporting innovation and entrepreneurship, the Energy Department launched its own version — America’s Next Top Energy Innovator Challenge. The technology transfer program gives startups the chance to license Energy Department technologies developed at the 17 national laboratories across the country at an affordable price. Entrepreneurs can identify Energy Department technologies through the Energy Innovation Portal, where more than 15,000 patent and patent applications are listed along with more than 450 market summaries describing some of the technologies in layman’s terms.
  • 2. America’s Next Top Energy Innovator
  • 3. Products: Smarter Windows
  • DOE funding, along with private investments, supports a number of companies including the Michigan-based company Pleotint. Pleotint developed a specialized glass film that uses energy generated by the sun to limit the amount of heat and light going into a building or a home. The technology is called Sunlight Responsive Thermochromic (SRT™), and it involves a chemical reaction triggered by direct sunlight that lightens or darkens the window’s tint. Windows made from this glass technology are designed to change based on specific preset temperatures.
  • Another DOE-funded company, Sage ElectroChromics, created SageGlass®, electronically controlled windows that use small electric charges to switch between clear and tinted windows in response to environmental heat and light conditions. And Soladigm has an electronic tinted glass product that is currently undergoing durability testing.
  • Once a company selects the technology of interest to them, they fill out a short template to apply for an option — a precursor to an actual license of the patent — for $1,000. A company can license up to three patents on one technology from a single lab per transaction, and patent fees are deferred for two years. The program also connects entrepreneurs to venture capitalists as mentors.
  • Since 2002, the U.S. Department of Energy’s Solar Decathlon has challenged collegiate students to develop solar-powered, highly efficient houses. Student teams build modular houses on campus, dismantle them and then reassemble the structures on the National Mall. The competition has taken place biennially since 2005. Open to the public and free of charge, the next event will take place at the National Mall’s West Potomac Park in Washington, D.C. from September 23 to October 2, 2011. There are 19 teams competing this year.
  • Teams spend nearly two years planning and constructing their houses, incorporating innovative technology to compete in 10 contests. Each contest is worth 100 points to the winner in the areas of Architecture, Market Appeal, Engineering, Communications, Affordability, Comfort Zone, Hot Water, Appliances, Home Entertainment and Energy Balance. The team with the most points at the end of the competition wins.
  • Since its inception, the Solar Decathlon has seen the majority of the 15,000 participants move on to jobs related to clean energy and sustainability. The DOE’s digital strategy for the Solar Decathlon includes the use of QR codes to provide a mobile interactive experience for visitors to the event in Washington, D.C., as well as Foursquare checkin locations for the event and for each participating house. Many of the teams are already blogging leading up to the event and there are virtual tours and computer animated video walkthroughs to share the Solar Decathlon experience with a global audience. There will be TweetChats using the hashtag #SD2011 and other activities on Twitter, Facebook, Flickr and YouTube.
  • The Future
  • In terms of renewable energies, the DOE tries to stay on the cutting edge. Some of their forward-thinking projects include the Bioenergy Knowledge Discovery Framework (KDF), containing an interactive database toolkit for access to data relevant to anyone engaged with the biofuel, bioenergy and bioproduct industries. Another is an interactive database that maps the energy available from tidal streams in the United States. The database, developed by the Georgia Institute of Technology in cooperation with the Energy Department, is available online. The tidal database gives researchers a closer look at the potential of tidal energy, which is a “predictable” clean energy resource. As tides ebb and flow, transferring tidal current to turbines to become mechanical energy and then converting it to electricity. There are already a number of marine and hydrokinetic energy projects under development listed on the site.
D'coda Dcoda

Southern Gambles on First U.S. Nuclear Reactors in a Generation [26Sep11] - 0 views

  • Southern Co. is poised to end a three-decade freeze on nuclear development as the U.S. Nuclear Regulatory Commission holds a final hearing today before granting it a license to build and operate two reactors. The stakes for Atlanta-based Southern are greater than its bottom line, Chief Executive Officer Thomas Fanning said during two interviews. If there is to be a nuclear revival in the U.S., Southern, the largest U.S. power company, must deliver the $14 billion project on-time and on-budget, he said.
  • “We’ve got to be successful,” Fanning said during an interview at Bloomberg headquarters in New York. “This is the first, best shot for the nuclear renaissance in America.” Nuclear expansion ground to a halt in the U.S. as cost overruns, construction delays and a thicket of new regulations after Three Mile Island’s partial-meltdown in 1979 turned some plants into economic disasters, Ted Quinn, past president of the American Nuclear Society, said in a telephone interview.
  • A far worse accident at Japan’s Fukushima Dai-Ichi nuclear station this March so far hasn’t derailed Southern’s project at Plant Vogtle south of Augusta, Georgia, as critics predicted. Southern is on track to license the plant by early 2012, provided the commission certifies design changes for the Westinghouse AP1000 reactors that will power Vogtle, said Scott Burnell, a commission spokesman, in a telephone interview.
  • ...7 more annotations...
  • Success at Vogtle could draw investors to other atomic projects on the drawing boards in Virginia, Florida and the Carolinas, Fanning said. Future Nuclear Development If Vogtle fails, Southern may prove that the time for massive nuclear reactors is over, moving the nation toward smaller modular reactors or away from atomic power altogether, said Chris Gadomski, lead nuclear analyst for Bloomberg New Energy Finance.
  • “If the new projects are fumbled -- over-budget, behind- schedule -- then utilities will be much more hesitant to start new nuclear construction,” Gadomski said in a telephone interview. Southern and its partners have invested more than $3 billion into the site since 2009, Fanning said, receiving special dispensation from the commission to begin work on cooling towers and other structures not deemed essential to nuclear safety while they awaited final approval to build the reactors.
  • So far, Vogtle’s new reactors remain under-budget and on schedule to begin producing power in 2016 and 2017, Southern said in a Sept. 20 filing with Georgia regulators. Georgia consumers will pay $6.1 billion of the project’s costs through rate hikes, while the Obama Administration has pledged loan guarantees for another $8.3 billion.
  • Challenges Remain Vogtle still faces challenges. U.S. Representative Edward Markey, a Massachusetts Democrat, on Sept. 23 called for scrutiny of federal nuclear loan guarantees following the collapse of solar panel-maker Solyndra LLC, which received a $535 million loan guarantee. Vogtle’s opponents worry it will suffer the same cost overruns experienced by other first-of-a-kind reactors in the U.S. when new units were being built a generation ago, Sara Barczak, program director with the Southern Alliance for Clean Energy, said in an interview.
  • She’s also concerned that Vogtle may have to be redesigned to comply with tougher seismic standards crafted following Fukushima and an August temblor in Virginia. “We want them to get it right, get it worked out, because all they’re going to do is cost ratepayers and taxpayers money,” said Barczak.
  • A Master Plan The 104 nuclear power plants built a generation ago in the U.S. were customized to each operator’s whims and built without a true master plan, said John Polcyn, a consultant and senior nuclear adviser who has worked on about two dozen plants in the U.S., Japan and China. “The one thing the industry has really gotten mature about is standardization,” Polcyn said. “Is it perfect? No. But I tell you we are eons better than we were the last go-round.”
  • Miller and Fanning have sophisticated software to monitor every element of the project and pre-fabricated construction that’s first being tested at two plants in China. Miller describes his management style as “Whac-A-Mole,” dealing with problems immediately as they arise and planning for every contingency. His approach has been tested as Southern and its partners deal with suppliers who haven’t built to nuclear construction’s exacting standards since the 1990s.
D'coda Dcoda

What You Missed at the 55th General Conference of International Atomic Energy Agency [3... - 0 views

  • A week ago, a busy 55th General Conference closed at the IAEA, where major issues in nuclear science, nuclear safety and nuclear power were discussed, and successful projects undertaken throughout the year were highlighted. Keynote Address This year's Scientific Forum focused on water and the efforts being made by the IAEA and its partners to improve its availability and management. In his keynote address to the Scientific Forum, U.S. Secretary for Energy and Nobel Laureate Steven Chu described how nuclear techniques have proven to be powerful tools that successfully and efficiently help to find, measure, monitor, characterize and manage aquifer and ground water. "Nuclear technologies and techniques can - and must - play an important role in solving the global water challenge. Isotope hydrology can provide critical information about water resources, so we can better manage them", he said. He also described how isotopic analysis can be used to verify the anthropogenic causes of climate change. In closing, Secretary Chu called for "a sustained commitment to scientific research and development to address the great challenges of our time" since support from governments is critical to unleashing innovation".
  • Nuclear Safety Nuclear safety has been on a global concern since the devastating nuclear accident in Japan in March. The IAEA Member States developed a Nuclear Safety Action Plan that the Board of Governors approved and the General Conference endorsed. A new system which makes it easier for Member States and the Agency to exchange emergency information was launched. Following the first meeting of the Nuclear Industry Cooperation Forum, its Chair, Garry Young, who is also the Director of Nuclear Business Development at the US nuclear power operator, Entergy, talked to Sasha Henriques from the IAEA Division of Public Information, about how important it is for nuclear power plant operators from around the world to work together to avoid another major nuclear accident like Fukushima Daiichi. Listen to the interview here:
  • Senegal signed the Convention on Supplementary Compensation for Nuclear Damage during the General Conference. Among other things, the Convention establishes an international fund to increase the amount available to compensate victims of nuclear accidents. Mauritania deposited the instruments of accession to three international safety Conventions on 19 September 2011: the Convention on Early Notification of a Nuclear Accident; the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency and the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management.
  • ...2 more annotations...
  • Nuclear Energy As the world reevaluates how to meet today and tomorrow's energy needs, the IAEA projects slower nuclear growth after Fukushima.
  • Safeguards In the area of nuclear safeguards, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) celebrated 20 years of successful application of nuclear verification.
  •  
    Mainly highlighted parts related to nuclear energy
D'coda Dcoda

Experts split on how to decommission Fukushima nuclear plant [29Aug11] - 0 views

  • What is actually going to take place at the Fukushima No. 1 Nuclear Power Plant, where word is that the four reactors that were crippled in the Great East Japan Earthquake and tsunami will eventually be decommissioned? The Ministry of Economy, Trade and Industry's Nuclear and Industrial Safety Agency (NISA) defines "decommissioning" as the process of removing spent fuel from reactors and dismantling all facilities. Ultimately, the site of a decommissioned reactor is meant to be reverted into a vacant lot.
  • In 1996, the then Japan Atomic Energy Research Institute (JAERI) -- now the Japan Atomic Energy Agency (JAEA) -- finished decommissioning its Japan Power Demonstration Reactor. The decommissioning process of the Tokai Nuclear Power Plant in the Ibaraki Prefecture village of Tokai began in 1998 and is set to end in fiscal 2020, while the No. 1 and No. 2 nuclear reactors at the Hamaoka Nuclear Power Plant in the Shizuoka Prefecture city of Omaezaki are slated for decommissioning by fiscal 2036. Around the world, only around 15 nuclear reactors have thus far been dismantled.
  • The standard decommissioning process entails six major steps: 1. Remove spent fuel rods, 2. Remove radioactive materials that have become affixed to reactor pipes and containers, 3. Wait for radiation levels to go down with time, 4. Dismantle reactors and other internal vessels and pipes, 5. Dismantle the reactor buildings, and 6. Make the site into a vacant lot.
  • ...17 more annotations...
  • "Cleaning," "waiting," and "dismantling" are the three key actions in this process. Needless to say, this all needs to be done while simultaneously containing radioactive materials.
  • In the case of the Tokai Nuclear Power Plant, the first commercial plant to undergo decommissioning, spent fuel was removed over a span of three years beginning in 1998, and was transported to Britain for reprocessing. Dismantling of the facilities began in 2001, with current efforts being made toward the dismantling of heat exchangers; workers have not yet begun to take the reactor itself apart. The entire process is expected to be an 88.5-billion-yen project involving 563,000 people.
  • Hitachi Ltd., which manufactures nuclear reactors, says that it "generally takes about 30 years" to decommission a reactor. The Hamaoka Nuclear Power Plant's No. 1 and No. 2 reactors operated by Chubu Electric Power Co. are also expected to take about 30 years before they are decommissioned.
  • In the case of the Fukushima No. 1 Nuclear Power Plant, meanwhile, the biggest challenge lies in how to remove the fuel, says Tadashi Inoue, a research advisor at the Central Research Institute of Electric Power Industry (CRIEPI), a foundation that conducts research on energy and environmental issues in relation to the electrical power industry.
  • "we must deal with rubble contaminated with radioactive materials that were scattered in the hydrogen blasts and treat the radiation-tainted water being used to cool nuclear fuel before we can go on to fuel removal."
  • Currently, the Fukushima plant's operator, Tokyo Electric Power Co. (TEPCO), is desperately trying to treat the contaminated water. Huge challenges remain with regards to the contaminated rubble, as radiation levels of over 10 sieverts per hour were found near outdoor pipes on the plant grounds just the other day. Exposure to such high levels would mean death for most people.
  • Each step in the process toward decommissioning is complicated and requires great numbers of people. It's a race against time because the maximum amount of radiation that workers can be exposed to is 250 millisieverts.
  • Prefacing the following as "a personal opinion," Inoue says: "Building a car that can protect the people inside as much as possible from radioactive materials, and attaching an industrial robotic arm to the car that can be manipulated by those people could be one way to go about it."
  • Two types of fuel removal must take place. One is to take out the spent fuel in the containment pools, and the other is to remove the melted fuel from the reactor cores. Because the radiation levels of the water in the spent fuel pools have not shown any significant changes from before the crisis, it is believed that the spent fuel has not suffered much damage. However, removing it will require repairing and reinstalling cranes to hoist the fuel rods out.
  • The breached reactor core is a bigger problem. It is believed that raising water levels inside the reactor has been difficult because of a hole in the bottom of the vessel. It will be necessary to plug the hole, and continue filling the vessel with water while extracting the melted fuel. How to fill the vessel with water is still being debated. If the reactor can be filled with water, steps taken after the 1979 Three Mile Island nuclear accident can serve as a guide because in that case, in which approximately 50 percent of the core had melted, workers were able to fill the reactor with water and remove the fuel within.
  • Inoue predicts that removal of spent fuel from the containment pools will begin about five years after the crisis, and about 10 years in the case of melted fuel from the reactor core. Work on the four reactors at the Fukushima plant will probably take several years.
  • "Unless we look at the actual reactors and take and analyze fuel samples, we can't know for sure," Inoue adds. Plus, even if workers succeed in removing the fuel, reprocessing it is an even more difficult task. A review of processing methods and storage sites, moreover, has yet to take place.
  • Meanwhile, at least one expert says he doesn't believe that workers will be able to remove the melted fuel from the crippled plant.
  • "If there's 10 sieverts per hour of radiation outside, then the levels must be much higher closer to the reactor core," says Tadahiro Katsuta, an associate professor at Meiji University and an expert in reactor engineering and reactor policy who was once a member of an anti-nuclear non-profit organization called Citizens' Nuclear Information Center (CNIC). "The fuel has melted, and we haven't been able to cool it consistently. If work is begun five or 10 years from now when radiation levels have not yet sufficiently gone down, workers' health could be at serious risk."
  • Katsuta predicts that it will probably take at least 10 years just to determine whether it is possible to remove the fuel. He adds that it could very well take 50 years before the task of dismantling the reactor and other facilities is completed.
  • What Katsuta has in mind is a Chernobyl-style concrete sarcophagus, which would entail cloaking the melted tomb with massive amounts of concrete. "How could we simultaneously dismantle four reactors that have been contaminated to the extent that they have by radioactive materials?" asks Katsuta. "Japan has little experience in decommissioning reactors, and this case is quite different from standard decommissioning processes. It's not realistic to think we can revert the site back to a vacant lot. I think we should be considering options such as entombing the site with concrete or setting up a protective dome over the damaged reactor buildings
  • what we face is a great unknown to all of mankind.
D'coda Dcoda

Speaking tour of Japan challenges financing for new U.S. reactors [20Aug10] - 0 views

  • Beyond Nuclear's Kevin Kamps toured Japan from August 2nd to 12th, visiting Tokyo, Fukushima, Fukui, Kansai and Kyushu. A highlight included meeting with officials from the Japan Bank for International Cooperation and the Nippon Export and Investment Insurance agency, where a letter signed by 75 U.S. national and grassroots groups was delivered, urging no Japanese financing for risky new reactors in the U.S. A backgrounder spelled out these risks in detail. Most proposed new U.S. atomic reactors have designs owned by Japanese companies -- either Toshiba (Westinghouse), Hitachi (General Electric), or Mitsubishi. At South Texas Project, Toshiba and Tokyo Electric Power Company are even partners in the venture. In addition, Japan Steel Works would be the primary supplier of large nuclear components, such as reactor pressure vessels and steam generators. The Japanese news media were alerted to the letter and meeting, and the Japanese Prime Minister, Minister of Finance, and Minister of Economy, Trade, and Industry received copies of the letter.
D'coda Dcoda

Homes Near U.S. Nuclear Plants Face New Challenges [25Mar11] - 0 views

  • The chilling images of a melting nuclear reactor in Japan is causing more buyers to take a closer look at how far their new home would be to a nuclear reactor. As such, sellers near towns with nuclear reactors may have a longer wait in finding a buyer and even see their home values drop, Reuters News reports. “I’d be shocked if this didn’t have a temporary negative effect on selling prices,” says David Clark, professor of economics at Marquette University, who has studied the impact of nuclear power plants on home values. Just how long-lasting the impact will depend on how bad the situation gets in Japan, Clark adds. 
  • Other experts say the impact to real estate values will be temporary and home owners near nuclear power plants shouldn’t be too worried. For example, home prices tumbled following the 1979 Three Mile Island nuclear plant incident in Pennsylvania. However, prices stabilized a couple of years later, according to research studies. 
Dan R.D.

DOE sued over nuclear waste fund - News - ReviewJournal.com [03Apr10] - 0 views

  • WASHINGTON -- The Department of Energy was sued Friday by state utility regulators who challenge whether consumers should continue paying into a $30 billion government nuclear waste fund if a Yucca Mountain repository is no longer in the plans.
  • The National Association of Regulatory Utility Commissioners, or NARUC, asked judges to suspend collection of the fees until a new review of whether the money still is needed.
  • President Barack Obama has moved to terminate the behind-schedule Yucca Mountain storage project in Nevada, and has formed a blue ribbon panel to study alternatives and report within two years.
  • ...4 more annotations...
  • But with no new plan in sight, NARUC challenged the fee that collects about $750 million a year from utilities, and ultimately from ratepayers.
  • "We do not take this action lightly; we are hopeful that the newly appointed Blue Ribbon Commission on America's Nuclear Future will chart a workable path," said NARUC President David Coen of Vermont.
  • "But until that time, there is no need to assess these fees on our consumers, particularly when we have no idea what solutions the commission will suggest, and whether they will be implemented," Coen said.
  • DOE spokeswoman Stephanie Mueller said the blue ribbon commission has been asked to recommend how the fees should be handled."The fees collected from the nuclear industry are legally mandated and reviewed every year and will pay the cost of the eventual long-term disposition of the materials," Mueller said. "Secretary (Steven) Chu has appointed a Blue Ribbon Commission of respected, bipartisan experts to make recommendations on these issues."
D'coda Dcoda

Scientists Radically Raise Estimates of Fukushima Fallout [25Oct11] - 0 views

  • The disaster at the Fukushima Daiichi nuclear plant in March released far more radiation than the Japanese government has claimed. So concludes a study1 that combines radioactivity data from across the globe to estimate the scale and fate of emissions from the shattered plant. The study also suggests that, contrary to government claims, pools used to store spent nuclear fuel played a significant part in the release of the long-lived environmental contaminant caesium-137, which could have been prevented by prompt action. The analysis has been posted online for open peer review by the journal Atmospheric Chemistry and Physics.
  • Andreas Stohl, an atmospheric scientist with the Norwegian Institute for Air Research in Kjeller, who led the research, believes that the analysis is the most comprehensive effort yet to understand how much radiation was released from Fukushima Daiichi. "It's a very valuable contribution," says Lars-Erik De Geer, an atmospheric modeller with the Swedish Defense Research Agency in Stockholm, who was not involved with the study. The reconstruction relies on data from dozens of radiation monitoring stations in Japan and around the world. Many are part of a global network to watch for tests of nuclear weapons that is run by the Comprehensive Nuclear-Test-Ban Treaty Organization in Vienna. The scientists added data from independent stations in Canada, Japan and Europe, and then combined those with large European and American caches of global meteorological data.
  • Stohl cautions that the resulting model is far from perfect. Measurements were scarce in the immediate aftermath of the Fukushima accident, and some monitoring posts were too contaminated by radioactivity to provide reliable data. More importantly, exactly what happened inside the reactors — a crucial part of understanding what they emitted — remains a mystery that may never be solved. "If you look at the estimates for Chernobyl, you still have a large uncertainty 25 years later," says Stohl. Nevertheless, the study provides a sweeping view of the accident. "They really took a global view and used all the data available," says De Geer.
  • ...7 more annotations...
  • Challenging numbers Japanese investigators had already developed a detailed timeline of events following the 11 March earthquake that precipitated the disaster. Hours after the quake rocked the six reactors at Fukushima Daiichi, the tsunami arrived, knocking out crucial diesel back-up generators designed to cool the reactors in an emergency. Within days, the three reactors operating at the time of the accident overheated and released hydrogen gas, leading to massive explosions. Radioactive fuel recently removed from a fourth reactor was being held in a storage pool at the time of the quake, and on 14 March the pool overheated, possibly sparking fires in the building over the next few days.
  • But accounting for the radiation that came from the plants has proved much harder than reconstructing this chain of events. The latest report from the Japanese government, published in June, says that the plant released 1.5 × 1016 bequerels of caesium-137, an isotope with a 30-year half-life that is responsible for most of the long-term contamination from the plant2. A far larger amount of xenon-133, 1.1 × 1019 Bq, was released, according to official government estimates.
  • The new study challenges those numbers. On the basis of its reconstructions, the team claims that the accident released around 1.7 × 1019 Bq of xenon-133, greater than the estimated total radioactive release of 1.4 × 1019 Bq from Chernobyl. The fact that three reactors exploded in the Fukushima accident accounts for the huge xenon tally, says De Geer. Xenon-133 does not pose serious health risks because it is not absorbed by the body or the environment. Caesium-137 fallout, however, is a much greater concern because it will linger in the environment for decades. The new model shows that Fukushima released 3.5 × 1016 Bq caesium-137, roughly twice the official government figure, and half the release from Chernobyl. The higher number is obviously worrying, says De Geer, although ongoing ground surveys are the only way to truly establish the public-health risk.
  • Stohl believes that the discrepancy between the team's results and those of the Japanese government can be partly explained by the larger data set used. Japanese estimates rely primarily on data from monitoring posts inside Japan3, which never recorded the large quantities of radioactivity that blew out over the Pacific Ocean, and eventually reached North America and Europe. "Taking account of the radiation that has drifted out to the Pacific is essential for getting a real picture of the size and character of the accident," says Tomoya Yamauchi, a radiation physicist at Kobe University who has been measuring radioisotope contamination in soil around Fukushima. Click for full imageStohl adds that he is sympathetic to the Japanese teams responsible for the official estimate. "They wanted to get something out quickly," he says. The differences between the two studies may seem large, notes Yukio Hayakawa, a volcanologist at Gunma University who has also modelled the accident, but uncertainties in the models mean that the estimates are actually quite similar.
  • The new analysis also claims that the spent fuel being stored in the unit 4 pool emitted copious quantities of caesium-137. Japanese officials have maintained that virtually no radioactivity leaked from the pool. Yet Stohl's model clearly shows that dousing the pool with water caused the plant's caesium-137 emissions to drop markedly (see 'Radiation crisis'). The finding implies that much of the fallout could have been prevented by flooding the pool earlier. The Japanese authorities continue to maintain that the spent fuel was not a significant source of contamination, because the pool itself did not seem to suffer major damage. "I think the release from unit 4 is not important," says Masamichi Chino, a scientist with the Japanese Atomic Energy Authority in Ibaraki, who helped to develop the Japanese official estimate. But De Geer says the new analysis implicating the fuel pool "looks convincing".
  • The latest analysis also presents evidence that xenon-133 began to vent from Fukushima Daiichi immediately after the quake, and before the tsunami swamped the area. This implies that even without the devastating flood, the earthquake alone was sufficient to cause damage at the plant.

    ADVERTISEMENT

    Advertisement

    The Japanese government's report has already acknowledged that the shaking at Fukushima Daiichi exceeded the plant's design specifications. Anti-nuclear activists have long been concerned that the government has failed to adequately address geological hazards when licensing nuclear plants (see Nature 448, 392–393; 2007), and the whiff of xenon could prompt a major rethink of reactor safety assessments, says Yamauchi.

  • The model also shows that the accident could easily have had a much more devastating impact on the people of Tokyo. In the first days after the accident the wind was blowing out to sea, but on the afternoon of 14 March it turned back towards shore, bringing clouds of radioactive caesium-137 over a huge swathe of the country (see 'Radioisotope reconstruction'). Where precipitation fell, along the country's central mountain ranges and to the northwest of the plant, higher levels of radioactivity were later recorded in the soil; thankfully, the capital and other densely populated areas had dry weather. "There was a period when quite a high concentration went over Tokyo, but it didn't rain," says Stohl. "It could have been much worse." 
D'coda Dcoda

RSOE EDIS - HAZMAT in USA on Wednesday, 22 August, 2012 at 03:18 (03:18 AM) UTC. E[22Au... - 0 views

  • As part of the biggest, costliest environmental cleanup project in the nation's history - disposing of 53 million gallons of radioactive waste at the Hanford Nuclear Reservation in Washington state - one thing was supposed to be sure: Waste stored in the sturdy, double-wall steel tanks that hold part of the toxic ooze wasn't going anywhere. But that reassurance has been thrown into question with the discovery of a 3-foot-long piece of radioactive material between the inner and outer steel walls of one of the storage tanks, prompting new worries at the troubled cleanup site. "We're taking it seriously, and we're doing an investigation so we can better understand what it is," Department of Energy spokeswoman Lori Gamache said
  • The discovery marks the first time material has been found outside the inner wall of one of the site's 28 double-shell tanks, thought to be relatively secure interim storage for the radioactive material generated when Hanford was one of the nation's major atomic production facilities. It opened in 1943 and began a gradual shutdown in 1964. Cleanup started in 1989. The $12.2-billion cleanup project eventually aims to turn most of the waste stored at Hanford into glass rods at a high-tech vitrification plant scheduled to be operational in 2019, assuming the formidable design and engineering hurdles can be overcome. In the meantime, plant engineers have been gathering waste stored in the facility's 149 aging, leaky single-wall storage tanks and redepositing them in the double0-shell tanks for safekeeping. Over the years, more than 1 million gallons of waste has leaked out of 67 single-wall tanks into the surrounding soil.
  • "There's been this presumption that the double-shell tanks at least are sound and won't fail, and they'll be there for us," said Tom Carpenter of the advocacy group Hanford Challenge. Several days ago the group obtained a memo from the cleanup site detailing discovery of the mysterious substance. "This changes everything. It is alarming that there is now solid evidence that Hanford double-shell has leaked," Carpenter said in a separate statement on the discovery. The 42-year-old tank, known as AY-102, holds about 857,000 gallons of radioactive and other toxic chemical waste, much of it removed several years ago from a single-shell storage tank where it was considered unsaf
  • ...3 more annotations...
  • Workers who relocated the material fell ill simply from inhaling the fumes, Carpenter said. Department of Energy officials said none of the material has leaked outside the outer steel wall or the concrete casing that surrounds the structure, and there is no present hazard to workers or groundwater. They said they were trying to determine whether the material leaked from the inner tank or oozed from a nearby pit into the space between the two walls, known as the annulus. "There's no evidence of it leaking the liquid from the inner shell right now," Gamache said. The material – a mound 2 feet by 3 feet by 8 inches -- is dry and doesn't appear to be growing. It was discovered during a routine video inspection of the annulus conducted last month from a viewpoint not normally used. The possibility that it could have come as overflow from a nearby pit arises because a pipe runs into the annulus from the pit, Gamache said.
  • But Carpenter, who has talked extensively with workers at Hanford and was briefed Tuesday by one of the Department of Energy's senior officials at the tank farm, said he believed the evidence was strong that there was a leak. "I know Hanford would like it not to be so. But the people I'm talking to at the Hanford site say, no, it really does look like a leak," he said.
  • "From what I'm being told and looking at the pictures, it appears it's coming from under the tank and going up. Which is a far cry from it coming from the pit." Gamache said an initial sample of the material revealed that "the contamination levels were higher than expected" and it definitely contained radioactive waste. "There wasn't enough material to fully characterize the material, so we're preparing to pull another sample. That will probably happen around the mid-September time frame," she said. Carpenter said that if the inner tank leaked, it would probably prompt the need to reevaluate expectations that the tanks could safely act as interim storage vessels for several decades.
  •  
    Hanford Nuclear Plant, USA
1 - 20 of 75 Next › Last »
Showing 20 items per page