Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged atmosphere

Rss Feed Group items tagged

D'coda Dcoda

ACPD - Abstract - Xenon-133 and caesium-137 releases into the atmosphere from the Fukus... - 0 views

  • A. Stohl1, P. Seibert2, G. Wotawa3, D. Arnold2,4, J. F. Burkhart1, S. Eckhardt1, C. Tapia5, A. Vargas4, and T. J. Yasunari61NILU – Norwegian Institute for Air Research, Kjeller, Norway2Institute of Meteorology, University of Natural Resources and Life Sciences, Vienna, Austria3Central Institute for Meteorology and Geodynamics, Vienna, Austria4Institute of Energy Technologies (INTE), Technical University of Catalonia (UPC), Barcelona, Spain5Department of Physics and Nucelar Engineering (FEN),Technical University of Catalonia (UPC), Barcelona, Spain6Universities Space Research Association, Goddard Earth Sciences and Technology and Research, Columbia, MD 21044, USAAbstract. On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant (FD-NPP) developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions of two isotopes, the noble gas xenon-133 (133Xe) and the aerosol-bound caesium-137 (137Cs), which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site.
  • This first guess was subsequently improved by inverse modeling, which combined the first guess with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for 137Cs, measurements of bulk deposition. Regarding 133Xe, we find a total release of 16.7 (uncertainty range 13.4–20.0) EBq, which is the largest radioactive noble gas release in history not associated with nuclear bomb testing. There is strong evidence that the first strong 133Xe release started very early, possibly immediately after the earthquake and the emergency shutdown on 11 March at 06:00 UTC. The entire noble gas inventory of reactor units 1–3 was set free into the atmosphere between 11 and 15 March 2011. For 137Cs, the inversion results give a total emission of 35.8 (23.3–50.1) PBq, or about 42% of the estimated Chernobyl emission. Our results indicate that 137Cs emissions peaked on 14–15 March but were generally high from 12 until 19 March, when they suddenly dropped by orders of magnitude exactly when spraying of water on the spent-fuel pool of unit 4 started. This indicates that emissions were not only coming from the damaged reactor cores, but also from the spent-fuel pool of unit 4 and confirms that the spraying was an effective countermeasure. We also explore the main dispersion and deposition patterns of the radioactive cloud, both regionally for Japan as well as for the entire Northern Hemisphere. While at first sight it seemed fortunate that westerly winds prevailed most of the time during the accident, a different picture emerges from our detailed analysis
  • Exactly during and following the period of the strongest 137Cs emissions on 14 and 15 March as well as after another period with strong emissions on 19 March, the radioactive plume was advected over Eastern Honshu Island, where precipitation deposited a large fraction of 137Cs on land surfaces. The plume was also dispersed quickly over the entire Northern Hemisphere, first reaching North America on 15 March and Europe on 22 March. In general, simulated and observed concentrations of 133Xe and 137Cs both at Japanese as well as at remote sites were in good quantitative agreement with each other. Altogether, we estimate that 6.4 TBq of 137Cs, or 19% of the total fallout until 20 April, were deposited over Japanese land areas, while most of the rest fell over the North Pacific Ocean. Only 0.7 TBq, or 2% of the total fallout were deposited on land areas other than Japan.Discussion Paper (PDF, 6457 KB)   Supplement (13 KB)   Interactive Discussion (Open, 0 Comments)   Manuscript under review for ACP   
D'coda Dcoda

"Green Nukes" - Important climate change mitigation tools [05Jul11] - 0 views

  • There are many terrific reasons to favor the rapid development of nuclear fission technology.
  • It is a reliable and affordable alternative to hydrocarbon combustionIt is a technology that can use less material per unit energy output than any other power sourceIt is a technology where much of the cost comes in the form of paying decent salaries to a large number of human beingsIt is a technology where wealth distribution is not dependent on the accident of geology or the force of arms in controlling key production areasIt is an energy production technology where the waste materials are so small in volume that they can be isolated from the environmentIt is a technology that is so emission free that it can operate without limitation in a sealed environment – like a submarineIt is an important climate change mitigation too
  • Our current economy is built on an industrial foundation that removes about 7-10 billion tons of stored hydrocarbons from the earth’s crust every year and then oxidize that extracted material to form heat, water and CO2 – along with some other nasty side products due to various impurities in the hydrocarbons and atmosphere. The 20 billion tons or so of stable CO2 that we dump into the atmosphere is not disappearing – there are some natural removal processes that were in a rough balance before humans started aggressive dumping, but most of the mass of CO2 that we are pumping into the thin layers of atmosphere that surround the Earth is not being absorbed or used.
  • ...4 more annotations...
  • As Curt Stager and other researchers like him have determined, the material will be suspended in our atmosphere and affecting our climate for at least 100,000 years. Many of the effects are somewhat unpredictable and not terribly beneficial. The duration of the effect gets worse if we continue on our present course and speed. An unaltered dependence on fossil fuels also puts future generations at risk of trying to figure out how to operate an economy WITHOUT access to reliable sources of controlled heat.
  • The twin attributes of supply sustainability and climate change mitigation are nuclear fission power advantages topics that have attracted some high profile converts (Mark Lynas, George Monbiot, James Hansen, Stewart Brand, Gwyneth Cravens, and Patrick Moore, for example) to the cause of pronuclear advocacy. If nuclear energy’s potential as a climate change mitigation strategy is something that attracts former antinuclear protesters and causes them to reevaluate their opposition, that alone makes it something worth emphasizing
  • It was interesting to hear that the primary nuclear technology that Curt mentions as being worth aggressive pursuit is based on thorium, but I am pretty sure that is mainly because thorium evangelists have done a better job of guerilla marketing since 2005 than the people who have been refining uranium-based nuclear reactors for the past 5 decades.
  • As I often to tell my thorium enthused friends – you cannot build or operate a thorium reactor without uranium. I also tell both my buddies who are thorium advocates and my integral fast reactor (IFR) friends that any atomic fission power plants is better than any hydrocarbon based power plant. I hope that someday soon, fission fans will stop engaging in fratricidal attacks on each other, but I guess I have always been a bit of a dreamer
D'coda Dcoda

Fukushima Radioactive Aerosol Dispersion - YouTube [May 2012] - 0 views

  • Published on May 1, 2012 In this dataset, the simulation from NOAA's HYSPLIT model shows a continuous release of tracer particles from 12-31 March at a rate of 100 per hour representing the Cesium-137 emitted from Fukushima Daiichi. Each change in particle color represents a decrease in radioactivity by a factor of 10. Radioactivity decreases due to removal by rainfall and gravitational settling. Decay is not a factor for Cesium in this short duration simulation compared to its 30 year long-half life. The air concentration would be computed from the particle density so it is only partially related to the color scale. The released particles are followed through the end of April using meteorological data from the 1-degree resolution NOAA global analyses. http://sos.noaa.gov/datasets/Atmosphere/fukushima.html Category Education License Standard YouTube License
D'coda Dcoda

Modelling the global atmospheric transport and deposition of radionuclides from the Fuk... - 0 views

  •  
    EU-funded Research: Fukushima atmospheric release of 210 quadrillion becquerels of cesium-137 used as upper bound in simulation - Chernobyl estimated at 70 to 85 quadrillion
Dan R.D.

Radioactive Chemicals in California Tracked to Fukushima Meltdown [15Aug11] - 0 views

  • Scientists in California are reporting raised levels of radioactive chemicals in the atmosphere in the weeks following the disaster at Japan's Fukushima Daiichi nuclear power plant. The measurements are the latest evidence that the reactors melted down catastrophically.
  • Researchers at the University of California, San Diego (UCSD), say that radioactive sulfur from the stricken power plant reached California in late March, two weeks after the crisis at Fukushima began. The sulfur is a by-product of emergency procedures taken immediately after the accident. The work is published in the Proceedings of the National Academy of Sciences.
  • The latest measurements seem to confirm that. For several years, Mark Thiemens, a chemist at UCSD, and his group have been measuring atmospheric levels of a radioactive isotope of sulfur, 35S, which is usually generated by cosmic rays striking argon atoms in the atmosphere. On 28 March, the team detected levels of radioactive sulfur dioxide gas (35SO2) and sulphate aerosols (35SO4-2) that were well above the natural background.
  • ...1 more annotation...
  • The chemicals posed "no risk" to residents in San Diego, says Thiemens. In fact, it took a year to even develop equipment sensitive enough to measure levels as low as these, he says.
D'coda Dcoda

How Fukushima Impacted The Massive Arctic Ozone Loss [03Oct11] - 0 views

  • Here, based simplified, are the chemical reactions in the atmosphere, which explain how the Fukushima disaster impacted the Arctic ozone hole.   The cold winter in 2010-2011 produced dense stratospheric clouds over the Arctic, which due to the presence of water promoted chemical reactions with various gases to produce compounds that deplete ozone over the Arctic Circle.   The Arctic ozone hole, that began expanding due to the clouds, radically widened in March and April, coinciding with the Fukushima disaster.
  • The damaged Fukushima reactors and burning fuel rods released many, many tons of of iodine (a highly-reactive ozone-attacking agent)  and xenon, which soon transformed into xenon fluoride (produced when xenon comes under UV catalysis to combine with fluorine gas in the atmosphere).     Fluorine is abundant over the US Pacific Northwest and Canada. The jet stream carried the iodine and newly-formed XeFl compounds in a northeasterly direction, crossing into the Arctic circle and looping back down over Greenland, Scandinavia and European Russia. This exactly accounts for the oblong shape and direction of the expanded ozone hole.
  • From the Mainichi newspaper...   Researchers Report Unprecedented Ozone Loss In Arctic   10-3-11   TSUKUBA, Japan (Kyodo) -- The depletion of the Arctic ozone layer reached an unprecedented level in early 2011 and was "comparable to that in the Antarctic," an international research team said Sunday in the online version of the British science magazine Nature.   "For the first time, sufficient loss occurred to reasonably be described as an Arctic ozone hole," said the nine-country team, including Hideaki Nakajima of the National Institute for Environmental Studies in Tsukuba in Ibaraki Prefecture.
  • ...3 more annotations...
  • "Our results show that Arctic ozone holes are possible even with temperatures much milder than those in the Antarctic," it also said.   It is harder for ozone-destroying chlorine monoxide to form in the stratosphere of the Arctic as winter temperatures are higher than in the Antarctic, according to the group.   But the depletion of the ozone layer over the Arctic appears to have progressed greatly this winter to spring because unusually cold temperatures from December through the end of March enhanced ozone-destroying forms of chlorine.   "The 2010-11 Arctic winter-spring was characterized by an anomalously strong stratospheric polar vortex and an atypically long continuously cold period," the team said in the article contributed to Nature.
  • "This was a phenomenon we had not anticipated," Nakajima said.   "If the layer of ozone that blocks ultraviolet rays is eradicated, it will negatively affect human health," he said, adding, "We need to monitor the situation down the track."   The team, which has been observing the distribution of atmospheric ozone in the Northern Hemisphere, found in March that the area of low ozone density had spread from the Arctic Sea to over Scandinavia, northern Russia and Greenland.
  • The loss of the ozone layer was especially prominent in high-altitude zones, with the team estimating that around 40 percent of the ozone layer has been lost, up from a previous reading of 30 percent.   The level is comparable to that of the ozone hole that annually appears over the Antarctic in the September-October period, it added.   (Mainichi Japan) October 3, 2011
D'coda Dcoda

Simulation Map of Cesium-137 Deposition Across the Pacific by CEREA Shows Contamination... - 0 views

  • France's CEREA has the simulation map of ground deposition of cesium-137 from the Fukushima I Nuclear Power Plant accident on its "Fukushima" page. It not only shows Japan but also the entire northern Pacific Rim, from Russian Siberia to Alaska to the West Coast of the US to the entire US. According to the map, the US, particularly the West Coast and particularly California, may be more contaminated with radioactive cesium than the western half of Japan or Hokkaido. It looks more contaminated than South Korea or China. Canada doesn't look too well either, particularly along the border with US on the western half.
  • From CEREA's Fukushima page: Atmospheric dispersion of radionuclides from the Fukushima-Daichii nuclear power plant CEREA, joint laboratory École des Ponts ParisTech and EdF R&D Victor Winiarek, Marc Bocquet, Yelva Roustan, Camille Birman, Pierre Tran Map of ground deposition of caesium-137 for the Fukushima-Daichii accident. The simulation was performed with a specific version of the numerical atmospheric chemistry and transport model Polyphemus/Polair3D. The parametrisations used for the transport and physical removal of the radionuclides are described in [1,2,3,4]. The magnitude of the deposition field is uncertain and the simulated values of deposited radionuclides could be significantly different from the actual deposition. In particular, the source term remains uncertain. Therefore, these results should be seen as preliminary and they are likely to be revised as new information become available to better constrain the source term and when radionuclides data can be used to evaluate the model simulation results.
  • The page also has the animated simulation of cesium-137 dispersion from March 11 to April 6, 2011. If the Japanese think they are the only ones who have the radiation and radioactive fallout from the accident, they are very much mistaken, if the simulation is accurate. (Meteorological institutes and bureaus in Austria, Germany, and Norway all had similar simulation maps.) Radioactive materials spewed out of Fukushima I Nuke Plant went up and away on the jet stream, reaching the other side of the Pacific. When the fallout from explosions (March 14, 15) reached the US West Coast, it came with an unusually heavy rainfall in California.
  • ...2 more annotations...
  • CEREA's description of the animation (if the animation doesn't work, or if you want to see the bigger one, go to CEREA's page):
  • Movie of the Fukushima-Daichii activity in the air (caesium-137, ground level)The simulation was performed with a specific version of the numerical atmospheric chemistry and transport model Polyphemus/Polair3D. The parametrisations used for the transport and physical removal of the radionuclides are described in [1,2,3,4]. The magnitude of activity concentration field is uncertain and could be significantly different from the actual one. In particular, the source term remains uncertain. Therefore, these results should be seen as preliminary and they are likely to be revised as new information become available to better constrain the source term and when radionuclides data can be used to evaluate the model simulation results.
D'coda Dcoda

Scientists Radically Raise Estimates of Fukushima Fallout [25Oct11] - 0 views

  • The disaster at the Fukushima Daiichi nuclear plant in March released far more radiation than the Japanese government has claimed. So concludes a study1 that combines radioactivity data from across the globe to estimate the scale and fate of emissions from the shattered plant. The study also suggests that, contrary to government claims, pools used to store spent nuclear fuel played a significant part in the release of the long-lived environmental contaminant caesium-137, which could have been prevented by prompt action. The analysis has been posted online for open peer review by the journal Atmospheric Chemistry and Physics.
  • Andreas Stohl, an atmospheric scientist with the Norwegian Institute for Air Research in Kjeller, who led the research, believes that the analysis is the most comprehensive effort yet to understand how much radiation was released from Fukushima Daiichi. "It's a very valuable contribution," says Lars-Erik De Geer, an atmospheric modeller with the Swedish Defense Research Agency in Stockholm, who was not involved with the study. The reconstruction relies on data from dozens of radiation monitoring stations in Japan and around the world. Many are part of a global network to watch for tests of nuclear weapons that is run by the Comprehensive Nuclear-Test-Ban Treaty Organization in Vienna. The scientists added data from independent stations in Canada, Japan and Europe, and then combined those with large European and American caches of global meteorological data.
  • Stohl cautions that the resulting model is far from perfect. Measurements were scarce in the immediate aftermath of the Fukushima accident, and some monitoring posts were too contaminated by radioactivity to provide reliable data. More importantly, exactly what happened inside the reactors — a crucial part of understanding what they emitted — remains a mystery that may never be solved. "If you look at the estimates for Chernobyl, you still have a large uncertainty 25 years later," says Stohl. Nevertheless, the study provides a sweeping view of the accident. "They really took a global view and used all the data available," says De Geer.
  • ...7 more annotations...
  • Challenging numbers Japanese investigators had already developed a detailed timeline of events following the 11 March earthquake that precipitated the disaster. Hours after the quake rocked the six reactors at Fukushima Daiichi, the tsunami arrived, knocking out crucial diesel back-up generators designed to cool the reactors in an emergency. Within days, the three reactors operating at the time of the accident overheated and released hydrogen gas, leading to massive explosions. Radioactive fuel recently removed from a fourth reactor was being held in a storage pool at the time of the quake, and on 14 March the pool overheated, possibly sparking fires in the building over the next few days.
  • But accounting for the radiation that came from the plants has proved much harder than reconstructing this chain of events. The latest report from the Japanese government, published in June, says that the plant released 1.5 × 1016 bequerels of caesium-137, an isotope with a 30-year half-life that is responsible for most of the long-term contamination from the plant2. A far larger amount of xenon-133, 1.1 × 1019 Bq, was released, according to official government estimates.
  • Stohl believes that the discrepancy between the team's results and those of the Japanese government can be partly explained by the larger data set used. Japanese estimates rely primarily on data from monitoring posts inside Japan3, which never recorded the large quantities of radioactivity that blew out over the Pacific Ocean, and eventually reached North America and Europe. "Taking account of the radiation that has drifted out to the Pacific is essential for getting a real picture of the size and character of the accident," says Tomoya Yamauchi, a radiation physicist at Kobe University who has been measuring radioisotope contamination in soil around Fukushima. Click for full imageStohl adds that he is sympathetic to the Japanese teams responsible for the official estimate. "They wanted to get something out quickly," he says. The differences between the two studies may seem large, notes Yukio Hayakawa, a volcanologist at Gunma University who has also modelled the accident, but uncertainties in the models mean that the estimates are actually quite similar.
  • The new study challenges those numbers. On the basis of its reconstructions, the team claims that the accident released around 1.7 × 1019 Bq of xenon-133, greater than the estimated total radioactive release of 1.4 × 1019 Bq from Chernobyl. The fact that three reactors exploded in the Fukushima accident accounts for the huge xenon tally, says De Geer. Xenon-133 does not pose serious health risks because it is not absorbed by the body or the environment. Caesium-137 fallout, however, is a much greater concern because it will linger in the environment for decades. The new model shows that Fukushima released 3.5 × 1016 Bq caesium-137, roughly twice the official government figure, and half the release from Chernobyl. The higher number is obviously worrying, says De Geer, although ongoing ground surveys are the only way to truly establish the public-health risk.
  • The new analysis also claims that the spent fuel being stored in the unit 4 pool emitted copious quantities of caesium-137. Japanese officials have maintained that virtually no radioactivity leaked from the pool. Yet Stohl's model clearly shows that dousing the pool with water caused the plant's caesium-137 emissions to drop markedly (see 'Radiation crisis'). The finding implies that much of the fallout could have been prevented by flooding the pool earlier. The Japanese authorities continue to maintain that the spent fuel was not a significant source of contamination, because the pool itself did not seem to suffer major damage. "I think the release from unit 4 is not important," says Masamichi Chino, a scientist with the Japanese Atomic Energy Authority in Ibaraki, who helped to develop the Japanese official estimate. But De Geer says the new analysis implicating the fuel pool "looks convincing".
  • The latest analysis also presents evidence that xenon-133 began to vent from Fukushima Daiichi immediately after the quake, and before the tsunami swamped the area. This implies that even without the devastating flood, the earthquake alone was sufficient to cause damage at the plant.

    ADVERTISEMENT

    Advertisement

    The Japanese government's report has already acknowledged that the shaking at Fukushima Daiichi exceeded the plant's design specifications. Anti-nuclear activists have long been concerned that the government has failed to adequately address geological hazards when licensing nuclear plants (see Nature 448, 392–393; 2007), and the whiff of xenon could prompt a major rethink of reactor safety assessments, says Yamauchi.

  • The model also shows that the accident could easily have had a much more devastating impact on the people of Tokyo. In the first days after the accident the wind was blowing out to sea, but on the afternoon of 14 March it turned back towards shore, bringing clouds of radioactive caesium-137 over a huge swathe of the country (see 'Radioisotope reconstruction'). Where precipitation fell, along the country's central mountain ranges and to the northwest of the plant, higher levels of radioactivity were later recorded in the soil; thankfully, the capital and other densely populated areas had dry weather. "There was a period when quite a high concentration went over Tokyo, but it didn't rain," says Stohl. "It could have been much worse." 
D'coda Dcoda

Thorium, Not The Nuclear Savior Claimed [14Sep11] - 0 views

  • The misinformation on thorium is highly promoted by the nuclear industry and various companies that want investment dollars for thorium reactors and fuel
  • One myth is that thorium is safe. Thorium-232 has a half life of 14 billion years (billions, not millions). Thorium-232 is also highly radiotoxic, with the same amount of radioactivity of uranium and thorium, thorium produces a far higher dose in the body. If someone inhaled an amount of thorium the bone surface dose is 200 times higher than if they inhaled the same amount of uranium. Thorium also requires longer spent fuel storage than uranium. With the daughter products of thorium like technetium‐99 with a half life of over 200,000 years, thorium is not safe nor a solution to spent fuel storage issues.
  • Another myth is that thorium reactors can run at atmospheric temperatures, in order to produce power they must be run differently and would not be at atmospheric temperatures. Many of the thorium reactors use liquid sodium fluoride in the reactor process. This material is highly toxic and has its own series of risks. The creation of thorium fuels is also not safer than creating uranium fuels. Thorium poses the same nuclear waste and toxic substance problems found in mining and fuel milling of uranium.
  • ...4 more annotations...
  • Thorium power production has been experimented with for over 50 years. Thorium breeder reactors have been experimented with but have technical issues and breed fuel at lower rates than tradiational breeder reactors. It is frequently claimed that India has a bunch of successful thorium commercial power reactors. The reality is that India has been trying for decades and still has not developed a commercial thorium reactor. Thorium is also not more economical to run. The fuel cycle is more costly and the needed protections for workers, plant safety and the public are considerably more than existing fuels.
  • The Germans experimented with a Thorium reactor, the THTR-300. They found even with the thorium reactor there were substantial risks in a loss of coolant event. They also had issues with concrete structures failing due to extremely high heat, fracturing thorium fuel and hot spots in the reactor. There was also a radioactive release into the air due to a malfunction. The reactor was eventually scrapped due to technical problems and costs.
  • Another rather silly claim going around is that “thorium is so safe you can handle it with your bare hands!”. Sorry, but you can do the same thing with a uranium fuel pellet.
  • More reading: http://de.wikipedia.org/wiki/Kernkraftwerk_THTR-300 http://www.ieer.org/fctsheet/thorium2009factsheet.pdf http://helian.net/blog/2010/09/01/nuclear-weapons/subcritical-thorium-reactors-dr-rubbias-really-bad-idea/ http://en.wikipedia.org/wiki/Molten_salt_reactor
D'coda Dcoda

How To Remove Radioactive Iodine-131 From Drinking Water [07Apr11] - 0 views

  • The Environmental Protection Agency recommends reverse osmosis water treatment to remove radioactive isotopes that emit beta-particle radiation. But iodine-131, a beta emitter, is typically present in water as a dissolved gas, and reverse osmosis is known to be ineffective at capturing gases. A combination of technologies, however, may remove most or all of the iodine-131 that finds its way into tap water, all available in consumer products for home water treatment.
  • When it found iodine-131 in drinking water samples from Boise, Idaho and Richland, Washington this weekend, the EPA declared: An infant would have to drink almost 7,000 liters of this water to receive a radiation dose equivalent to a day’s worth of the natural background radiation exposure we experience continuously from natural sources of radioactivity in our environment.” But not everyone accepts the government’s reassurances. Notably, Physicians for Social Responsibility has insisted there is no safe level of exposure to radionuclides, regardless of the fact that we encounter them naturally:
  • There is no safe level of radionuclide exposure, whether from food, water or other sources. Period,” said Jeff Patterson, DO, immediate past president of Physicians for Social Responsibility. “Exposure to radionuclides, such as iodine-131 and cesium-137, increases the incidence of cancer. For this reason, every effort must be taken to minimize the radionuclide content in food and water.” via Physicians for Social Responsibility, psr.org No matter where you stand on that debate, you might be someone who simply prefers not to ingest anything that escaped from a damaged nuclear reactor. If so, here’s what we know: Reverse Osmosis The EPA recommends reverse osmosis water treatment for most kinds of radioactive particles. Iodine-131 emits a small amount of gamma radiation but much larger amounts of beta radiation, and so is considered a beta emitter:
  • ...6 more annotations...
  • Reverse osmosis has been identified by EPA as a “best available technology” (BAT) and Small System Compliance Technology (SSCT) for uranium, radium, gross alpha, and beta particles and photon emitters. It can remove up to 99 percent of these radionuclides, as well as many other contaminants (e.g., arsenic, nitrate, and microbial contaminants). Reverse osmosis units can be automated and compact making them appropriate for small systems. via EPA, Radionuclides in Drinking Water
  • However, EPA designed its recommendations for the contaminants typically found in municipal water systems, so it doesn’t specify Iodine-131 by name. The same document goes on to say, “Reverse osmosis does not remove gaseous contaminants such as carbon dioxide and radon.” Iodine-131 escapes from damaged nuclear plants as a gas, and this is why it disperses so quickly through the atmosphere. It is captured as a gas in atmospheric water, falls to the earth in rain and enters the water supply.
  • Dissolved gases and materials that readily turn into gases also can easily pass through most reverse osmosis membranes,” according to the University of Nevada Cooperative Extension. For this reason, “many reverse osmosis units have an activated carbon unit to remove or reduce the concentration of most organic compounds.” Activated Carbon
  • That raises the next question: does activated carbon remove iodine-131? There is some evidence that it does. Scientists have used activated carbon to remove iodine-131 from the liquid fuel for nuclear solution reactors. And Carbon air filtration is used by employees of Perkin Elmer, a leading environmental monitoring and health safety firm, when they work with iodine-131 in closed quarters. At least one university has adopted Perkin Elmer’s procedures. Activated carbon works by absorbing contaminants, and fixing them, as water passes through it. It has a disadvantage, however: it eventually reaches a load capacity and ceases to absorb new contaminants.
  • Ion Exchange The EPA also recommends ion exchange for removing radioactive compounds from drinking water. The process used in water softeners, ion exchange removes contaminants when water passes through resins that contain sodium ions. The sodium ions readily exchange with contaminants.
  • Ion exchange is particularly recommended for removing Cesium-137, which has been found in rain samples in the U.S., but not yet in drinking water here. Some resins have been specifically designed for capturing Cesium-137, and ion exchange was used to clean up legacy nuclear waste from an old reactor at the Department of Energy’s Savannah River Site (pdf).
D'coda Dcoda

Fukushima cleanup sets two-year goals [26Aug11] - 0 views

  • Japan will seek to halve the amount of radiation in residential areas around the Fukushima No. 1 nuclear plant and cut children's daily radiation dose by 60 percent over the next two years, according to an emergency decontamination policy document.
  • The plan is to be endorsed Friday by a government task force dealing with the nuclear crisis triggered by the March 11 earthquake and tsunami
  • The government under the plan will take responsibility for securing final disposal sites for contaminated soil but will stress the need for temporarily storage locally.
  • ...4 more annotations...
  • To achieve the goals set in the emergency plan, the government will lead decontamination activities to scale down areas where radiation exposure is expected to top 20 millisieverts a year, such as within the 20-km no-entry zone around the plant, it said.
  • Local governments can request the cleanup of contamination if safety is assured. Reactors spewed less The amount of radioactive substances emitted into the atmosphere from the Fukushima No. 1 nuclear plant is now estimated at 570,000 terabecquerels, down from an earlier estimate of 630,000 terabecquerels, the chairman of the Nuclear Safety Commission said.
  • Given a large margin of error in an estimate of this kind, however, the figure "may change greatly" as more data on the nuclear accident become available, Haruki Madarame said Wednesday. The Nuclear Industrial and Safety Agency has made its own estimate that the total amount of radioactive substances released into the air from the plant is 770,000 terabecquerels.
  • In the Chernobyl nuclear accident of 1986, an estimated 5.2 million terabecquerels of radioactive substances were discharged into the atmosphere. The earlier estimate was revised based on new data on the release of radioactive substances in the four days from March 12, when the first of a series of explosions occurred at the plant. According to the recalculated estimate by the Japan Atomic Energy Agency, 130,000 terabecquerels of iodine-131 and 11,000 terabecquerels of cesium-137 were emitted into the air from March 11 through April 5, Madarame said.
D'coda Dcoda

Proof Of Fukushima Weapons Program Rests On A Pile Of Manure[09Sep11] - 0 views

  • Soon after Japan's triple disaster, I suggested that an official cover-up of a nuclear-weapons program hidden inside the Fukushima No.1 plant was delaying the effort to contain the reactor meltdowns. Soon after the tsunami struck, the Tokyo Electric Power Company reported that only three reactors had been generating electricity on the afternoon of March 11.. (According to the initial report, these were the older GE-built reactors 1,2 and 6.). Yet overheating at five of the plant's six reactors indicated that two additional reactors had also been operating (the newer and more advanced Nos. 3 and 4, built by Toshiba and Hitachi). The only plausible purpose of such unscheduled operation is uranium enrichment toward the production of nuclear warhead
  • On my subsequent sojourns in Japan, other suspicious activities also pointed to a high-level cover-up, including systematic undercounts of radiation levels, inexplicable damage to thousands of imported dosimeters, armed anti-terrorism police aboard trains and inside the dead zone, the jamming of international phone calls, homing devices installed in the GPS of rented cars, and warning visits to contacts by government agents discouraging cooperation with independent investigations. These aggressive infringements on civil liberties cannot be shrugged off as an overreaction to a civil disaster but must have been invoked on grounds of national security.
  • One telltale sign of high-level interference was the refusal by science equipment manufacturers to sell isotope chromatography devices to non-governmental customers, even to organizations ready to pay $170,000 in cash for a single unit. These sensitive instruments can detect the presence of specific isotopes, for example cesium-137 and strontium-90. Whether uranium was being enriched at Fukushima could be determined by the ratio of isotopes from enriched weapons-grade fissile material versus residues from less concentrated fuel rods.
  • ...14 more annotations...
  • Now six months after the disaster, the smoking gun has finally surfaced, not on a Japanese paddy field but inside a pile of steer manure from a pasture near Sacramento, California
  • The sample of cattle dung and underlying soil was sent to the nuclear engineering lab of the University of California, Berkeley, which reported on September 6:
  • We tested a topsoil sample and a dried manure sample from the Sacramento area. The manure was produced by a cow long before Fukushima and left outside to dry; it was rained on back in March and April. Both samples showed detectable levels of Cs-134 and Cs-137, with the manure showing higher levels than the soil probably because of its different chemical properties and/or lower density. One interesting feature of t the Sacramento and Sonoma soil samples is that the ratio of Cesium-137 to Cesium-134 is very large - approximately 17.6 and 5.5, respectively. All of our other soil samples until now had shown ratios of between 1 and 2. We know from our air and rainwater measurements that material from Fukushima has a cesium ratio in the range of approximately 1.0 to 1.5, meaning that there is extra Cs-137 in these two soil samples. The best explanation is that in addition to Fukushima fallout, we have also detected atmospheric nuclear weapons testing fallout in these soils. Weapons fallout contains only Cs-137 (no Cs-134) and is known to be present in older soils ..Both of these samples come from older soils, while our samples until this point had come from newer soils.
  • The last atmospheric nuclear blast at the Nevada Test Site occurred in 1962, whereas the manure was presumably dropped less than 49 years ago. Over the past year, the approximate life-span of a cow patty, the rain that fell on the plain came not from a former province of Spain. Within that short time-frame, the only possible origin of radioactive fallout was Fukushima.To think otherwise would be lame.
  • Sun-dried manure is more absorbent than the rocky ground of Northern California, which explains the higher level in Sacramento dung than in the Sonoma soil. As a rule of thumb, the accuracy of radiation readings tends to improve with higher concentration of the test material.The manure acted like a sponge for the collection of radioactive rainfall. Its ratio of Cs-137 (resulting from enriched uranium) to Cs-134 (from a civilian fuel rod) is more than 17-to-1. Larger by 1,700 percent, this figure indicates fission of large amounts of weapons-grade material at Fukushima.
  • The recent higher readings were probably based on either late releases from a fire-destroyed extraction facility or the venting of reactor No.3, a Toshiba-designed unit that used plutonium and uranium mixed oxide or MOX fuel. Unannounced nighttime airborne releases in early May caused radiation burns in many people, as happened to my forearms. Those plumes then drifted toward North America.
  • Enrichment of uranium for nuclear warheads is prohibited under constitutional law in Japan and by terms of the Non-Proliferation Treaty. Since no suspects have been charged by prosecutors, this cannot be a plot by a few individuals but stands as the crime of a national entity.
  • Yellow-Cake Factory 608   Fukushima Province has a history of involvement in atomic weapons development, according to a New York Times article by Martin Fackler titled "Fukushima's Long Link to a Dark Nuclear Past" (Sept. 6). Following the lead of Japanese news reports, the correspondent visited the town of Ishikawa, less than an hour's drive south of the Fukushima No.1 nuclear plant. There he interviewed Kiwamu Ariga who as a student during the war was forced to mine uranium ore from a local foothill to supply the military-run Factory 608, which refined the ore into yellow-cake.
  • Several research groups worked on building a super-weapon for militarist Japan. The Naval Technology Research Institute was best-positioned due to its secret cooperation with the German Navy. Submarine U-234 was captured in the Atlantic after Germany's surrender with a cargo of uranium along with two dead passengers - Japanese military officers .Soon after departing Norway, U-864 was bombed and sunk, carrying a load of two tons of processed uranium..
  • In the article for the Atlanta Constitution, dated, Oct. 2, 1946, David Snell reported that the Japanese military had successfully tested a nuclear weapon off Konan on Aug. 12, 1945. There are detractors who dispute the account by a decommissioned Japanese intelligence officer to the American journalist, stationed in occupied Korea with the 24th Criminal Investigation Detachment of the U.S. Army. A cursory check on his background shows Snell to have been a credible reporter for Life magazine, who also contributed to the Smithsonian and The New Yorker magazines. A new book is being written by American and Russian co-authors on the Soviet shoot-down of the Hog Wild, a B-29 that flew over Konan island soon after the war's end..
  • Due to its endemic paranoia about all things nuclear, the U.S. government had a strong interest in suppressing the story of Japan's atomic bomb program during the war, just as Washington now maintains the tightest secrecy over the actual situation at Fukushima.
  • The emerging picture shows that nuclear-weapons development, initiated in 1954 by Prime Minister Nobusuke Kishi and supervised by Yasuhiro Nakasone, was centered inside civilian nuclear plants, since the Self-Defense Forces were bound by strict Constitutional rules against war-making and the Defense Agency is practically under the direct supervision of the U.S. Joint Chiefs of Staff. Funding came from the near-limitless budget of the Tokyo Electric Power Company (TEPCO), which today claims financial insolvency without explanation of how its vast cash holdings disappeared. A clandestine nuclear program must be expensive, since it would include the cost of buying the silence of parliament, the bureaucracy and foreign dignitaries.
  • Following the March 11 disaster, TEPCO sent a team of 250 emergency personnel into the plant, yet only 50 men were assigned to cooling the reactors. The other 200 personnel stayed out of sight, possibly to dismantle an underground plutonium-extraction facility. No foreign nuclear engineers or Japanese journalists were ever permitted entry into the reactor structures.   Radiation leakage from Fukushima No.1 prevented local police from rescuing hundreds of tsunami survivors in South Soma, many of whom consequently went unaided and died of wounds or exposure. Tens of thousands of farmers have lost their ancestral lands, while much of Japan's agriculture and natural areas are contaminated for several generations and possibly longer, for the remaining duration of the human species wherever uranium and plutonium particles have seeped into the aquifers.
  • TEPCO executives, state bureaucrats and physicists in charge of the secret nuclear program are evading justice in contempt of the Constitution. As in World War II, the Japanese conservatives in their maniacal campaign to eliminate their imagined enemies succeeded only in perpetrating crimes against humanity and annihilating their own nation. If history does repeat itself, Tokyo once again needs a tribunal to send another generation of Class-A criminals to the gallows.
  •  
    By Yoichi ShimatsuFormer editor of The Japan Times Weekly
D'coda Dcoda

Radioactive Materials Dispersion Model by Kyushu University Researchers [02Sept11] - 0 views

  • Using the supercomputer program called SPRINTARS, researchers at Kyushu University and Tokyo University created the simulation of how radioactive materials from Fukushima I Nuclear Power Plant may have dispersed throughout the northern hemisphere. The researcher say their simulation fit the actual measurements. It was published in the Scientific Online Letters on the Atmosphere (SOLA) under the title "A numerical simulation of global transport of atmospheric particles emitted from the Fukushima Daiichi Nuclear Power Plant" in June. You can read the paper at this link (PDF file). You can also view the animation, here, and the press release in Japanese here.
  • Their simulation also shows, like France's CEREA, radioactive materials from March 14/15 release reached the west coast of North America on March 18. The researchers attribute the rapid dispersion of radioactive materials from Fukushima to the unusually strong jet stream. Also, on March 14/15, there was a low pressure on the east cost of Japan, which created a strong updraft that lifted the radioactive materials to the jet stream. The relative scale is set with the density of radioactive materials at Fukushima I Nuke Plant as 1. By the time it reached North America, it was between 0.000001 and 0.00000001.
  •  
    shows dispersion including and beyond Japan
D'coda Dcoda

UC Berkeley Nuclear Engineering Air Monitoring Station - Cesium in N. CA Soil [06Sep11] - 0 views

  • 9/6 (5:26pm): We tested a topsoil sample and a dried manure sample from the Sacramento area. The manure was produced by a cow long before Fukushima and left outside to dry; it was rained on back in March and April. Both samples showed detectable levels of Cs-134 and Cs-137, with the manure showing higher levels than the soil probably because of its different chemical properties and/or lower density. In addition, a soil sample from Sonoma county was tested. This sample had been collected in late April but we had not had the chance to test it until now.
  • One interesting feature of the Sacramento and Sonoma soil samples is that the ratio of Cesium-137 to Cesium-134 is very large — approximately 17.6 and 5.5, respectively. All of our other soil samples until now had shown ratios of between 1 and 2. We know from our air and rainwater measurements that material from Fukushima has a cesium ratio in the range of approximately 1.0 to 1.5, meaning that there is extra Cs-137 in these two soil samples. The best explanation is that in addition to Fukushima fallout, we have also detected atmospheric nuclear weapons testing fallout in these soils. Weapons fallout contains only Cs-137 (no Cs-134) and is known to be present in older soils (pre-1963). Both of these samples come from older soils, while our samples until this point had come from newer soils. This direct comparison between Fukushima fallout and atmospheric weapons fallout in these soils shows that the fallout from Fukushima in Northern California is significantly less than the amount of Cs-137 that still remains from weapons testing, which has had nearly 50 years to disperse and decay.
D'coda Dcoda

The battle for the atom is heating up again [21Jun11] - 0 views

  • I have been rereading a 1982 book by Bertrand Goldschmidt titled “The Atomic Complex: A Worldwide Political History of Nuclear Energy.”
  • The two self-assigned homework projects are as part of a reflective effort to understand more about how human society moved from a period of optimism based on a vision of “Atoms for Peace” to a period where someone reading the advertiser supported press would believe that sensible people would logically consider giving up the whole technology out of fear of radiation and its health consequences.One of the hopeful lessons I have learned so far is that the initial conditions of our current fight to defend and expand the safe use of atomic energy are far different from those that faced the people engaged in the earliest battles against a well organized opposition to nuclear technology development. We have a much better chance of success now than we did then – and there are several reasons why that is true.
  • One condition that is vastly different is the ability of nuclear professionals to have their voices heard. No longer are most people who understand nuclear energy isolated in small communities with few media outlets. In the 1970s, a large fraction of nuclear professionals were located near remotely sited national laboratories or power stations. Today, though many still work at national labs or in small market communities like Lynchburg, VA, we are all globally connected to a vast network on the Internet. We have Skype, YouTube and blogs. Some of us know that major decision makers and journalists read or listen to our words on a regular basis. We are no longer shy about responding to misinformation and unwarranted criticism.
  • ...12 more annotations...
  • For example, many of you have probably seen or read the Associated Press hit piece on the effort by the Nuclear Regulatory Commission and the nuclear industry to address the issue of aging nuclear power stations
  • The encouraging thing about that response is that it happened on the SAME DAY as the AP report was released. After Dan published his report, he notified the world via Twitter that the post was up. I have already had the opportunity to retweet his announcement and to share his link in a conversation related to a Huffington Post article titled U.S. Nuclear Regulators Weaken Safety Rules, Fail To Enforce Them: AP Investigation and in a conversation on Joe Romm’s Climate Progress titled AP Bombshell: U.S. Nuclear Regulators “Repeatedly” Weaken Safety Rules or are “Simply Failing to Enforce Them”.Think about that – it has been just 24 hours since the AP story hit the wires, yet nuclear professionals are already sharing a completely different side of the story without the filter of someone else deciding what is important.
  • However, the AP reporter, most likely someone who has never worked on an old car or repaired an old submarine, took a lot of stories out of context. He added a number of scary sounding inferences about the relationship between the regulators and the regulated. In response to the story, Dan Yurman, who blogs at Idaho Samizdat and was a professional journalist before he became a nuclear professional, reached out for real expertise.
  • He interviewed Dr. John Bickel, a man who has about 39 years worth of professional experience in plant aging, defense in depth and other safety related issues. You can read Dan’s excellent article at Associated Press Nukes the NRC on Reactor Safety.
  • It should be no secret to anyone that the average age of nuclear power plants in the US increases by almost exactly one year with every passing year. We are only officially building one plant right now, with four more that will enter that category as soon as the NRC issues the construction and operating licenses. It is also no secret that the NRC and the industry have been working hard to address aging as part of the effort to relicense plants for an additional 20 years, a process that is complete for more than 60 plants so far.
  • Another thing that is different about the fight over using atomic energy now, compared to the fight that happened in the late 1960s through the 1990s is that the opposition has a much less capable base of leaders. In the previous phase of the battle, the antinuclear movement grew out of a morally understandable effort to stop testing nuclear weapons in the earth’s atmosphere.
  • That effort was inspired by real world events like showering a Japanese fishing vessel with lethal doses of fallout from an ill-timed test in the middle of the Pacific ocean. It was led by some of the world’s most renowned atomic scientists, many of whom bore a deep moral guilt for their wartime efforts to build the Bomb in the first place.
  • When that effort succeeded in convincing the US, the UK and Russia to agree to stop atmospheric testing in 1963, some of the organizations that had been formed to do the heavy lifting saw substantial decreases in membership and contributions. After all, they could have easily hung up a large banner saying “Mission Accomplished” and closed up shop. Some did just that. Some persisted for a while with a variety of related issues like fighting against antiballistic missile installations and medium range rockets.
  • The groups organized against nuclear energy today are no longer led by world renowned scientists, though they do have some media celebrities with spotty professional histories and puffed up resumes. In many cases, they are grayer than I am and less well versed in the techniques of modern communications. Their fellow travelers on blogs and message boards routinely expose their own ignorance and sometimes their near illiteracy.
  • In contrast to the past, many of the renowned nuclear scientists and engineers in the profession today have no guilt at all. They did not participate in developing fearful weapons of mass destruction. Instead, they have spent their lives participating in an enterprise that provides massive quantities of emission free, low cost power to the people of the world. Seasoned professionals like Ted Rockwell, Margaret Harding, Meredith Angwin and Gail Marcus are out there blogging away and telling people what they know to be true about nuclear energy.
  • Enthusiastic younger people like Kirk Sorensen, Jack Gamble, and Suzy Hobbs are sharing optimistic visions for the future and explaining why they have chosen to support nuclear energy development, often in the face of numerous friends who disagree
  • I am encouraged. Atomic energy is alive and well; there is nothing that humans can do to eliminate its existence. We are entering a golden age of nuclear energy where facts and reality will overcome fictional tall tales spun by folks like Arnie Gundersen or Paul Blanche.
D'coda Dcoda

Clean energy, or nuclear? The dilemma [17Jul11] - 0 views

  • Experts predict that the closure of nuclear plants in Germany will bring about a steady increase of gas, petroleum and coal in its thermoelectric uses, which will be reflected in the increase of 26 million tons per year of greenhouse gases, contributing to global warming.
  • Thermoelectric power use emits CO2, a principal greenhouse gas that, along with others, produces acid rain. All of these send thousands of tons of ash, residues from coal and heavy metals, and even concentrates amounts of radioactive material into the atmosphere. For their part, modern nuclear reactors emit almost no contaminants into the air, although they periodically emit small quantities of radioactive gases. Their residues are smaller in volume (to the order of a million times) and are better controlled than those of thermoelectric power.
  • Pros and Cons
  • ...3 more annotations...
  • accidents
  • Renewable energy The alternative is clean, renewable energy that comes from solar panels, waves and tides, fuel batteries or windmills, as not everyone has the option of hydraulic or geothermic energy.
  • For the moment this energy only serves to cover an extremely small portion of energy needs. Other renewable sources in ample supply, like the bio-energy of ethanol obtained from corn or sugar cane, have been heavily criticized. Bio-energy does not cause increases of CO2 in the atmosphere because in each harvest, that which was generated to burn the previous one is reabsorbed. But using farmland to obtain fuel could contribute to food shortages in many parts of the world and create famine.
1 - 20 of 48 Next › Last »
Showing 20 items per page