Skip to main content

Home/ OARS funding Systems/ Group items tagged security

Rss Feed Group items tagged

MiamiOH OARS

CyberCorps® Scholarship for Service (SFS) (nsf19521) | NSF - National Science... - 0 views

  •  
    Cyberspace has transformed the daily lives of people. Society's overwhelming reliance on cyberspace, however, has exposed its fragility and vulnerabilities: corporations, agencies, national infrastructure and individuals continue to suffer cyber-attacks. Achieving a truly secure cyberspace requires addressing both challenging scientific and engineering problems involving many components of a system, and vulnerabilities that stem from human behaviors and choices. Examining the fundamentals of security and privacy as a multidisciplinary subject can lead to fundamentally new ways to design, build and operate cyber systems, protect existing infrastructure, and motivate and educate individuals about cybersecurity. The Cybersecurity Enhancement Act of 2014, as amended by the National Defense Authorization Act for FY 2018, authorizes the National Science Foundation, in coordination with the Office of Personnel Management and the Department of Homeland Security, to offer a scholarship program to recruit and train the next generation of information technology professionals, industry control system security professionals and security managers to meet the needs of the cybersecurity mission for federal, state, local, and tribal governments.
MiamiOH OARS

Cyber-Physical Systems - 0 views

  •  
    Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability that will far exceed the simple embedded systems of today. CPS technology will transform the way people interact with engineered systems -- just as the Internet has transformed the way people interact with information. New smart CPS will drive innovation and competition in sectors such as agriculture, energy, transportation, building design and automation, healthcare, and manufacturing. The December 2010 report of the President's Council of Advisors on Science and Technology (PCAST) titled Designing a Digital Future: Federally Funded Research and Development in Networking and Information Technologycalls for continued investment in CPS research because of its scientific and technological importance as well as its potential impact on grand challenges in a number of sectors critical to U.S. security and competitiveness such as the ones noted above. These challenges and technology gaps are further described in aCPS Vision Statementpublished in 2012 by the federal Networking and Information Technology Research and Development (NITRD) CPS Senior Steering Group. Tremendous progress has been made in advancing CPS technology over the last five-plus years. We have explored foundational technologies that have spanned an ever-growing set of application domains, enabling breakthrough achievements in many of these fields. At the same time, the demand for innovation in these domains continues to grow, and is driving the need to accelerate fundamental research to
MiamiOH OARS

Secure Data Sharing Tool to Support De-duplication of Cases in the National HIV Surveil... - 0 views

  •  
    The purpose of this FOA is to support a more efficient method for jurisdictions to de-duplicate the National HIV Surveillance System. The applicant will develop a privacy data-sharing tool capable of identifying potential duplicates across jurisdictions. Activities will include acquiring a Security Assessment and Authorization, negotiating with the 59 jurisdictions to obtain their participation, providing a data sharing tool that will allow for secure, encrypted submission and matching of person-level HIV surveillance data, and providing a report back to jurisdictions on matching levels.
MiamiOH OARS

Spectrum Efficiency, Energy Efficiency, and Security: Enabling Spectrum for All (nsf166... - 0 views

  •  
    The National Science Foundation's Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE) are coordinating efforts to identify bold new concepts to significantly improve the efficiency of radio spectrum utilization while addressing new challenges in energy efficiency and security, thus enabling spectrum access for all users and devices, and allowing traditionally underserved Americans to benefit from wireless-enabled goods and services. The SpecEES program solicitation (pronounced "SpecEase") seeks to fund innovative collaborative research that transcends the traditional boundaries of existing programs.
  •  
    The National Science Foundation's Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE) are coordinating efforts to identify bold new concepts to significantly improve the efficiency of radio spectrum utilization while addressing new challenges in energy efficiency and security, thus enabling spectrum access for all users and devices, and allowing traditionally underserved Americans to benefit from wireless-enabled goods and services. The SpecEES program solicitation (pronounced "SpecEase") seeks to fund innovative collaborative research that transcends the traditional boundaries of existing programs.
MiamiOH OARS

DHS-14-ST-061-COE-CIRC-001B DHS S&T Critical Infrastructure Resilience Center of Excell... - 0 views

  •  
    The Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Office of University Programs (OUP) requests applications from U.S. colleges and universities to serve as a partner institution for a Critical Infrastructure Resilience Center of Excellence (CIRC). OUP is posting a separate FOA for eligible applicants to submit lead proposals for consideration. Please see FOA Number DHS-14-ST-061-COE-CIRC-001A or CFDA #97.061on http://www.grants.gov. DHS may select individual project partners from applications received for either the Center Lead FOA or the Center Partner FOA to the Critical Infrastructure Resilience Center. Principal Investigators that are already Partners under a Center Lead application may not submit the same application under this Partner FOA.The DHS COEs are university consortia that work closely with DHS to conduct research, develop and transition mission-relevant science and technology, and educate the next generation of homeland security technical experts
MiamiOH OARS

Training-based Workforce Development for Advanced Cyberinfrastructure (CyberTraining) (... - 0 views

  •  
    This program seeks to prepare, nurture, and grow the national scientific research workforce for creating, utilizing, and supporting advanced cyberinfrastructure (CI) to enable and potentially transform fundamental science and engineering research and contribute to the Nation's overall economic competitiveness and security. The goals of this solicitation are to (i) ensure broad adoption of CI tools, methods, and resources by the research community in order to catalyze major research advances and to enhance researchers' abilities to lead the development of new CI; and (ii) integrate core literacy and discipline-appropriate advanced skills in advanced CI as well as computational and data-driven science and engineering into the Nation's educational curriculum/instructional material fabric spanning undergraduate and graduate courses for advancing fundamental research. Pilot and Implementation projects may target one or both of the solicitation goals, while Large-scale Project Conceptualization projects must address both goals. For the purpose of this solicitation, advanced CI is broadly defined as the set of resources, tools, methods, and services for advanced computation, large-scale data handling and analytics, and networking and security for large-scale systems that collectively enable potentially transformative fundamental research.
MiamiOH OARS

Open Technology Fund Invites Applications for Internet Freedom Fund | RFPs | PND - 0 views

  •  
    An initiative of the Open Technology Fund, the Internet Freedom Fund strives to build the capacity of individuals, organizations, and companies working to advance technology-centered efforts designed to strengthen Internet freedom and promote human rights by circumventing repressive censorship and surveillance, improving related digital security capabilities, and contributing to the overall health of the Internet. To that end, ITF invites applications focused on creating new open source circumvention technologies that fill a current need of target users; improve the security, usability, and adaptability of existing open source Internet freedom technologies; and/or provide new or deeper insight into the challenges of front-line communities that ultimately contribute to the improvement of technological solutions .The fund also supports applied research; research that focuses on real-time monitoring and analysis of both technical and political threats to Internet freedom; new content redistribution methods able to reintroduce content behind firewalls; and next-generation tools that move beyond traditional "cat-and-mouse" circumvention techniques.
MiamiOH OARS

Principles and Practice of Scalable Systems (PPoSS) ... - 0 views

  •  
    A key focus of the design of modern computing systems is performance and scalability, particularly in light of the limits of Moore's Law and Dennard scaling. To this end, systems are increasingly being implemented by composing heterogeneous computing components and continually changing memory systems as novel, performant hardware surfaces. Applications fueled by rapid strides in machine learning, data analysis, and extreme-scale simulation are becoming more domain-specific and highly distributed. In this scenario, traditional boundaries between hardware-oriented and software-oriented disciplines increasingly are blurred. Achieving scalability of systems and applications will therefore require coordinated progress in multiple disciplines such as computer architecture, high-performance computing (HPC), programming languages and compilers, security and privacy, systems, theory, and algorithms. Cross-cutting concerns such as performance (including, but not limited to, time, space, and communication resource usage and energy efficiency), correctness and accuracy (including, but not limited to, emerging techniques for program analysis, testing, debugging, probabilistic reasoning and inference, and verification), security and privacy, robustness and reliability, domain-specific design, and heterogeneity must be taken into account from the outset in all aspects of systems and application design and implementation.
MiamiOH OARS

Principles and Practice of Scalable Systems (PPoSS) (nsf21513) | NSF - National Science... - 0 views

  •  
    A key focus of the design of modern computing systems is performance and scalability, particularly in light of the limits of Moore's Law and Dennard scaling. To this end, systems are increasingly being implemented by composing heterogeneous computing components and continually changing memory systems as novel, performant hardware surfaces. Applications fueled by rapid strides in machine learning, data analysis, and extreme-scale simulation are becoming more domain-specific and highly distributed. In this scenario, traditional boundaries between hardware-oriented and software-oriented disciplines increasingly are blurred. Achieving scalability of systems and applications will therefore require coordinated progress in multiple disciplines such as computer architecture, high-performance computing (HPC), programming languages and compilers, security and privacy, systems, theory, and algorithms. Cross-cutting concerns such as performance (including, but not limited to, time, space, and communication resource usage and energy efficiency), correctness and accuracy (including, but not limited to, emerging techniques for program analysis, testing, debugging, probabilistic reasoning and inference, and verification), security and privacy, robustness and reliability, domain-specific design, and heterogeneity must be taken into account from the outset in all aspects of systems and application design and implementation.
MiamiOH OARS

Energy, Power, Control, and Networks | NSF - National Science Foundation - 0 views

  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
MiamiOH OARS

NSF/Intel Partnership on Information-Centric Networking in Wireless Edge Networks | NSF... - 0 views

  •  
    Next-generation wireless networks, utilizing a wide swath of wireless spectrum and an array of novel technologies in the wired and wireless domains, are on the cusp of unleashing a broadband revolution with promised peak bit rates of tens of gigabits per second and latencies of less than a millisecond. Such innovations will make possible a new set of applications such as autonomous vehicles, industrial robotics, tactile Internet applications, virtual and augmented reality, and dense Internet of Things (IoT) deployments. A key requirement of these applications is fast information response time that is invariant as a function of the bandwidth demanded, users/devices supported, and data generated, of which low-latency wireless access time is only one component. Intrinsic security, seamless mobility, scalable content caching, and discovery/distribution services are also essential for such applications. This solicitation seeks unique data network architectures featuring an information plane using an Information-Centric Networking (ICN) approach and addressing discovery, movement, delivery, management, and protection of information within a network, along with the abstraction of an underlying communication plane creating opportunities for new efficiencies and optimizations across communications technologies that could also address latency and scale requirements.
MiamiOH OARS

Virtuous User Environment (VirtUE) Phase 1 - Federal Business Opportunities: Opportunities - 0 views

  •  
    VirtUE seeks to leverage the federal government's impending migration to commercial cloud based information Technology (IT) infrastructures and the current explosion of new virtualization and operating system (OS) concepts to create and demonstrate a more secure interactive user computing environment (UCE) than the government has had in the past or likely to have in the near future. Currently the government UCE is represented by a general purpose Windows desktop OS running multiple installed applications hosted on either a dedicated physical computer or on a shared virtualized platform. When a desktop OS is hosted on a shared virtualized platform, it is called a virtualized desktop interface or VDI.
MiamiOH OARS

Dear Colleague Letter: Enabling US-Brazil Collaboration on Cybersecurity Research (nsf1... - 0 views

  •  
    NSF and RNP/CTIC request joint research proposals submitted separately to both NSF and RNP/CTIC using the proposal submission process specific to each agency. Research topics of special interest to NSF and RNP/CTIC are: (1) security and privacy in networks; (2) the Internet of Things and cyber-physical human systems; and (3) malware detection. These topics that are of considerable mutual interest recognize the emerging threat and new opportunity in an increasingly networked world of people and smart technologies as well as the urgent need to address the societal challenge of cybersecurity. NSF strongly encourages new collaborations pursuant to this DCL.
MiamiOH OARS

nsf.gov - Funding - Cyberinfrastructure Framework for 21st Century Science and Engineer... - 0 views

  •  
    Researchers in all fields of science and engineering are being challenged in two key directions.  The first challenge is to push beyond the current boundaries of knowledge to provide ever-deeper insights through fundamental disciplinary research by addressing increasingly complex questions, which often requires extremely sophisticated integration of theoretical, experimental, observational and simulation and modeling results.   These efforts, which have relied heavily on observing platforms and other data collection efforts, computing facilities, software, advanced networking, analytics, visualization and models have led to important breakthroughs in all areas of science and engineering and represent a very strong bottom-up approach to the necessary research infrastructure.  The second, and more extensive challenge, is to synthesize these fundamental ground breaking efforts across multiple fields to transform scientific research into an endeavor that integrates the deep knowledge and research capabilities developed within the universities, industry and government labs. Individuals, teams and communities need to be able work together; likewise, instruments, facilities (including MREFCs), datasets, and cyber-services must be integrated from the group to campus to national scale. One can imagine secure, geographically distributed infrastructure components including advanced computing facilities, scientific instruments, software environments, advanced networks, data storage capabilities, and the critically important human capital and expertise. Greater understanding is also needed of how scientific and research communities will evolve in the presence of new cyberinfrastructure. 
MiamiOH OARS

Cyber-Physical Systems (CPS) (nsf16549) | NSF - National Science Foundation - 0 views

  •  
    Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability that will far exceed the simple embedded systems of today. CPS technology will transform the way people interact with engineered systems -- just as the Internet has transformed the way people interact with information. New smart CPS will drive innovation and competition in sectors such as agriculture, energy, transportation, building design and automation, healthcare, and manufacturing.
MiamiOH OARS

Defense Sciences Office (DSO) Office-wide - Federal Business Opportunities: Opportunities - 0 views

  •  
    DARPA Defense Sciences Office (DSO) wants to identify and pursue high-risk, high-payoff research initiatives across a broad spectrum of science and engineering disciplines and to transform these initiatives into important, radically new, game-changing technologies for U.S. national security. The current overarching office themes include accelerating scientific discovery, exploring fundamental limits, and expecting the unexpected. In support of this mission, the DSO Office-wide BAA invites proposers to submit innovative basic or applied research concepts in one or more of the following technical areas: Mathematics, Modeling and Design; Physical Systems; Human-Machine Systems; and Social Systems. Each of these areas is described below and includes a list of example research topics that highlight several (but not all) potential areas of interest. Proposals must investigate innovative approaches that enable revolutionary advances. DSO is explicitly not interested in approaches or technologies that primarily result in evolutionary improvements to the existing state of practice.
MiamiOH OARS

ONRFOA14-012 Fiscal Year (FY) 2015 Department of Defense Multidisciplinary Research Pro... - 0 views

  •  
    The DoD Multidisciplinary University Research Initiative (MURI), one element of the University Research Initiative (URI), is sponsored by the DoD research offices: the Office of Naval Research (ONR), the Army Research Office (ARO), and the Air Force Office of Scientific Research (AFOSR) (hereafter collectively referred to as "DoD agencies").The MURI program supports basic research in science and engineering at U.S. institutions of higher education (hereafter referred to as "universities") that is of potential interest to DoD. The program is focused on multidisciplinary research efforts where more than one traditional discipline interacts to provide rapid advances in scientific areas of interest to the DoD. As defined by the DoD, "basic research is systematic study directed toward greater knowledge or understanding of the fundamental aspects of phenomena and of observable facts without specific applications towards processes or products in mind. It includes all scientific study and experimentation directed toward increasing fundamental knowledge and understanding in those fields of the physical, engineering, environmental, and life sciences related to long-term national security needs. It is farsighted high payoff research that provides the basis for technological progress." (DoD 7000.14.R, vol. 2B, chap.5). DoD's basic research program invests broadly in many specific fields to ensure that it has early cognizance of new scientific knowledge
MiamiOH OARS

View Opportunity | GRANTS.GOV - 0 views

  •  
    The DoD Multidisciplinary University Research Initiative (MURI), one element of the University Research Initiative (URI), is sponsored by the DoD research offices: the Office of Naval Research (ONR), the Army Research Office (ARO), and the Air Force Office of Scientific Research (AFOSR) (hereafter collectively referred to as "DoD agencies").The MURI program supports basic research in science and engineering at U.S. institutions of higher education (hereafter referred to as "universities") that is of potential interest to DoD. The program is focused on multidisciplinary research efforts where more than one traditional discipline interacts to provide rapid advances in scientific areas of interest to the DoD. As defined by the DoD, "basic research is systematic study directed toward greater knowledge or understanding of the fundamental aspects of phenomena and of observable facts without specific applications towards processes or products in mind. It includes all scientific study and experimentation directed toward increasing fundamental knowledge and understanding in those fields of the physical, engineering, environmental, and life sciences related to long-term national security needs. It is farsighted high payoff research that provides the basis for technological progress." (DoD 7000.14.R, vol. 2B, chap.5). DoD's basic research program invests broadly in many specific fields to ensure that it has early cognizance of new scientific knowledge.
MiamiOH OARS

CPS EAGERs Supporting Participation in the Global City Teams Challenge - 0 views

  •  
    With this Dear Colleague letter (DCL), the NSF is announcing its intention to accept EArly-Concept Grants for Exploratory Research (EAGER) proposals to support NSF researchers in participating in the NIST GCTC teams, with the goal of pursuing novel research on effective integration of networked computer systems and physical devices that will have significant impact in meeting the challenges of the smart city. Priority will be given to researchers who have previously received funding from CPS, or who have related projects from other NSF programs (e.g., Computer Systems Research (CSR), Energy, Power, Control and Networks (EPCN), Secure and Trustworthy Cyberspace (SaTC), including CAREER awardees), and who are members of, or are seeking to, establish GCTC teams building upon the results of NSF-funded projects.
MiamiOH OARS

Department of Defense Advanced Computing Initiative (ACI) Fiscal Year 2019 - 0 views

  •  
    The ACI is a DoD-sponsored computing systems research program initiated by the NSA and the Combat Capabilities Development Command/Army Research Laboratory/ARO. It focuses on areas of strategic importance to U.S. national security policy. It seeks to increase the Department's intellectual capital in computing systems and improve its ability to address future challenges and build bridges between the Department and the computing research community. ACI brings together universities, research institutions, companies, and individual scholars and supports multidisciplinary and cross-institutional projects addressing specific topic areas determined by the Department of Defense. The ACI aims to promote research in specific areas of computing systems and to promote a candid and constructive relationship between DoD and the computing research community.
1 - 20 of 29 Next ›
Showing 20 items per page