Skip to main content

Home/ Groups/ OARS funding Nanoscience
MiamiOH OARS

DARPA Discover DSO Day (D3) - 0 views

shared by MiamiOH OARS on 04 May 17 - No Cached
  •  
    The Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) is sponsoring an event (D3) to (1) familiarize attendees with DSO's mission and the nature of the efforts we support; (2) promote understanding of how to do business with DSO and (3) facilitate discussions with potential performers. The event is scheduled for Thursday, June 15, 2017 at the DoubleTree Crystal City (300 Army Navy Drive Arlington, VA 22202); selected sessions will be webcast for those who would like to participate remotely.  Advance registration is required for attending the event in person or for viewing the webcast.
MiamiOH OARS

Nanomanufacturing | NSF - National Science Foundation - 0 views

  •  
    Nanomanufacturing is the production of useful nano-scale materials, structures, devices and systems in an economically viable manner. The NSF Nanomanufacturing Program supports fundamental research in novel methods and techniques for batch and continuous processes, top-down (addition/subtraction) and bottom-up (directed self-assembly) processes leading to the formation of complex heterogeneous nanosystems. The program supports basic research in nanostructure and process design principles, integration across length-scales, and system-level integration. The Program leverages advances in the understanding of nano-scale phenomena and processes (physical, chemical, electrical, thermal, mechanical and biological), nanomaterials discovery, novel nanostructure architectures, and new nanodevice and nanosystem concepts. It seeks to address quality, efficiency, scalability, reliability, safety and affordability issues that are relevant to manufacturing. To address these issues, the Program encourages research on processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.
  •  
    Nanomanufacturing is the production of useful nano-scale materials, structures, devices and systems in an economically viable manner. The NSF Nanomanufacturing Program supports fundamental research in novel methods and techniques for batch and continuous processes, top-down (addition/subtraction) and bottom-up (directed self-assembly) processes leading to the formation of complex heterogeneous nanosystems. The program supports basic research in nanostructure and process design principles, integration across length-scales, and system-level integration. The Program leverages advances in the understanding of nano-scale phenomena and processes (physical, chemical, electrical, thermal, mechanical and biological), nanomaterials discovery, novel nanostructure architectures, and new nanodevice and nanosystem concepts. It seeks to address quality, efficiency, scalability, reliability, safety and affordability issues that are relevant to manufacturing. To address these issues, the Program encourages research on processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.
MiamiOH OARS

Materials Engineering and Processing | NSF - National Science Foundation - 0 views

  •  
    Materials processing proposals should focus on manufacturing processes that convert material into a useful form as either intermediate or final composition. These include processes such as extrusion, molding, casting, forming, deposition, sintering and printing. Proposed research should include the consideration of cost, performance, and feasibility of scale-up, as appropriate. Novel processes for the production of nanoscale materials (nanotubes, nanocrystals, etc.) are of interest. Process optimization studies without a fundamental scientific contribution are not supported. Research approaches which exploit knowledge of biological processes for the processing of non-biological materials, as well as the utilization of advanced computing techniques to enable major advances in Materials Engineering and Processing are encouraged.
  •  
    Materials processing proposals should focus on manufacturing processes that convert material into a useful form as either intermediate or final composition. These include processes such as extrusion, molding, casting, forming, deposition, sintering and printing. Proposed research should include the consideration of cost, performance, and feasibility of scale-up, as appropriate. Novel processes for the production of nanoscale materials (nanotubes, nanocrystals, etc.) are of interest. Process optimization studies without a fundamental scientific contribution are not supported. Research approaches which exploit knowledge of biological processes for the processing of non-biological materials, as well as the utilization of advanced computing techniques to enable major advances in Materials Engineering and Processing are encouraged.
MiamiOH OARS

Scalable Nanomanufacturing for Integrated Systems (SNM-IS) (nsf16604) | NSF - National ... - 0 views

  •  
    The SNM-IS solicitation seeks proposals that investigate novel scalable nanomanufacturing and integration methods for nano-enabled integrated systems with a clear commercial relevance. Proposals should consider addressing key aspects of the nanomanufacturing value chain comprised of nano-scale building-blocks → complex nanomaterials and nanostructures → functional components and devices → integrated sub-systems and systems
  •  
    The SNM-IS solicitation seeks proposals that investigate novel scalable nanomanufacturing and integration methods for nano-enabled integrated systems with a clear commercial relevance. Proposals should consider addressing key aspects of the nanomanufacturing value chain comprised of nano-scale building-blocks → complex nanomaterials and nanostructures → functional components and devices → integrated sub-systems and systems
MiamiOH OARS

Fluid Dynamics | NSF - National Science Foundation - 0 views

  •  
    The Fluid Dynamics program supports fundamental research on mechanisms and phenomena governing fluid flow from the molecular to the macroscopic scale.  Proposed research should contribute to basic understanding, thus enabling the better design, predictability, efficiency, and control of systems that involve fluids.  Encouraged are proposals that address behavior of new fluid materials and innovative uses of fluids in manufacturing, energy and the environment, materials development, biotechnology, nanotechnology, sensor development, clinical diagnostics and drug delivery. While the research should focus on fundamentals, a clear connection to potential applications with significant societal/technological impact should be outlined.
MiamiOH OARS

Scalable Nanomanufacturing for Integrated Systems - 0 views

  •  
    Many nanofabrication techniques have demonstrated the ability to synthesize small quantities of nanomaterials and nanostructures for characterization and evaluation and simple nanodevices for analysis and testing purposes. The emphasis of the Scalable Nanomanufacturing for Integrated Systems (SNM-IS) solicitation is on research in new nano-scale manufacturing concepts and integration methods to realize complex integrated systems based on nanotechnology. The research will focus on overcoming the key scientific and engineering barriers that prevent the translation of laboratory-scale discoveries in nano-enabled integrated systems to an industrially relevant scale, reliably, affordably and within sustainability and environmental, health and safety (EHS) guidelines. The goal of the SNM-IS solicitation is to study and formulate the fundamental principles of scalable nanomanufacturing and integration for nanotechnology-based integrated systems towards the eventual manufacture of useful nano-enabled products.
MiamiOH OARS

Science of Learning | NSF - National Science Foundation - 0 views

  •  
    The Science of Learning program supports potentially transformative basic research to advance the science of learning. The goals of the SL Program are to develop basic theoretical insights and fundamental knowledge about learning principles, processes and constraints. Projects that are integrative and/or interdisciplinary may be especially valuable in moving basic understanding of learning forward but research with a single discipline or methodology is also appropriate if it addresses basic scientific questions in learning.   The possibility of developing connections between proposed research and specific scientific, technological, educational, and workforce challenges will be considered as valuable broader impacts, but are not necessarily central to the intellectual merit of proposed research. The program will support  research addressing learning in a wide range of domains at one or more levels of analysis including: molecular/cellular mechanisms; brain systems; cognitive affective, and behavioral processes; and social/cultural influences. The program supports a variety of methods including: experiments, field studies, surveys, secondary-data analyses, and modeling.
  •  
    The Science of Learning program supports potentially transformative basic research to advance the science of learning. The goals of the SL Program are to develop basic theoretical insights and fundamental knowledge about learning principles, processes and constraints. Projects that are integrative and/or interdisciplinary may be especially valuable in moving basic understanding of learning forward but research with a single discipline or methodology is also appropriate if it addresses basic scientific questions in learning.   The possibility of developing connections between proposed research and specific scientific, technological, educational, and workforce challenges will be considered as valuable broader impacts, but are not necessarily central to the intellectual merit of proposed research. The program will support  research addressing learning in a wide range of domains at one or more levels of analysis including: molecular/cellular mechanisms; brain systems; cognitive affective, and behavioral processes; and social/cultural influences. The program supports a variety of methods including: experiments, field studies, surveys, secondary-data analyses, and modeling.
MiamiOH OARS

Russia Bilateral Collaborative Research Partnerships on Cancer - 0 views

  •  
    The purpose of the U.S.-Russia Bilateral Collaborative Research Partnerships on Cancer program is to stimulate collaborative basic, translational, and clinical research between United States (U.S.)-based researchers and Russian researchers in the areas of cancer biology, prevention, early detection, diagnosis, and treatment as well as the physical and chemical sciences and engineering in cancer biology, nanotechnology, and radiation epidemiology.
  •  
    The purpose of the U.S.-Russia Bilateral Collaborative Research Partnerships on Cancer program is to stimulate collaborative basic, translational, and clinical research between United States (U.S.)-based researchers and Russian researchers in the areas of cancer biology, prevention, early detection, diagnosis, and treatment as well as the physical and chemical sciences and engineering in cancer biology, nanotechnology, and radiation epidemiology.  
MiamiOH OARS

Particulate and Multiphase Processes | NSF - National Science Foundation - 0 views

  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates.  The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems.  Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.  Proposals whose main focus is on the synthesis of particles are not encouraged.
  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates.  The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems.  Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.  Proposals whose main focus is on the synthesis of particles are not encouraged.
MiamiOH OARS

Biophotonics | NSF - National Science Foundation - 0 views

  •  
    The goal of the Biophotonics program is to explore the research frontiers in photonics principles, engineering and technology that are relevant for critical problems in fields of medicine, biology and biotechnology.  Fundamental engineering research and innovation in photonics is required to lay the foundations for new technologies beyond those that are mature and ready for application in medical diagnostics and therapies.  Advances are needed in nanophotonics, optogenetics, contrast and targeting agents, ultra-thin probes, wide field imaging, and rapid biomarker screening. Low cost and minimally invasive medical diagnostics and therapies are key motivating application goals.
MiamiOH OARS

Biological and Environmental Interactions of Nanoscale Materials | NSF - National Scien... - 0 views

  •  
    The goal of the Biological and Environmental Interactions of Nanoscale Materials program is to support research to advance fundamental and quantitative understanding of the interactions of biological and environmental media with nanomaterials and nanosystems. Materials of interest include one- to three-dimensional nanostructures, heterogeneous nano-bio hybrid assemblies, and other nanoparticles.  Such nanomaterials and systems frequently exhibit novel physical, chemical and biological behavior in living systems and environmental matrices as compared to the bulk scale. This program supports research that explores the interaction of nanomaterials in biological and environmental media.
  •  
    The goal of the Biological and Environmental Interactions of Nanoscale Materials program is to support research to advance fundamental and quantitative understanding of the interactions of biological and environmental media with nanomaterials and nanosystems. Materials of interest include one- to three-dimensional nanostructures, heterogeneous nano-bio hybrid assemblies, and other nanoparticles.  Such nanomaterials and systems frequently exhibit novel physical, chemical and biological behavior in living systems and environmental matrices as compared to the bulk scale. This program supports research that explores the interaction of nanomaterials in biological and environmental media.    
MiamiOH OARS

Network for Computational Nanotechnology (NCN) - 0 views

  •  
    The goals of the Network for Computational Nanotechnology (NCN) are to: 1) accelerate the transformation of nanoscience to nanotechnology through the integration of simulation with experimentation; 2) engage an ever-larger and more diverse cyber community sharing novel, high-quality nanoscale computation and simulation research and educational resources; 3) develop open-access, open-source software to stimulate data sharing; and 4) inspire and educate the next-generation workforce. The NCN consists of a stand-alone Cyber Platform, which provides computation, simulation, and education services to over 330,000 researchers, educators, students, and industry members of the nanoscience and engineering community annually worldwide; and Nodes, which develop compelling new computational and simulation tools to disseminate through Cyber Platform
MiamiOH OARS

Energy Technology Incubator Offers 2 Years of Funding and Technical Aid - Chain Reactio... - 0 views

  •  
    Innovators working on energy and science technologies can get two years worth of financial and technical support by applying to a new incubator at Argonne National Laboratory.
MiamiOH OARS

Air Force Fiscal Year 2017 Young Investigator Research Program (YIP) - Federal Business... - 0 views

  •  
    The Fiscal Year 2017 Air Force Young Investigator Research Program (YIP) intends support for scientists and engineers who have received Ph.D. or equivalent degrees 1 April 2011 or later that show exceptional ability and promise for conducting basic research. The program objective is to foster creative basic research in science and engineering; enhance early career development of outstanding young investigators; and increase opportunities for the young investigator to recognize the Air Force mission and related challenges in science and engineering.
MiamiOH OARS

Electronics, Photonics and Magnetic Devices - 0 views

  •  
    The Electronics, Photonics, and Magnetic Devices (EPMD) Program seeks to improve the fundamental understanding of devices and components based on the principles of micro- and nano-electronics, optics and photonics, optoelectronics, magnetics, electromechanics, electromagnetics, and related physical phenomena. The Electronics & Magnetic Devices component of EPMD enables discovery and innovation advancing the frontiers of nanoelectronics, spin electronics, molecular and organic electronics, bioelectronics, biomagnetics, non-silicon electronics, and flexible electronics. It also addresses advances in energy-efficient electronics, sensors, low-noise, power electronics, and mixed signal devices. The Optic & Photonic Devicescomponent of EPMD supports research and engineering efforts leading to significant advances in novel optical sources and photodetectors, optical communication devices, photonic integrated circuits, single-photon quantum devices, and nanophotonics. It also addresses novel optical imaging and sensing applications and solar cell photovoltaics. EPMD further supports topics in quantum devices and novel electromagnetic materials-based device solutions from DC to high-frequency, millimeter-wave and THz, monolithic integrated circuits built with them, and electromagnetic effects, components needed for communications, telemedicine, and other wireless applications. Wide bandgap semiconductor devices, device design, processing and characterization, as well as metamaterial and plasmonic based devices are of interest. Novel electronic, photonic and magnetic devices with organic, inorganic or hybrid materials on conformable or transparent substrates are also of interest, as are carbon-based and emerging 2D atomic-layered materials for electronic, photonic, magnetic, energy harvesting and other related device application areas. Interest also extends to novel ideas for next generation memory devices. The program supports cooperative efforts with the semiconduc
MiamiOH OARS

Identification of Small Molecules for Sustained-Release Anti-HIV Products - 0 views

  •  
    The purpose of this Funding Opportunity Announcement (FOA) is to solicit applications from single institutions, or consortia of institutions, to identify existing anti-HIV molecules, or discover new highly potent and selective anti-HIV small molecules, with the potential for development as sustained release products (SRP) with a dosing interval from once a week to once every three months or longer
MiamiOH OARS

Communications, Circuits, and Sensing-Systems | NSF - National Science Foundation - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
MiamiOH OARS

Condensed Matter Physics | NSF - National Science Foundation - 0 views

  •  
    The Condensed Matter Physics program supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems.  Representative research areas in such systems include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields.  Questions of current interest that span these research areas are:  How and why do complex macroscopic phenomena emerge from simple interacting microscopic constituents?  What new physics occurs far from equilibrium and why?  What is the physics behind the behavior of matter confined to the nanoscale in one or more dimensions?  What is the physics of spin systems and quantum states of matter that could lead to their coherent manipulation and control?
  •  
    The Condensed Matter Physics program supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems.  Representative research areas in such systems include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields.  Questions of current interest that span these research areas are:  How and why do complex macroscopic phenomena emerge from simple interacting microscopic constituents?  What new physics occurs far from equilibrium and why?  What is the physics behind the behavior of matter confined to the nanoscale in one or more dimensions?  What is the physics of spin systems and quantum states of matter that could lead to their coherent manipulation and control?
MiamiOH OARS

Biological and Environmental Interactions of Nanoscale Materials | NSF - National Scien... - 0 views

  •  
    The goal of the Biological and Environmental Interactions of Nanoscale Materials program is to support research to advance fundamental and quantitative understanding of the interactions of biological and environmental media with nanomaterials and nanosystems. Materials of interest include one- to three-dimensional nanostructures, heterogeneous nano-bio hybrid assemblies, and other nanoparticles. Such nanomaterials and systems frequently exhibit novel physical, chemical, and biological behavior in living systems and environmental matrices as compared to the bulk scale. This program supports research that explores the interaction of nanomaterials in biological and environmental media.    
MiamiOH OARS

Join CGS's Effort to Understand PhD Career Pathways | Council of Graduate Schools - 0 views

  •  
    Miami faculty should notify Associate Provost Jim Oris of their interest in the following RFP. ---------- CGS invites doctoral-granting member institutions to apply to participate in Understanding PhD Career Pathways for Program Improvement, a multi-institution effort to collect and use data on PhD career pathways, funded by The Andrew W. Mellon Foundation and the National Science Foundation (NSF #1661272). This is an important opportunity to deepen your institution's understanding of the career goals and outcomes of its PhDs; communicate your support for the career diversity of PhDs; make evidence-based interventions that support the success of PhDs and the recruitment of future students; and access anonymized benchmarking data compiled from other project partners.   Awards: Option 1: Humanities Only. Provides awards of $30,000 each to support implementation of surveys of humanities PhD students and alumni over a period of twenty-four months. Supported by the Andrew W. Mellon Foundation; 15 awards available. Please indicate in your proposal why a humanities-only project aligns with your institutional mission.   Option 2: STEM Only. Provides awards of $50,000 to each to support implementation of surveys of STEM PhD students and alumni over a period of thirty-six months. Supported by the National Science Foundation; 15 awards available. Please indicate in your proposal why a STEM-only project aligns with your institutional mission.   Option 3: Combined Proposal. If an institution meets the eligibility requirements for both the Humanities and STEM awards, CGS strongly encourages the submission of a combined proposal. Institutions selected to participate in this category will receive a total award amount of $80,000.
1 - 20 Next › Last »
Showing 20 items per page