Skip to main content

Home/ OARS funding Nanoscience/ Group items tagged architecture

Rss Feed Group items tagged

MiamiOH OARS

Communications, Circuits, and Sensing-Systems | NSF - National Science Foundation - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
MiamiOH OARS

nsf.gov - Funding - Communications, Circuits, and Sensing-Systems - US National Science... - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS offers new challenges at all levels of systems integration to address future societal needs. CCSS supports innovative research and integrated educational activities in micro- and nano-systems, communications systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano, micro, and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental monitoring, communications, disaster mitigation, homeland security, transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra-and inter-chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
MiamiOH OARS

Communications, Circuits, and Sensing-Systems - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS offers new challenges at all levels of systems integration to address future societal needs. CCSS supports innovative research and integrated educational activities in micro- and nano-systems, communications systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano, micro, and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental monitoring, communications, disaster mitigation, homeland security, transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra-and inter-chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
MiamiOH OARS

Nanomanufacturing | NSF - National Science Foundation - 0 views

  •  
    Nanomanufacturing is the production of useful nano-scale materials, structures, devices and systems in an economically viable manner. The NSF Nanomanufacturing Program supports fundamental research in novel methods and techniques for batch and continuous processes, top-down (addition/subtraction) and bottom-up (directed self-assembly) processes leading to the formation of complex heterogeneous nanosystems. The program supports basic research in nanostructure and process design principles, integration across length-scales, and system-level integration. The Program leverages advances in the understanding of nano-scale phenomena and processes (physical, chemical, electrical, thermal, mechanical and biological), nanomaterials discovery, novel nanostructure architectures, and new nanodevice and nanosystem concepts. It seeks to address quality, efficiency, scalability, reliability, safety and affordability issues that are relevant to manufacturing. To address these issues, the Program encourages research on processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.
  •  
    Nanomanufacturing is the production of useful nano-scale materials, structures, devices and systems in an economically viable manner. The NSF Nanomanufacturing Program supports fundamental research in novel methods and techniques for batch and continuous processes, top-down (addition/subtraction) and bottom-up (directed self-assembly) processes leading to the formation of complex heterogeneous nanosystems. The program supports basic research in nanostructure and process design principles, integration across length-scales, and system-level integration. The Program leverages advances in the understanding of nano-scale phenomena and processes (physical, chemical, electrical, thermal, mechanical and biological), nanomaterials discovery, novel nanostructure architectures, and new nanodevice and nanosystem concepts. It seeks to address quality, efficiency, scalability, reliability, safety and affordability issues that are relevant to manufacturing. To address these issues, the Program encourages research on processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.
MiamiOH OARS

Energy, Power, Control, and Networks | NSF - National Science Foundation - 0 views

  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
MiamiOH OARS

Macromolecular, Supramolecular and Nanochemistry | NSF - National Science Foundation - 0 views

  •  
    The Macromolecular, Supramolecular and Nanochemistry (MSN) Program focuses on basic research that addresses fundamental questions regarding the chemistry of macromolecular, supramolecular and nanoscopic species and other organized structures and that advances chemistry knowledge in these areas.  Research of interest to this program will explore novel chemistry concepts in the following topics: (1) The development of novel synthetic approaches to clusters, nanoparticles, polymers, and supramolecular architectures; innovative surface functionalization methodologies; surface monolayer chemistry; and template-directed synthesis.  (2) The study of molecular-scale interactions that give rise to macromolecular, supramolecular or nanoparticulate self-assembly into discrete structures; and the study of chemical forces and dynamics that are responsible for spatial organization in discrete organic, inorganic, or hybrid systems (excluding extended solids).  (3) Investigations that utilize advanced experimental or computational methods to understand or to predict the chemical structure, unique chemical and physicochemical properties, and chemical reactivities that result from the organized or nanoscopic structures.  Research in which theory advances experiment and experiment advances theory synergistically is of special interest.
  •  
    The Macromolecular, Supramolecular and Nanochemistry (MSN) Program focuses on basic research that addresses fundamental questions regarding the chemistry of macromolecular, supramolecular and nanoscopic species and other organized structures and that advances chemistry knowledge in these areas.  Research of interest to this program will explore novel chemistry concepts in the following topics: (1) The development of novel synthetic approaches to clusters, nanoparticles, polymers, and supramolecular architectures; innovative surface functionalization methodologies; surface monolayer chemistry; and template-directed synthesis.  (2) The study of molecular-scale interactions that give rise to macromolecular, supramolecular or nanoparticulate self-assembly into discrete structures; and the study of chemical forces and dynamics that are responsible for spatial organization in discrete organic, inorganic, or hybrid systems (excluding extended solids).  (3) Investigations that utilize advanced experimental or computational methods to understand or to predict the chemical structure, unique chemical and physicochemical properties, and chemical reactivities that result from the organized or nanoscopic structures.  Research in which theory advances experiment and experiment advances theory synergistically is of special interest.
MiamiOH OARS

Department of Health and Human Services Logo RFA-RM-14-008 Study of Nuclear Bodies and ... - 0 views

  •  
    The purpose of this FOA is to support projects to develop tools and strategies for studying: 1. the three dimensional architecture of the nucleus in relationship to the topography of nuclear bodies and transcriptional machineries, 2. the structure and function of poorly characterized nuclear structures, or 3. the role of specialized proteins and RNAs in the assembly, organization, and function of nuclear bodies, nuclear structures, and specialized subnuclear domains.
MiamiOH OARS

Energy, Power, and Adaptive Systems - 0 views

  •  
    The Energy, Power, and Adaptive Systems (EPAS) program invests in the design and analysis of intelligent and adaptive engineering networks, including sensing, imaging, controls, and computational technologies for a variety of application domains. EPAS places emphasis on electric power networks and grids, including generation, transmission and integration of renewable, sustainable and distributed energy systems; high power electronics and drives; and understanding of associated regulatory and economic structures. Topics of interest include alternate energy sources, the Smart Grid, and interdependencies of critical infrastructure in power and communications. The program also places emphasis on energy scavenging and alternative energy technologies, including solar cells, ocean waves, wind, and low-head hydro. In addition, the program supports innovative test beds, and laboratory and curriculum development to integrate research and education.  EPAS invests in adaptive dynamic programming, brain-like networked architectures performing real-time learning, neuromorphic engineering, telerobotics, and systems theory. The program supports distributed control of multi-agent systems with embedded computation for sensor and adaptive networks. EPAS provides additional emphasis on emerging areas, such as quantum systems engineering, quantum and molecular modeling and simulation of devices and systems.
MiamiOH OARS

Nanomanufacturing - 0 views

  •  
    The Program leverages advances in the understanding of nano-scale phenomena and processes (physical, chemical, electrical, thermal, mechanical and biological), nanomaterials discovery, novel nanostructure architectures, and new nanodevice and nanosystem concepts. It seeks to address quality, efficiency, scalability, reliability, safety and affordability issues that are relevant to manufacturing. To address these issues, the Program encourages research on processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.The Program seeks to explore transformative approaches to nanomanufacturing, including but not limited to: micro-reactor and micro-fluidics enabled nanosynthesis, bio-inspired nanomanufacturing, manufacturing by nanomachines, additive nanomanufacturing, hierarchical nanostructure assembly, continuous high-rate nanofabrication such as roll-to-roll processing or massively-parallel large-area processing, and modular manufacturing platforms for nanosystems.
MiamiOH OARS

RFA-RM-14-008: Study of Nuclear Bodies and Compartments (U01) - 0 views

  •  
    The purpose of this FOA is to support projects to develop tools and strategies for studying: 1. the three dimensional architecture of the nucleus in relationship to the topography of nuclear bodies and transcriptional machineries, 2. the structure and function of poorly characterized nuclear structures, or 3. the role of specialized proteins and RNAs in the assembly, organization, and function of nuclear bodies, nuclear structures, and specialized subnuclear domains. - See more at: http://grants.nih.gov/grants/guide/rfa-files/RFA-RM-14-008.html#sthash.HQemmZlU.dpuf
MiamiOH OARS

High-Resolution Exploration of the Human Islet Tissue Environment [HIRN Human Pancreas ... - 0 views

  •  
    This Funding Opportunity Announcement (FOA) invites cooperative agreement applications that will contribute to a higher resolution understanding of the physical and functional organization of the human islet tissue environment by describing the composition (cellular and molecular) and function of important components of the pancreatic islet and peri-islet tissue architecture, the cell-cell relationships and means of communications used by cell types and cell subtypes within the pancreatic tissue ecosystem, and/or the contribution of adjacent (including acinar, ductal, lymphatic) and neighboring (intestinal, mesenteric and adipose) tissues to islet cell function and dysfunction. Successful projects will integrate the Human Pancreas Analysis Consortium (HPAC), that will consist of the research teams funded in response to this FOA with the Human Pancreas Analysis Program (HPAP), a resource-generation program that was funded in 2016 in response to RFA-DK-15-027. HPAC will become the fifth consortium of the Human Islet Research Network (HIRN, https://hirnetwork.org/ ). HIRN's overall mission is to support innovative and collaborative translational research to understand how human beta cells are lost in T1D, and to find innovative strategies to protect and replace functional beta cell mass in humans. This FOA will only support studies with a primary focus on increasing our understanding of human tissue structure and function, and human disease biology (as opposed to rodent or other animal models). This FOA is not intended to support the conduct of a clinical trial.
MiamiOH OARS

Communications, Circuits, and Sensing-Systems - 0 views

  •  
    Description: The Communications, Circuits, and Sensing-Systems (CCSS) Program supports innovative research in circuit and system hardware and signal processing techniques. CCSS also supports system and network architectures for communications and sensing to enable the next-generation cyber-physical systems (CPS) that leverage computation, communication, and sensing integrated with physical domains. CCSS invests in micro- and nano-electromechanical systems (MEMS/NEMS), physical, chemical, and biological sensing systems, neurotechnologies, and communication & sensing circuits and systems. The goal is to create new complex and hybrid systems ranging from nano- to macro-scale with innovative engineering principles and solutions for a variety of applications including but not limited to healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS encourages research proposals based on emerging technologies and applications for communications and sensing such as high-speed communications of terabits per second and beyond, sensing and imaging covering microwave to terahertz frequencies, personalized health monitoring and assistance, secured wireless connectivity and sensing for the Internet of Things, and dynamic-data-enabled autonomous systems through real-time sensing and learning.
MiamiOH OARS

Nanomanufacturing - US National Science Foundation (NSF) - 0 views

  •  
    The Nanomanufacturing program supports fundamental research and education on design and manufacturing at the nanoscale.  Emphasis of the program is on advancing manufacturing technology using production systems based on thermal, electrical, chemical and mechanical processes as well as biological actors (viruses, cells and bacteria) to fabricate nanostructures and to integrate these into micro-devices and meso- and macroscale systems.  Examples include carbon, polymeric and bio-molecular architectures that exploit nanoscale features for nanomotors, nanorobots, and other nanomachinery.  A goal of the program is to enable manufacturing scalability leading to commercial production, including improvements in component reliability, yield, efficiency and affordability.  The program also targets environmental health and safety in nanomanufacturing.
MiamiOH OARS

nCORE Request for Proposals - SRC - 0 views

shared by MiamiOH OARS on 11 Aug 17 - No Cached
  •  
    1. Research Vector 1: Novel computing and storage paradigms, and theory of operation, beyond conventional CMOS devices, beyond von Neumann architectures, and beyond classical information processing and sensing 2. Research Vector 2: Fundamental material, device, and interconnect research to enable novel computing and storage paradigms 3. Research Vector 3: Advanced manufacturing and nanofabrication to enable the fabrication of emerging devices and systems 4. Research Vector 4: Innovative metrology and characterization to support basic device and material research, and test platforms and standards to benchmark performance from devices up to systems 5. Research Vector 5: Computational models to support basic research from emerging devices and materials to novel systems
MiamiOH OARS

NSF revised proposal due date listing - 0 views

  •  
    The following programs have due dates that fall between October 1 - 25, 2013, and these dates are being revised due to the Federal  government shutdown. These revised dates apply whether the proposal is being submitted via the NSF FastLane System or  Grants.gov. Due to compressed proposal deadlines resulting from the shutdown, proposers are advised that they may experience a  delay when contacting IT Help Central with technical support questions. Frequently asked questions regarding these date changes  are available on the Resumption of Operations page on the NSF website at: http://www.nsf.gov/bfa/dias/policy/postshutdown.jsp. 
1 - 15 of 15
Showing 20 items per page