Skip to main content

Home/ OARS funding Environmental Sustainability/ Group items tagged computers

Rss Feed Group items tagged

MiamiOH OARS

Scientific Discovery through Advanced Computing: Scientific Computation Application Par... - 0 views

  •  
    This Biological and Environmental Research/Advanced Scientific Computing Research (BERASCR) Scientific Discovery Thru Advanced Computing (SciDAC) Partnership FOA will enable scientists to conduct complex scientific and engineering computations at a level of fidelity needed to simulate real-world climate conditions, by supporting deep, necessary, and productive collaborations between climate scientists on the one hand and applied mathematicians and computer scientists on the other, that overcome the barriers between these disciplines and consequently fully exploit the capabilities of Department of Energy (DOE) High Performance Computing (HPC) systems in order to accelerate advances in climate science. This SciDAC opportunity targets three particular topics of high-priority for DOE climate research that are expected to be transformed by effective climate-computational partnerships: the development of new and innovative methods to predict sea-level change; the development of a theoretical statistical-numerical framework to improve climate prediction; and the development of improved methods for model component coupling. The next-generation climate model capabilities will contribute to the newly launched Accelerated Climate Model for Energy (ACME) and further its progress toward design of climate codes for leadership class computers and in support of energy science and mission requirements.
MiamiOH OARS

14-518 Petascale Computing Resource Allocations - 0 views

  •  
    In 2013, a new NSF-funded petascale computing system, Blue Waters, was deployed at the University of Illinois. The goal of this project and system is to open up new possibilities in science and engineering by providing computational capability that makes it possible for investigators to tackle much larger and more complex research challenges across a wide spectrum of domains. The purpose of this solicitation is to invite research groups to submit requests for allocations of resources on the Blue Waters system. Proposers must show a compelling science or engineering challenge that will require petascale computing resources. Proposers must also be prepared to demonstrate that they have a science or engineering research problem that requires and can effectively exploit the petascale computing capabilities offered by Blue Waters. Proposals from or including junior researchers are encouraged, as one of the goals of this solicitation is to build a community capable of using petascale computing.
MiamiOH OARS

Landscape Change Detection with National Inventory and Monitoring Networks in support o... - 0 views

  •  
    he objectives of this Agreement are to further development of change detection research using an existing methodology developed at Oregon State University by Robert Kennedy termed LandTrendr. The two networks both utilize this approach as part of their respective long-term monitoring programs and rely on its development as technology changes. In addition to LandTrendr, OSU has also developed a companion stand-alone program called TimeSync which is crucial during the validation of the LandTrendr-delineated disturbances. This tool also needs to be upgraded to be compatible with current Windows operating systems. This agreement would allow the I&M networks to work collaboratively with OSU to ensure I&M networks receive the specific tools they need to continue their respective long-term monitoring programs without interruption. Oregon State University will also facilitate easier use of LandTrendr for the public and other researchers because this service is being moved to cloud computing which will greatly increase compute speed, decrease the amount of data storage necessary at the network offices, and remove the need for high level computing within the office. STATEMENT OF WORK RECIPIENT AGREES TO: 1. Provide computer code on running LandTrendr through Google Earth Engine 2. Provide documented workflow on Google Earth Engine 3. Provide computer code to process output rasters of changes to polygons of change 4. Provide updated version of TimeSync compatible with Windows 10 5. Provide documented workflow on installing and running TimeSync
MiamiOH OARS

Network for Computational Nanotechnology (NCN) (nsf16593) | NSF - National Science Foun... - 0 views

  •  
    The goals of the Network for Computational Nanotechnology (NCN) are to: 1) accelerate the transformation of nanoscience to nanotechnology through the integration of simulation with experimentation; 2) engage an ever-larger and more diverse cyber community sharing novel, high-quality nanoscale computation and simulation research and educational resources; 3) develop open-access, open-source software to stimulate data sharing; and 4) inspire and educate the next-generation workforce. The NCN consists of a stand-alone Cyber Platform, which provides computation, simulation, and education services to over 330,000 researchers, educators, students, and industry members of the nanoscience and engineering community annually worldwide; and Nodes, which develop compelling new computational and simulation tools to disseminate through Cyber Platform (nanoHUB.org) and cultivate communities of users in emerging areas of nanoscale science and engineering.
MiamiOH OARS

2018 Mathematical Multifaceted Integrated Capability Centers (MMICCs) - 0 views

  •  
    The Office of Advanced Scientific Computing Research (ASCR) of the SC, U.S. Department of Energy (DOE), hereby invites applications for basic research that address fundamental challenges within DOE's mission areas of energy, environment and security, and from a perspective that requires new integrated efforts across multiple mathematical, statistical and computational disciplines. This solicitation is for new Mathematical Multifaceted Integrated Capability Centers (MMICCs) to enable greatly enhanced scientific discovery, design, optimization or decision-support capabilities for the increasingly complex systems, processes, and problems that arise in science and energy research. Proposed research tightly focused on the solution of a particular science or engineering problem are outside the scope of this solicitation.These MMICCs will enable applied mathematics researchers to work together in large, collaborative teams to develop the mathematics needed to address significant scientific computing research challenges. The MMICCs allow researchers to take a broader view of the problem as a whole, and devise solution strategies that attack the problem in its entirety by building fundamental, multidisciplinary mathematical capabilities and tools cognizant of both existing and emerging computing paradigms. The MMICCs teams will have the flexibility and technical expertise to consider all aspects of the problem-solving process simultaneously - ranging from the mathematical formulation to the development, analysis, integration of appropriate models and methods, and demonstration of results and capabilities.
MiamiOH OARS

Predictive Science Academic Alliance Program III (PSAAP III) - 0 views

  •  
    Predictive Science is potentially applicable to a variety of fields, including nuclear weapons, efficient manufacturing, biological systems, nanoscale material science, organic chemical processes, climate modeling, etc. Success in these simulations requires both software and algorithmic frameworks for integrating multiple disciplines into a single application and adding significant disciplinary strength and depth to make that integration effective. Applications should conduct computer science research in areas that will contribute to the advancement of Exascale computing technologies and demonstrate the results in the context of the chosen application. The FOA contains topics that are of particular interest to the NNSA National Laboratories as they move towards Exascale computing. Other topics that will enable the advancements in Exascale computing are encouraged as well. More details are contained in the FOA.
MiamiOH OARS

Ecology and Evolution of Infectious Diseases | NSF - National Science Foundation - 0 views

  •  
    The Ecology and Evolution of Infectious Diseases program supports research on the ecological, evolutionary, and socio-ecological principles and processes that influence the transmission dynamics of infectious diseases. The central theme of submitted projects must be quantitative or computational understanding of pathogen transmission dynamics. The intent is discovery of principles of infectious disease transmission and testing mathematical or computational models that elucidate infectious disease systems. Projects should be broad, interdisciplinary efforts that go beyond the scope of typical studies. They should focus on the determinants and interactions of transmission among humans, non-human animals, and/or plants. This includes, for example, the spread of pathogens; the influence of environmental factors such as climate; the population dynamics and genetics of reservoir species or hosts; the cultural, social, behavioral, and economic dimensions of disease transmission. Research may be on zoonotic, environmentally-borne, vector-borne, or enteric diseases of either terrestrial or freshwater systems and organisms, including diseases of animals and plants, at any scale from specific pathogens to inclusive environmental systems. Proposals for research on disease systems of public health concern to developing countries are strongly encouraged, as are disease systems of concern in agricultural systems. Investigators are encouraged to develop the appropriate multidisciplinary team, including for example, modelers, bioinformaticians, genomics researchers, social scientists, economists, epidemiologists, entomologists, parasitologists, microbiologists, bacteriologists, virologists, pathologists or veterinarians, with the goal of integrating knowledge across disciplines to enhance our ability to predict and control infectious diseases.
  •  
    The Ecology and Evolution of Infectious Diseases program supports research on the ecological, evolutionary, and socio-ecological principles and processes that influence the transmission dynamics of infectious diseases. The central theme of submitted projects must be quantitative or computational understanding of pathogen transmission dynamics. The intent is discovery of principles of infectious disease transmission and testing mathematical or computational models that elucidate infectious disease systems. Projects should be broad, interdisciplinary efforts that go beyond the scope of typical studies. They should focus on the determinants and interactions of transmission among humans, non-human animals, and/or plants. This includes, for example, the spread of pathogens; the influence of environmental factors such as climate; the population dynamics and genetics of reservoir species or hosts; the cultural, social, behavioral, and economic dimensions of disease transmission. Research may be on zoonotic, environmentally-borne, vector-borne, or enteric diseases of either terrestrial or freshwater systems and organisms, including diseases of animals and plants, at any scale from specific pathogens to inclusive environmental systems. Proposals for research on disease systems of public health concern to developing countries are strongly encouraged, as are disease systems of concern in agricultural systems. Investigators are encouraged to develop the appropriate multidisciplinary team, including for example, modelers, bioinformaticians, genomics researchers, social scientists, economists, epidemiologists, entomologists, parasitologists, microbiologists, bacteriologists, virologists, pathologists or veterinarians, with the goal of integrating knowledge across disciplines to enhance our ability to predict and control infectious diseases.
MiamiOH OARS

Dissertation Grant - Microsoft Research - 0 views

  •  
    The Microsoft Foundation is inviting applications for its Dissertation Grants program. The program supports PhD students at North American universities who are underrepresented in the field of computing and pursuing research aligned to the research areas carried out by Microsoft Research. Through the program, recipients will receive funding of up to $25,000 for the 2020-21 academic year as well as an invitation to the PhD Summit, a two-day workshop in the fall held at one of Microsoft Research's labs where fellows will meet with Microsoft researchers and other top students to share their research. Fellows must be aligned in research areas as defined by Microsoft Research, which include artificial intelligence; audio and acoustics; computer vision; graphics and multimedia; human-computer interaction; human language technologies; search and information retrieval; data platforms and analytics; hardware and devices; programming languages and software engineering; security, privacy, and cryptography; systems and networking; algorithms; mathematics; ecology and environment; economics; medical, health, and genomics; social sciences; and technology for emerging markets.
MiamiOH OARS

Condensed Matter and Materials Theory - 0 views

  •  
    The broad spectrum of research supported in CMMT includes first-principles, quantum many-body, statistical mechanics, classical and quantum Monte Carlo, and molecular dynamics methods. Computational efforts span from workstations to advanced and high-performance scientific computing. Emphasis is on approaches that begin at the smallest appropriate length scale, such as electronic, atomic, molecular, nano-, micro-, and mesoscale, required to yield fundamental insight into material properties, processes, and behavior, to predict new materials and states of matter, and to reveal new materials-related phenomena. Approaches that span multiple scales of length and time may be required to advance fundamental understanding of materials properties and phenomena, particularly for polymeric materials and soft matter. Examples of areas of recent interest appear in the program description. CMMT encourages potentially transformative theoretical and computational materials research, which includes but is not limited to: i) developing materials-specific prediction and advancing understanding of properties, phenomena, and emergent states of matter associated with either hard or soft materials, ii) developing and exploring new paradigms including cyber- and data-enabled approaches to advance fundamental understanding of materials and materials related phenomena, oriii) fostering research at interfaces among subdisciplines represented in the Division of Materials Research
MiamiOH OARS

Environmental Chemical Sciences | NSF - National Science Foundation - 0 views

  •  
    The Environmental Chemical Sciences (ECS) Program supports basic research in chemistry that promotes the understanding of natural and anthropogenic chemical processes in our environment.  Projects supported by this program enable fundamentally new avenues of basic research and transformative technologies. The program is particularly interested in studying molecular phenomena on surfaces and interfaces in order to understand the inherently complex and heterogeneous environment.  Projects utilize advanced experimental, modeling and computational approaches, as well as developing new approaches.  Topics include studies of environmental surfaces and interfaces under laboratory conditions, the fundamental properties of water and water solutions important in environmental processes, dissolution, composition, origin and behavior of molecular scale systems under a variety of naturally occurring environmental conditions, chemical reactivity of synthetic nanoparticles and their molecular level interactions with the environment, and application of theoretical models and computational approaches to discover and predict environmental phenomena at the molecular scale.
  •  
    The Environmental Chemical Sciences (ECS) Program supports basic research in chemistry that promotes the understanding of natural and anthropogenic chemical processes in our environment.  Projects supported by this program enable fundamentally new avenues of basic research and transformative technologies. The program is particularly interested in studying molecular phenomena on surfaces and interfaces in order to understand the inherently complex and heterogeneous environment.  Projects utilize advanced experimental, modeling and computational approaches, as well as developing new approaches.  Topics include studies of environmental surfaces and interfaces under laboratory conditions, the fundamental properties of water and water solutions important in environmental processes, dissolution, composition, origin and behavior of molecular scale systems under a variety of naturally occurring environmental conditions, chemical reactivity of synthetic nanoparticles and their molecular level interactions with the environment, and application of theoretical models and computational approaches to discover and predict environmental phenomena at the molecular scale.
MiamiOH OARS

nsf.gov - Funding - Ecology and Evolution of Infectious Diseases - US National Science ... - 0 views

  •  
    The Ecology and Evolution of Infectious Diseases program supports research on the ecological, evolutionary, and socio-ecological principles and processes that influence the transmission dynamics of infectious diseases. The central theme of submitted projects must be quantitative or computational understanding of pathogen transmission dynamics. The intent is discovery of principles of infectious disease transmission and testing mathematical or computational models that elucidate infectious disease systems. Projects should be broad, interdisciplinary efforts that go beyond the scope of typical studies. They should focus on the determinants and interactions of transmission among humans, non-human animals, and/or plants. This includes, for example, the spread of pathogens; the influence of environmental factors such as climate; the population dynamics and genetics of reservoir species or hosts; or the cultural, social, behavioral, and economic dimensions of disease transmission. Research may be on zoonotic, environmentally-borne, vector-borne, or enteric diseases of either terrestrial or freshwater systems and organisms, including diseases of animals and plants, at any scale from specific pathogens to inclusive environmental systems. Proposals for research on disease systems of public health concern to developing countries are strongly encouraged, as are disease systems of concern in agricultural systems. Investigators are encouraged to involve the public health research community, including for example, epidemiologists, physicians, veterinarians, food scientists, social scientists, entomologists, pathologists, virologists, or parasitologists with the goal of integrating knowledge across disciplines to enhance our ability to predict and control infectious diseases.
MiamiOH OARS

Natural Hazards Engineering Research Infrastructure (2015 - 2019) (NHERI) (nsf14605) - 0 views

  •  
    During 2015 - 2019, NHERI will be a distributed, multi-user, national facility to provide the natural hazards engineering community with access to research infrastructure (earthquake and wind engineering experimental facilities, cyberinfrastructure, computational modeling and simulation tools, and research data), coupled with education and community outreach activities. NHERI will enable research and educational advances that can contribute knowledge and innovation for the nation's civil infrastructure and communities to prevent natural hazard events from becoming societal disasters. NHERI will consist of the following components, established through up to ten individual awards: Network Coordination Office (one award), Cyberinfrastructure (one award), Computational Modeling and Simulation Center (one award), and Experimental Facilities for earthquake engineering and wind engineering research (up to seven awards, including one award for a Post-Disaster, Rapid Response Research Facility).
MiamiOH OARS

Ecology and Evolution of Infectious Diseases - 0 views

  •  
    The Ecology and Evolution of Infectious Diseases program supports research on the ecological, evolutionary, and socio-ecological principles and processes that influence the transmission dynamics of infectious diseases. The central theme of submitted projects must be quantitative or computational understanding of pathogen transmission dynamics. The intent is discovery of principles of infectious disease transmission and testing mathematical or computational models that elucidate infectious disease systems. Projects should be broad, interdisciplinary efforts that go beyond the scope of typical studies. They should focus on the determinants and interactions of transmission among humans, non-human animals, and/or plants. This includes, for example, the spread of pathogens; the influence of environmental factors such as climate; the population dynamics and genetics of reservoir species or hosts; the cultural, social, behavioral, and economic dimensions of disease transmission. Research may be on zoonotic, environmentally-borne, vector-borne, or enteric diseases of either terrestrial or freshwater systems and organisms, including diseases of animals and plants, at any scale from specific pathogens to inclusive environmental systems. Proposals for research on disease systems of public health concern to developing countries are strongly encouraged, as are disease systems of concern in agricultural systems. Investigators are encouraged to develop the appropriate multidisciplinary team, including for example, modelers, bioinformaticians, genomics researchers, social scientists, economists, epidemiologists, entomologists, parasitologists, microbiologists, bacteriologists, virologists, pathologists or veterinarians, with the goal of integrating knowledge across disciplines to enhance our ability to predict and control infectious diseases.
MiamiOH OARS

Continuation of Solicitation for the Office of Science Financial Assistance Program - 0 views

  •  
    The Office of Science (SC) of the Department of Energy hereby announces its continuing interest in receiving grant applications for support of work in the following program areas: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics.
  •  
    The Office of Science (SC) of the Department of Energy hereby announces its continuing interest in receiving grant applications for support of work in the following program areas: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics.
MiamiOH OARS

Energy, Power, and Adaptive Systems - 0 views

  •  
    The Energy, Power, and Adaptive Systems (EPAS) program invests in the design and analysis of intelligent and adaptive engineering networks, including sensing, imaging, controls, and computational technologies for a variety of application domains. EPAS places emphasis on electric power networks and grids, including generation, transmission and integration of renewable, sustainable and distributed energy systems; high power electronics and drives; and understanding of associated regulatory and economic structures. Topics of interest include alternate energy sources, the Smart Grid, and interdependencies of critical infrastructure in power and communications. The program also places emphasis on energy scavenging and alternative energy technologies, including solar cells, ocean waves, wind, and low-head hydro. In addition, the program supports innovative test beds, and laboratory and curriculum development to integrate research and education.  EPAS invests in adaptive dynamic programming, brain-like networked architectures performing real-time learning, neuromorphic engineering, telerobotics, and systems theory. The program supports distributed control of multi-agent systems with embedded computation for sensor and adaptive networks. EPAS provides additional emphasis on emerging areas, such as quantum systems engineering, quantum and molecular modeling and simulation of devices and systems.
MiamiOH OARS

Next Generation Software for Data-driven Models of Space Weather with Quantified Uncert... - 0 views

  •  
    This solicitation addresses the overlapping objectives of the National Space Weather Strategy and Action Plan (NSW-SAP) and the National Strategic Computing Initiative (NSCI) Update through a pilot program. The goal of this pilot program is to transform development of predictive modeling of the coupled evolution of the magnetized solar atmosphere and the solar wind, and their interaction with the Earth's magnetosphere and upper atmosphere. This requires advancing our understanding of the necessary and sufficient requirements of model complexity, computational performance, and observational inputs. The pilot program is also expected to directly contribute to the long-term goal of creating space weather models with quantifiable predictive capability.
MiamiOH OARS

NASA - Earth Surface and Interior - 0 views

  •  
    It is NASA's intent to update these foci and compete this element on an annual basis to best address scientific and programmatic priorities: 1. High-End Computing for ESI: Research advancing the use of High-End Computing (HEC) resources to answer specific questions in solid-Earth science. This subsection welcomes proposals addressing observational network design and augmentation, automated processing of large datasets, and advanced analysis and simulation. Proposals that demonstrate a clear need and robust plan for use of NASA HEC resources are especially encouraged. 2. Geomagnetic Research: Research that utilizes remotely sensed geomagnetic observations to further advance our understanding of the solid Earth. 3. Strengthening ESI Community Knowledge and Skills: New ESI-relevant activities that strengthen knowledge and skills of graduate students and/or postdoctoral researchers and broaden community awareness of the ESI mission. Prospective proposers are encouraged to contact the program point of contact to discuss the relevance of their proposal.
MiamiOH OARS

World Community Grid Accepting Applications for Climate-Related Projects | RFPs | PND - 0 views

  •  
    World Community Grid, an IBM initiative, enables anyone with a computer, smartphone, or tablet to donate their unused computing power to advance cutting-edge scientific research on topics related to health, poverty, and sustainability. Through the contributions of more than 650,000 individuals and 460 organizations, WCG has supported twenty-eight research projects to date, including searches for more effective treatments for cancer, HIV/AIDS, and neglected tropical diseases. Other projects include identifying low-cost water filtration systems and new materials for capturing solar energy efficiently.
MiamiOH OARS

Energy-Efficient Computing: from Devices to Architectures - 0 views

  •  
    There is a consensus across the many industries touched by our ubiquitous computing infrastructure that future performance improvements across the board are now severely limited by the amount of energy it takes to manipulate, store, and critically, transport data. While the limits and tradeoffs for this performance-energy crisis vary across the full range of application platforms, they have all reached a point at which evolutionary approaches to addressing this challenge are no longer adequate.
MiamiOH OARS

Environmental Research Apprenticeship Program for College and University Students | Res... - 0 views

  •  
    EPA-ORD seeks applications from eligible entities to enter into a cooperative agreement with EPA that will provide training opportunities for undergraduate and graduate students on-site at ORD's Ground Water and Ecosystems Research Division (GWERD) research facilities located in Ada, Oklahoma.  It is envisioned that the training program will increase both the effectiveness and number of future environmental scientists. The training received under the mentorship of EPA scientists will complement the trainees' academic coursework. The recipient will be responsible for ensuring that the training projects are supportive of the trainees' academic training.  Some appropriate fields of study for trainees include, but are not limited to, environmental science, water policy, chemistry, engineering, computer science, ecology, and physical and biological sciences.
1 - 20 of 90 Next › Last »
Showing 20 items per page