Skip to main content

Home/ OARS funding Chemistry/ Group items matching "environmental" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
MiamiOH OARS

Navigating the New Arctic (NNA) (nsf21524) | NSF - National Science Foundation - 0 views

  •  
    Navigating the New Arctic (NNA) embodies an important forward-looking response by the Foundation to these profound challenges. NNA seeks innovations in fundamental convergence research across the social, natural, environmental, computing and information sciences, and engineering that address the interactions or connections among natural and built environments and social systems, and how these connections inform our understanding of Arctic change and its local and global effects. This solicitation requests proposals that fall within one of three tracks: NNA Planning Grants, dedicated to developing convergence research questions and teams to tackle projects of larger scope in the future; NNA Research Grants, aimed to support creative projects on fundamental research that address convergent scientific and engineering challenges related to the rapidly changing Arctic; and NNA Collaboratory Grants, designed to support collaborative teams undertaking research and training initiatives on critical themes of a broad scope related to the New Arctic.
MiamiOH OARS

Integrated University Program - Scholarship and Fellowship Support | Department of Energy - 0 views

  •  
    DOE-NE's mission is to encourage development and exploration of advanced nuclear science and technology. DOE-NE promotes nuclear energy as a resource capable of meeting the nation's energy, environmental, and national security needs by resolving scientific, technical, and regulatory challenges through research, development, and demonstration. IUP supports DOE-NE's Nuclear Energy University Program (NEUP), which enables outstanding, cutting-edge, and innovative research at U.S. IHEs through the following: * Integrating research and development (R&D) at U.S. IHEs, national laboratories, and industry to revitalize nuclear education and support NE'sPrograms * Attracting the brightest students to the nuclear professions and supporting the nation's intellectual capital in science and engineering disciplines * Improving U.S. IHE's infrastructure for conducting R&D and educating students * Facilitating knowledge transfer to the next generation ofworkers Educating undergraduate and graduate students in NS&E will: * Support the ongoing need for personnel who can develop and maintain the nation's nuclear power technology * Enhance the R&D capabilities of U.S. IHEs * Fulfill national demand for highly trained scientists and engineers to work in NS&E areas
MiamiOH OARS

Multimodal Sensor Systems for Precision Health Enabled by Data Harnessing, Artificial Intelligence, and Learning (SenSE) (nsf20556) | NSF - National Science Foundation - 0 views

  •  
    The National Science Foundation (NSF) through its Divisions of Electrical, Communications and Cyber Systems (ECCS); Chemical, Bioengineering, Environmental and Transport Systems (CBET); Civil, Mechanical and Manufacturing Innovation (CMMI); Information and Intelligent Systems (IIS); and Mathematical Sciences (DMS) announces a solicitation on Multimodal Sensor Systems for Precision Health enabled by Data Harnessing, Artificial Intelligence (AI), and Learning. Next-generation multimodal sensor systems for precision health integrated with AI, machine learning (ML), and mathematical and statistical (MS) methods for learning can be envisioned for harnessing a large volume of diverse data in real time with high accuracy, sensitivity and selectivity, and for building predictive models to enable more precise diagnosis and individualized treatments. It is expected that these multimodal sensor systems will have the potential to identify with high confidence combinations of biomarkers, including kinematic and kinetic indicators associated with specific disease and disability. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts, innovative methodologies, theory, algorithms, and enabling technologies that will address the fundamental scientific issues and technological challenges associated with precision health.
MiamiOH OARS

Future Manufacturing - 0 views

  •  
    Asstated intheStrategy for American Leadership in Advanced Manufacturing,worldwide competition in manufacturing has been dominated in recent decades by the maturation, commoditization, and widespread application of computation in production equipment and logistics, effectively leveling the global technological playing field and putting a premium on low wages and incremental technical improvements.[1] The next generation of technological competition in manufacturing will be dictated by inventions of new materials, chemicals, devices, systems, processes, machines, design and work methods, social structures and business practices. Fundamental research will be required in robotics, artificial intelligence, biotechnology, materials science, sustainability, education and public policy, and workforce development to take the lead in this global competition. The research supported under this solicitationwillenhance U.S. leadership in manufacturing far into the future by providing new capabilitiesfor established companies andentrepreneurs,improving ourhealth and quality of life,andreducingthe impact of manufacturing industries on the environment.
MiamiOH OARS

Signals in the Soil (SitS) (nsf20548) | NSF - National Science Foundation - 0 views

  •  
    The National Science Foundation (NSF) Directorates for Engineering (ENG) and Geosciences (GEO), the Divisions of Integrative Organismal Systems (IOS) and Environmental Biology (DEB), in the Directorate for Biological Sciences (BIO), the Division of Computer and Network Systems in the Directorate Computer and Information Science and Engineering (CISE/CNS), and the Division of Chemistry (CHE) in the Directorate for Mathematical and Physical Sciences, in collaboration with the US Department of Agriculture National Institute of Food and Agriculture (USDA NIFA) encourage convergent research that transforms existing capabilities in understanding dynamic soil processes, including soil formation, through advances in sensor systems and modeling. The Signals in the Soil (SitS) program fosters collaboration among the two partner agencies and the researchers they support by combining resources and funding for the most innovative and high-impact projects that address their respective missions. To make transformative advances in our understanding of soils, multiple disciplines must converge to produce Environmentally-benign novel sensing systems with multiple modalities that can adapt to different environments and collect and transmit data for a wide range of biological, chemical, and physical parameters. Effective integration of sensor data will be key for achieving a better understanding of signaling interactions among plants, animals, microbes, the soil matrix, and aqueous and gaseous components. New sensor networks have the potential to inform models in novel ways, to radically change how data is obtained from various natural and managed (both urban and rural) ecosystems, and to better inform the communities that directly rely on soils for sustenance and livelihood.
MiamiOH OARS

RFA-ES-20-004: Optimizing Natural Systems for Remediation: Utilizing Innovative Materials Science Approaches to Enhance Bioremediation (R01 Clinical Trial Not Allowed) - 0 views

  •  
    The National Institute of Environmental Health Sciences (NIEHS) invites qualified investigators from domestic institutions of higher education to apply to the Superfund Research Program (SRP) R01 Individual Research Project grant program. The mission of the NIEHS is to discover how the environment affects people in order to promote healthier lives. The NIEHS Superfund Research Program (SRP) (http://www.niehs.nih.gov/research/supported/srp/) was established under the Superfund Amendment Reauthorization Act (SARA) Section 311(a), which authorizes NIEHS to implement a university-based program of basic research for the development of: 1) advanced techniques for the detection, assessment, and evaluation of the effect of hazardous substances on human health; 2) methods to assess the risks to human health presented by hazardous substances; 3) methods and technologies to detect hazardous substances in the environment; and 4) basic biological, chemical, and physical methods to reduce the amount and/or toxicity of hazardous substances. SRP's broad scope, as dictated by the SARA mandates, allows NIEHS to support scientific research to address the wide array of scientific uncertainties facing the national Superfund program utilizing biomedical as well as Environmental science and engineering approaches. Research supported by the SRP uses mechanistic science as a foundation and, in keeping with the broad research themes of the program mandates, the SRP promotes an interdisciplinary approach to develop solutions for the safe management of hazardous substances with the ultimate goal of improving public health.
MiamiOH OARS

Reproducible Cells and Organoids via Directed-Differentiation Encoding (RECODE) (nsf20541) | NSF - National Science Foundation - 0 views

  •  
    The National Science Foundation (NSF) Division of Chemical, Bioengineering, Environmental and Transport Systems (CBET), seeks proposals that elucidate mechanisms of, and develop strategies to, direct the differentiation of undifferentiated cells into mature, functional cells or organoids. Projects responsive to this solicitation must aim to establish a robust and reproducible set of differentiation design rules, predictive models, real-time sensing, control, and quality assurance methods, and integrate them into a workable differentiation strategy. They must develop a fundamental understanding of how cells develop, including mechanisms, molecular machinery, dynamics, and cell-cell interactions, and use this understanding to manipulate cells purposefully. Investigators can choose any undifferentiated cell type, from any animal species, as a starting point and choose any appropriate functional product (cell, organoid, etc.) with real-world relevance. This solicitation parallels NSF's investment in Understanding the Rules of Life (URoL): Predicting Phenotype, NSF's Big Idea focused on predicting the set of observable characteristics (phenotype) of an organism based on its genetic makeup and the nature of its environment and applies it to understanding and accomplishing the intentional and guided differentiation of an undifferentiated cell into cells, organoids or tissues with predetermined activities and functions.
MiamiOH OARS

Reproducible Cells and Organoids via Directed- Differentiation Encoding - 0 views

  •  
    The National Science Foundation (NSF) Division of Chemical, Bioengineering, Environmental and Transport Systems (CBET), seeks proposals that elucidate mechanisms of, and develop strategies to, direct the differentiation of undifferentiated cells into mature, functional cells or organoids. Projects responsive to this solicitation must aim to establish a robust and reproducible set of differentiation design rules, predictive models, real-time sensing, control, and quality assurance methods, and integrate them into a workable differentiation strategy. They must develop a fundamental understanding of how cells develop, including mechanisms, molecular machinery, dynamics, and cell-cell interactions, and use this understanding to manipulate cells purposefully. Investigators can choose any undifferentiated cell type, from any animal species, as a starting point and choose any appropriate functional product (cell, organoid, etc.) with real-world relevance.This solicitation parallels NSF's investment inUnderstanding the Rules of Life (URoL): Predicting Phenotype, NSF's Big Idea focused on predicting the set of observable characteristics (phenotype) of an organism based on its genetic makeup and the nature of its environment and applies it to understanding and accomplishing the intentional and guided differentiation of an undifferentiated cell into cells, organoids or tissues with predetermined activities and functions.
MiamiOH OARS

Environmental System Science - 0 views

  •  
    The DOE SC program in Biological and Environmental Research (BER) hereby announces its interest in receiving applications for research in Environmental Systems Science (ESS), including Terrestrial Ecosystem Science (TES) and Subsurface Biogeochemical Research (SBR). The goal of the Environmental System Science (ESS) activity in BER is to advance a robust, predictive understanding of the set of interdependent physical, biogeochemical, ecological, hydrological, and geomorphological processes for use in Earth system, ecosystem and reactive transport models. Using an iterative approach to model-driven experimentation and observation, and interdisciplinary teams, ESS-supported scientists work to unravel the coupled physical, chemical and biological processes that control the structure and functioning of terrestrial ecosystems and integrated watersheds across critical spatial and temporal scales. This FOA will consider applications that focus on improving the understanding and representation of terrestrial and subsurface environments in ways that advance the sophistication and capabilities of local, regional, and larger scale models.
MiamiOH OARS

Division of Chemistry: Disciplinary Research Programs (CHE-DRP) (nsf19577) | NSF - National Science Foundation - 0 views

  •  
    This solicitation applies to nine CHE Disciplinary Chemistry Research Programs: Chemical Catalysis (CAT); Chemical Measurement and Imaging (CMI); Chemical Structure, Dynamics and Mechanisms-A (CSDM-A); Chemical Structure Dynamics and Mechanisms-B (CSDM-B); Chemical Synthesis (SYN); Chemical Theory, Models and Computational Methods (CTMC); Chemistry of Life Processes (CLP); Environmental Chemical Sciences (ECS); and Macromolecular, Supramolecular and Nanochemistry (MSN).
MiamiOH OARS

Critical Aspects of Sustainability | NSF - National Science Foundation - 0 views

  •  
    The Critical Aspects of Sustainability (CAS) program includes the Division of Chemistry (CHE) and the Division of Materials Research (DMR) within the Directorate for Mathematical and Physical Sciences (MPS), the Division of Chemical, Bioengineering, Environmental and Transport Systems (CBET) and the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) within the Directorate for Engineering (ENG), and the Division of Earth Sciences (EAR) within the Directorate for Geosciences (GEO).
MiamiOH OARS

Catalysis - 0 views

  •  
    The Catalysis program is part of the Chemical Process Systems cluster, which also includes: 1) the Electrochemical Systems program; 2) the Interfacial Engineering program; and 3) the Process Systems, Reaction Engineering, and Molecular Thermodynamics program. The goals of the Catalysis program are to increase fundamental understanding in catalytic engineering science and to advance the development of catalytic materials and reactions that are beneficial to society. Research in this program should focus on new concepts for catalytic materials and reactions, utilizing synthetic, theoretical, and experimental approaches. Target applications include fuels, specialty and bulk chemicals, environmental catalysis, biomass conversion to fuels and chemicals, conversion of greenhouse gases, and generation of solar hydrogen, as well as efficient routes to energy utilization. Heterogeneous catalysis represents the main thrust of the program. Proposals related to both gas-solid and liquid-solid heterogeneous catalysis are welcome, as are proposals that incorporate concepts from homogeneous catalysis. Topic areas that are of particular interest include: · Renewable energy-related catalysis with applications in electrocatalysis, photocatalysis, and catalytic conversion of biomass-derived chemicals. Catalysis aimed at closing the carbon cycle (especially conversion of CO2, methane, and natural gas to fuels and chemical intermediates). · Catalytic alternatives to traditionally non-catalytic reaction processes, as well as new catalyst designs for established catalytic processes. · environmental catalysis (including energy-efficient and green routes to fuels and chemicals). ·
MiamiOH OARS

Electrochemical Systems - 0 views

  •  
    The Electrochemical Systems program is part of the Chemical Process Systems cluster, which also includes: 1) the Catalysis program; 2) the Interfacial Engineering program; and 3) the Process Systems, Reaction Engineering, and Molecular Thermodynamics program. The goal of the Electrochemical Systems program is to support fundamental engineering research that will enable innovative processes involving electro- or photochemistry for the sustainable production of electricity, fuels, and chemicals. Processes for sustainable energy and chemical production must be scalable, environmentally benign, reduce greenhouse gas production, and utilize renewable resources. Research projects that stress fundamental understanding of phenomena that directly impact key barriers to improved system or component-level performance (for example, energy efficiency, product yield, process intensification) are encouraged. Processes for energy storage should address fundamental research barriers for the applications of renewable electricity storage or for transport propulsion. For projects concerning energy storage materials, proposals should involve hypotheses that involve device or component performance characteristics that are tied to fundamental understanding of transport, kinetics, or thermodynamics. Advanced chemistries are encouraged. Proposed research should be inspired by the need for economic and impactful conversion processes. All proposal project descriptions should address how the proposed work, if successful, will improve process realization and economic feasibility and compare the proposed work against current state of the art. Highly integrated multidisciplinary projects are encouraged.
MiamiOH OARS

Process Systems, Reaction Engineering, and Molecular Thermodynamics - 0 views

  •  
    The Process Systems, Reaction Engineering and Molecular Thermodynamics program is part of the Chemical Process Systems cluster, which also includes: 1) the Catalysis program; 2) the Electrochemical Systems program; and 3) the Interfacial Engineering program. The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics program is to advance fundamental engineering research on the rates and mechanisms of chemical reactions, systems engineering and molecular thermodynamics as they relate to the design and optimization of chemical reactors and the production of specialized materials that have important impacts on society. The program supports the development of advanced optimization and control algorithms for chemical processes, molecular and multi-scale modeling of complex chemical systems, fundamental studies on molecular thermodynamics, and the integration of this information into the design of complex chemical reactors. An important area supported by the program focuses on the development of energy-efficient and environmentally-friendly chemical processes and materials. Proposals should focus on: · Chemical reaction engineering: This area encompasses the interaction of transport phenomena and kinetics in reactive systems and the use of this knowledge in the design of complex chemical reactors. Focus areas include novel reactor designs, such as catalytic and membrane reactors, micro-reactors, and atomic layer deposition systems; studies of reactions in supercritical fluids; novel activation techniques, such as plasmas, acoustics, and microwaves; design of multifunctional systems, such as "chemical-factory/lab-on-a-chip" concepts; and biomass conversion to fuels and chemicals. The program also supports new approaches that enable the design of modular chemical manufacturing systems.
MiamiOH OARS

Hazardous Materials Worker Health and Safety Training (U45 Clinical Trial Not Allowed) - 0 views

  •  
    NIEHS invites applications for cooperative agreements to support the development of model programs for the training and education of workers engaged in activities related to hazardous materials and waste generation, removal, containment, transportation and emergency response. This funding opportunity announcement aims to prevent work-related harm through safety and health training. The training programs will transmit skills and knowledge to workers in how best to protect themselves and their communities from exposure to hazardous materials encountered during hazardous waste operations, hazardous materials transportation, environmental restoration of contaminated facilities or chemical emergency response. A variety of sites, such as those involved with chemical waste cleanup and remedial action and transportation-related chemical emergency response, may pose severe health and safety concerns to workers and the surrounding communities. These sites contain many hazardous substances, sometimes unknown, and often a site is uncontrolled. A major goal of the Worker Training Program (WTP) is to support institutional competency-building for the development and delivery of model training and education programs.
MiamiOH OARS

Division of Chemistry: Disciplinary Research Programs - 0 views

  •  
    This solicitation applies to nine CHE Disciplinary Chemistry Research Programs: Chemical Catalysis (CAT); Chemical Measurement and Imaging (CMI); Chemical Structure, Dynamics and Mechanisms-A (CSDM-A); Chemical Structure Dynamics and Mechanisms-B (CSDM-B); Chemical Synthesis (SYN); Chemical Theory, Models and Computational Methods (CTMC); Chemistry of Life Processes (CLP); Environmental Chemical Sciences (ECS); and Macromolecular, Supramolecular and Nanochemistry (MSN). All proposals submitted to these nine CHE Disciplinary Research Programs (other than the following exceptions) must be submitted through this solicitation, otherwise they will be returned without review.
MiamiOH OARS

Functional RNA Modifications Environment and Disease (FRAMED) (R21 Clinical Trial Not Allowed) - 0 views

  •  
    Chemical modifications of proteins, DNA and RNA nucleoside moieties play critical roles in regulating gene expression. Emerging evidence suggests these RNA modifications (epitranscriptomics) have substantive roles in basic biological processes. Recent studies in yeast, Drosophila and rodent models demonstrate stressors can induce RNA modifications, with specific epitranscriptomic reprogramming of some regulatory RNAs. The purpose of the eFRAMED FOA is to solicit and support R21 applications that propose conducting innovative, high risk, high reward research to enhance our understanding of how environmental exposures impact this layer of cellular regulation.
MiamiOH OARS

Functional RNA Modifications Environment and Disease (FRAMED) (R01 Clinical Trial Not Allowed) - 0 views

  •  
    Chemical modifications of protein, DNA and RNA nucleoside moieties play critical roles in regulating gene expression. Emerging evidence suggests RNA modifications have substantive roles in multiple basic biological processes. Epitranscriptomics can be defined as the aggregate suite of functional biochemical modifications to the transcriptome within a cell. Recent studies in yeast, Drosophila, rodent and human models demonstrate that stressors can induce RNA modifications, with specific reprogramming of some regulatory RNAs. The NIEHS seeks to solicit innovative, mechanistic research applications that are focused on how environmental exposures are associated and involved with the functional activities of RNA modifications and pathways that may be modified or misregulated, associated with adverse health outcomes and/or be useful as biomarkers of exposure and/or exposure-induced pathologies. The study of functional chemical RNA modification has identified important emerging roles in cellular regulation and gene expression. However, the impact of environmental exposures on functional RNA modifications has been relatively understudied and may present a new mechanism for enhanced understanding the relationships between exposures and the development of complex human diseases. The NIEHS will use the R01 mechanism to support hypothesis driven research using approaches that incorporate principles of toxicology with RNA modification biological and/or chemical expertise and utilizes state of the art technologies.
MiamiOH OARS

NSF/CASIS Collaboration on Tissue Engineering and Mechanobiology on the International Space Station (ISS) to Benefit Life on Earth | NSF - National Science Foundation - 0 views

  •  
    The Divisions of Chemical, Bioengineering and Environmental Transport (CBET) and Civil, Mechanical, and Manufacturing Infrastructure (CMMI) in the Engineering Directorate of the National Science Foundation (NSF) are partnering with The Center for the Advancement of Science in Space (CASIS) to solicit research projects in the general fields of tissue engineering and mechanobiology that can utilize the International Space Station (ISS) National Lab to conduct research that will benefit life on Earth. U.S. entities including academic investigators, non-profit independent research laboratories and academic-commercial teams are eligible to apply.
MiamiOH OARS

https://science.energy.gov/~/media/grants/pdf/foas/2019/SC_FOA_0002019.pdf - 0 views

  •  
    SC hereby invites grant applications for support under the Early Career Research Program in the following program areas: Advanced Scientific Computing Research (ASCR); Biological and Environmental Research (BER); Basic Energy Sciences (BES), Fusion Energy Sciences (FES); High Energy Physics (HEP), and Nuclear Physics (NP). The purpose of this program is to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the areas supported by SC.
1 - 20 of 96 Next › Last »
Showing 20 items per page