Skip to main content

Home/ OARS funding Chemistry/ Group items matching "behavior" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
MiamiOH OARS

nsf.gov - Funding - Chemical and Biological Separations - US National Science Foundation (NSF) - 0 views

  •  
    The Chemical and Biological Separations (CBS) program supports fundamental research on novel methods and materials for separation processes.  These processes are central to the chemical, biochemical, materials, energy, and pharmaceutical industries.  A fundamental understanding of the interfacial, transport, and thermodynamic behavior of multiphase chemical systems as well as quantitative descriptions of processing characteristics in the process-oriented industries is critical for efficient resource management and effective environmental protection.  The program encourages proposals that address emerging research areas and technologies, have a high degree of interdisciplinary thought coupled with knowledge creation, and integrate education and research.
MiamiOH OARS

nsf.gov - Funding - Biotechnology, Biochemical, and Biomass Engineering - US National Science Foundation (NSF) - 0 views

  •  
    The Biotechnology, Biochemical, and Biomass Engineering (BBBE) program supports fundamental engineering research that advances the understanding of cellular and biomolecular processes (in vivo, in vitro, and/or ex vivo) and eventually leads to the development of enabling technology and/or applications in support of the biopharmaceutical, biotechnology, and bioenergy industries, or with applications in health or the environment.  Quantitative assessments of bioprocesses are considered vital to successful research projects in the BBBE program.  Fundamental to many research projects in this area is the understanding of how biomolecules and cells interact in their environment, and how those molecular level interactions lead to changes in structure, function, phenotype, and/or behavior.  The program encourages proposals that address emerging research areas and technologies that effectively integrate knowledge and practices from different disciplines, and effectively incorporate ongoing research into educational activities. Research projects of particular interest in BBBE include, but are not limited to: Metabolic engineering and synthetic biology Quantitative systems biotechnology Tissue engineering and stem cell culture technologies Protein engineering/protein design Development of novel "omics" tools for biotechnology applications
MiamiOH OARS

nsf.gov - Funding - Catalysis and Biocatalysis - US National Science Foundation (NSF) - 0 views

  •  
    Due to the ubiquitous presence of catalysis in the many aspects of goods and services impacting our lives, the Catalysis and Biocatalysis program has many potential directions for funding support.  Programs in this area encompass a blend of fundamental and innovative applied research drivers.  All programs are hypothesis-driven, and the experimental programs aimed at resolving the issues frequently combine a variety of approaches.  Chemical engineering and chemistry are intertwined.  Proposals which receive funding in this Program may include any number of the following broad scopes: Catalyst Synthesis, Characterization, Behavior and Performance Kinetics and Mechanisms of Key Catalytic Reactions Catalysis at Surfaces or in Reactor Process Streams Synthesis and Fabrication of Component Materials and Catalyst Composites Modeling and Fundamental Studies of a Catalyst or Catalytic Process Catalysts and Studies for Renewable Energy Systems. These approaches apply equally to classical inorganic or carbon catalysts as well as to enzymatic or biocatalysts.  Specialized materials synthesis procedures may be necessary to provide active catalysts in any of the studies.  Applications-driven studies, such as Biomass conversion catalysis, Electrocatalysis and Photocatalysis, involving energy interconversion devices or systems employing catalysts are highly desired.
MiamiOH OARS

nsf.gov - Funding - Chemical and Biological Separations - US National Science Foundation (NSF) - 0 views

  •  
    The Chemical and Biological Separations (CBS) program supports fundamental research on novel methods and materials for separation processes.  These processes are central to the chemical, biochemical, materials, energy, and pharmaceutical industries.  A fundamental understanding of the interfacial, transport, and thermodynamic behavior of multiphase chemical systems as well as quantitative descriptions of processing characteristics in the process-oriented industries is critical for efficient resource management and effective environmental protection.  The program encourages proposals that address emerging research areas and technologies, have a high degree of interdisciplinary thought coupled with knowledge creation, and integrate education and research. Research topics OF PARTICULAR INTEREST in CBS include fundamental molecular-level work on: Nanostructured materials for separations Biorenewable resource separation processes Purification of drinking water Field (flow, magnetic, electrical) induced separations Separation of molecular constituents from blood The duration of unsolicited awards is generally one to three years.  The average annual award size for the program is $80,000.  Proposals requesting a substantially higher amount than this, without prior consultation with the Program Director, may be returned without review.  Small equipment proposals of less than $100,000 will also be considered and may be submitted during the annual submission window. 
MiamiOH OARS

Interdisciplinary Research in Hazards and Disasters - 0 views

  •  
    Hazards SEES seeks research projects that will productively cross the boundaries of the atmospheric and geospace, earth, and ocean sciences; computer and information science (including cyberinfrastructure); engineering; mathematics and statistics; and social, economic, and behavioral sciences. Successful proposals will integrate across multiple disciplines to promote research that advances new paradigms that contribute to creating a society resilient to hazards.
MiamiOH OARS

nsf.gov - Funding - Solid State and Materials Chemistry - US National Science Foundation (NSF) - 0 views

  •  
    This multidisciplinary program supports basic research in solid state and materials chemistry comprising the elucidation of the atomic and molecular basis for material development and properties in the solid state from the nanoscale to the bulk.  General areas of interest include but are not limited to innovative approaches to design, synthesis, bulk crystal and/or film growth, and characterization of novel organic, inorganic, and hybrid materials, as well as liquid crystal materials and multi-component material systems exhibiting new phenomena and/or providing new scientific insights into structure/composition/property relationships in the solid state.  Relevant topics include original material design principles, new approaches to assembly or crystalline material growth, characterization of new material phenomena or superior behavior, investigations of surface and interfacial effects on material system structures and properties, and unraveling the relationships between structure/composition (e.g. self- or program-assembled materials, crystalline material growth, and nanostructured material systems) and properties (e.g. charge, ionic, thermal or spin transport, exciton diffusion, chemical reactivity and selectivity, etc.).  Development of new organic solid state materials, environmentally-safe and sustainable materials, and fundamental studies of novel material and material systems for efficient energy harvesting, conversion and storage are encouraged. 
MiamiOH OARS

nsf.gov - Funding - Polymers - US National Science Foundation (NSF) - 0 views

  •  
    The DMR Polymers Program supports fundamental research and education on polymeric materials and polymer science. The program portfolio is mainly experimental and highly diverse with components of materials science, chemistry, physics, and other related disciplines. While interdisciplinarity is stressed, central goals include advancing the foundations of polymer science through innovative research and education and pushing back the wide horizon of the field. Polymers are studied from the molecular level through the nano-to-macro continuum using fundamental materials-focused scientific approaches. Such approaches are experimental but may also closely integrate theoretical, computational, or cyber aspects. Broad areas addressed include synthesis, molecular and self-assembly, characterization, phase behavior, structure, morphology, and properties. Particular focus is on transformative approaches to innovative materials with superior properties, on advancing polymer fundamentals and optimizing structure-property relationships, as well as on basic research addressing major societal challenges. High-quality proposals that integrate research, education, and other broader impacts are invited.
MiamiOH OARS

nsf.gov - Funding - Polymers - US National Science Foundation (NSF) - 0 views

  •  
    The DMR Polymers Program supports fundamental research and education on polymeric materials and polymer science. The program portfolio is mainly experimental and highly diverse with components of materials science, chemistry, physics, and other related disciplines. While interdisciplinarity is stressed, central goals include advancing the foundations of polymer science through innovative research and education and pushing back the wide horizon of the field. Polymers are studied from the molecular level through the nano-to-macro continuum using fundamental materials-focused scientific approaches. Such approaches are experimental but may also closely integrate theoretical, computational, or cyber aspects. Broad areas addressed include synthesis, molecular and self-assembly, characterization, phase behavior, structure, morphology, and properties. Particular focus is on transformative approaches to innovative materials with superior properties, on advancing polymer fundamentals and optimizing structure-property relationships, as well as on basic research addressing major societal challenges. High-quality proposals that integrate research, education, and other broader impacts are invited.
MiamiOH OARS

nsf.gov - Funding - Solid State and Materials Chemistry - US National Science Foundation (NSF) - 0 views

  •  
    This multidisciplinary program supports basic research in solid state and materials chemistry comprising the elucidation of the atomic and molecular basis for material development and properties in the solid state from the nanoscale to the bulk.  General areas of interest include but are not limited to innovative approaches to design, synthesis, bulk crystal and/or film growth, and characterization of novel organic, inorganic, and hybrid materials, as well as liquid crystal materials and multi-component material systems exhibiting new phenomena and/or providing new scientific insights into structure/composition/property relationships in the solid state.  Relevant topics include original material design principles, new approaches to assembly or crystalline material growth, characterization of new material phenomena or superior behavior, investigations of surface and interfacial effects on material system structures and properties, and unraveling the relationships between structure/composition (e.g. self- or program-assembled materials, crystalline material growth, and nanostructured material systems) and properties (e.g. charge, ionic, thermal or spin transport, exciton diffusion, chemical reactivity and selectivity, etc.).  Development of new organic solid state materials, environmentally-safe and sustainable materials, and fundamental studies of novel material and material systems for efficient energy harvesting, conversion and storage are encouraged.  The SSMC program works closely with other programs within the Division of Materials Research (DMR) and in the Mathematical and Physical Sciences (MPS) and Engineering (ENG) directorates to accommodate the multidisciplinary nature of proposal submissions.
MiamiOH OARS

Environmental Chemical Sciences - 0 views

  •  
    The Environmental Chemical Sciences (ECS) Program supports basic research in chemistry that promotes the understanding of natural and anthropogenic chemical processes in our environment. Projects supported by this program enable fundamentally new avenues of basic research and transformative technologies. The program is particularly interested in studying molecular phenomena on surfaces and interfaces in order to understand the inherently complex and heterogeneous environment. Projects utilize advanced experimental, modeling and computational approaches, as well as developing new approaches. Topics include studies of environmental surfaces and interfaces under laboratory conditions, the fundamental properties of water and water solutions important in environmental processes, dissolution, composition, origin and behavior of molecular scale systems under a variety of naturally occurring environmental conditions, chemical reactivity of synthetic nanoparticles and their molecular level interactions with the environment, and application of theoretical models and computational approaches to discover and predict environmental phenomena at the molecular scale.The ECS program supports research in basic chemical aspects of our environment. Programs in the Biological Sciences, Engineering and Geosciences Directorates as well as other federal agencies address other aspects such as field studies.
MiamiOH OARS

Support for Agenda Setting Conferences for the SciSIP Program - 0 views

  •  
    The purpose of this letter is to invite the submission of exceptionally creative conference proposals. The SciSIP program invites organizers and participants from all of the social, behavioral and economic sciences as well as those working in domain-specific applications such as chemistry, biology, physics, or nanotechnology.
MiamiOH OARS

NIH Building Infrastructure Leading to Diversity (BUILD) Initiative (U54) - 0 views

  •  
    The NIH encourages institutions that seek to engage undergraduate students in innovative mentored research training programs to submit applications for cooperative agreement awards through the NIH Building Infrastructure Leading to Diversity (BUILD) initiative, one of three new Common Fund initiatives that together aim to enhance diversity in the biomedical, behavioral, clinical, and social sciences research workforce. Addressing a major leakage point in the research workforce pipeline, BUILD awards are intended to support the design and implementation of innovative programs, strategies and approaches to transform undergraduate research training and mentorship. BUILD awards will also support institutional and faculty development to further strengthen undergraduate research training environments.
MiamiOH OARS

NSF Mechanics of Materials - 0 views

  •  
    The Mechanics of Materials program supports fundamental research on the behavior of solid materials and respective devices under external actions.?? A diverse and interdisciplinary spectrum of research is supported with emphasis placed on fundamental understanding that i) advances theory, experimental, and/or computational methods in Mechanics of Materials, and/or ii) uses contemporary Mechanics of Materials methods to address modern challenges in material and device mechanics and physics. Proposed research can focus on existing or emerging material systems across time and length scales. Intellectual merit typically includes advances in fundamental understanding of deformation, fracture, fatigue, and contact through constitutive modeling, multiscale and multiphysics analysis, computational methods, or experimental techniques.??Recent interests comprise, but are not limited to:?? contemporary materials including multiphase materials and material systems, soft materials, active materials, low-dimensional materials, phononic/elastic metamaterials, friction, wear;??multiphysics methods, mechanics at the nano, meso and microscale and multiscale integration thereof, as well as approaches incorporating fundamental understanding of physics and chemistry into the continuum-level understanding of the response characteristics of materials and material systems.
MiamiOH OARS

Geomechanics & Geomaterials - 0 views

  •  
    The GEOMM program supports fundamental research on the mechanical and engineering properties of geologic materials including natural, mechanically stabilized, and biologically or chemically modified soil and rock. The program also addresses hydraulic, biological, chemical and thermal processes that affect the behavior of geologic materials. Research at the micro-scale on soil-structure interaction and liquefaction are included in the scope of this program. Support is provided for theoretical studies, constitutive and numerical modeling, laboratory, centrifuge, and field testing. Cross-disciplinary and international collaborations are encouraged.
MiamiOH OARS

Coupling, Energetics, and Dynamics of Atmospheric Regions - 0 views

  •  
    CEDAR is a broad-based, community-guided, upper atmospheric research program. The goal is to understand the behavior of atmospheric regions from the middle atmosphere upward through the thermosphere and ionosphere into the exosphere in terms of coupling, energetics, chemistry, and dynamics on regional and global scales. These processes are related to the sources of perturbations that propagate upward from the lower atmosphere as well as to solar radiation and particle inputs from above. The activities within this program combine observations, theory and modeling.
MiamiOH OARS

Biotechnology, Biochemical, and Biomass Engineering - 0 views

  •  
    The Biotechnology, Biochemical, and Biomass Engineering (BBBE) program supports fundamental engineering research that advances the understanding of cellular and biomolecular processes (in vivo, in vitro, and/or ex vivo) and eventually leads to the development of enabling technology and/or applications in support of the biopharmaceutical, biotechnology, and bioenergy industries, or with applications in health or the environment.  Quantitative assessments of bioprocesses are considered vital to successful research projects in the BBBE program.  Fundamental to many research projects in this area is the understanding of how biomolecules and cells interact in their environment, and how those molecular level interactions lead to changes in structure, function, phenotype, and/or behavior.  The program encourages proposals that address emerging research areas and technologies that effectively integrate knowledge and practices from different disciplines, and effectively incorporate ongoing research into educational activities. Research projects of particular interest in BBBE include, but are not limited to: Metabolic engineering and synthetic biology Quantitative systems biotechnology Tissue engineering and stem cell culture technologies Protein engineering/protein design Development of novel "omics" tools for biotechnology applications
MiamiOH OARS

Mentored Quantitative Research Development Award (Parent K25 - Independent Basic Experimental Studies with Humans Required) - 0 views

  •  
    The purpose of the Mentored Quantitative Research Career Development Award (K25) is to attract to NIH-relevant research those investigators whose quantitative science and engineering research has thus far not been focused primarily on questions of health and disease. The K25 award will provide support and "protected time" for a period of supervised study and research for productive professionals with quantitative (e.g., mathematics, statistics, economics, computer science, imaging science, informatics, physics, chemistry) and engineering backgrounds to integrate their expertise with NIH-relevant research. This Funding Opportunity Announcement (FOA) is designed specifically for applicants proposing to lead basic science experimental studies involving humans, referred to in NOT-OD-18-212 as prospective basic science studies involving human participants. These studies fall within the NIH definition of a clinical trial and also meet the definition of basic research. Types of studies that should submit under this FOA include studies that prospectively assign human participants to conditions (i.e., experimentally manipulate independent variables) and that assess biomedical or behavioral outcomes in humans for the purpose of understanding the fundamental aspects of phenomena without specific application towards processes or products in mind. Studies conducted with specific applications toward processes or products in mind should submit under the companion PA-18-395.
MiamiOH OARS

Division of Chemistry: Disciplinary Research Programs (CHE-DRP) (nsf19577) | NSF - National Science Foundation - 0 views

  •  
    CHE supports a large and vibrant research community engaged in fundamental discovery, invention, and innovation in the chemical sciences. The projects supported by CHE explore the frontiers of chemical science, develop the foundations for future technologies and industries that meet changing societal needs, and prepare the next generation of chemical researchers. Some of the areas supported by CHE include: designing, synthesizing and characterizing new molecules, catalysts, surfaces, and nanostructures - especially those with a focus on sustainability; increasing our fundamental understanding of chemical species and their chemical transformations, kinetics, and thermodynamics; developing new tools and novel instrumentation for chemical discovery, including those in sensing, communication, and data discovery science where increasing volumes and varieties of data are harnessed to advance innovation; determining structure-function relationships in biological systems and contributing to our understanding of the fundamental rules of life; observing, manipulating, and controlling the behavior of matter and energy in nanometer dimensions such as the quantum regime; understanding chemical processes in the environment; and solving complex chemical problems by the development of new theories, computations, models, and tools, including the synergistic combination of multiple types of instruments.
MiamiOH OARS

Interactive Digital Media STEM Resources for Pre-College and Informal Science Education Audiences (STTR) (R41/R42 - - 0 views

  •  
    The purpose of this Funding Opportunity Announcement (FOA) is to provide opportunities for eligible small business concerns (SBCs) to submit STTR grant applications to develop interactive digital media science, technology, engineering and mathematics (STEM) resources that address student career choice and health and medicine topics for: (1) pre-kindergarten to grade 12 (P-12) students and pre- and in-service teachers ("Teachers") or (2) Informal science education (ISE), i.e., outside the classroom, audiences. Interactive digital media (IDM) are defined as products and services on digital computer-based systems which respond to the user's actions by presenting content such as text, moving image, animation, video, audio, and video games. There is a large body of evidence that IDM technology has the potential to support learning in a variety of contexts from primary and secondary schools, to universities, adult education and workplace training. IDM is widely used to train, educate, and encourage behavioral changes in a virtual world format where progressive learning, feedback on success and user control are combined into an interactive and engaging experience. It is anticipated that this STTR FOA will facilitate the translation of new or existing health and medicine-based, P-12 STEM curricula and museum exhibits into educational Interactive Digital Media STEM (IDM STEM) resources that will provide a hands-on, inquiry-based and learning-by-doing experience for students, teachers and the community.
MiamiOH OARS

Condensed Matter and Materials Theory (CMMT) | NSF - National Science Foundation - 0 views

  •  
    CMMT supports theoretical and computational materials research in the topical areas represented in DMR's Topical Materials Research Programs (these are also variously known as Individual Investigator Award (IIA) Programs, or Core Programs, or Disciplinary Programs), which include: Condensed Matter Physics (CMP), Biomaterials (BMAT), Ceramics (CER), Electronic and Photonic Materials (EPM), Metals and Metallic Nanostructures (MMN), Polymers (POL), and Solid State and Materials Chemistry (SSMC). The CMMT program supports fundamental research that advances conceptual understanding of hard and soft materials, and materials-related phenomena; the development of associated analytical, computational, and data-centric techniques; and predictive materials-specific theory, simulation, and modeling for materials research.Research may encompass the advance of new paradigms in materials research, including emerging data-centric approaches utilizing data-analytics or machine learning. Computational efforts span from the level of workstations to advanced and high-performance scientific computing. Emphasis is on approaches that begin at the smallest appropriate length scale, such as electronic, atomic, molecular, nano-, micro-, and mesoscale, required to yield fundamental insight into material properties, processes, and behavior, to predict new materials and states of matter, and to reveal new materials phenomena. Approaches that span multiple scales of length and time may be required to advance fundamental understanding of materials properties and phenomena, particularly for polymeric materials and soft matter.
‹ Previous 21 - 40 of 71 Next › Last »
Showing 20 items per page