Skip to main content

Home/ OARS funding Chemistry/ Group items tagged engineering

Rss Feed Group items tagged

MiamiOH OARS

Cellular and Biochemical Engineering - 0 views

  •  
    The Cellular and Biochemical Engineering (CBE)program is part of the Engineering Biology and Health cluster, which also includes 1) Biophotonics; 2) Biosensing; 3) Disability and Rehabilitation Engineering; and 4) Engineering of Biomedical Systems. TheCellular and Biochemical Engineering program supports fundamental engineering research that advances understanding of cellular andbiomolecular processes in engineering biology. CBE-funded research eventually leads to the development of enabling technology for advanced biomanufacturing in support of the therapeutic cell, biochemical, biopharmaceutical, and biotechnology industries. Fundamental to many research projects in this area is the understanding of how biomolecules, subcellular systems, cells, and cell populations interact in the biomanufacturing environment, and how those interactions lead to changes in structure, function, and behavior. A quantitative treatment of problems related to biological processes is considered vital to successful research projects in the CBE program. The program encourages highly innovative and potentially transformative engineering research leading to novel bioprocessing and biomanufacturing approaches. The CBE program also encourages proposals that effectively integrate knowledge and practices from different disciplines while incorporating ongoing research into educational activities.
MiamiOH OARS

Biotechnology and Biochemical Engineering | NSF - National Science Foundation - 0 views

  •  
    The Biotechnology and Biochemical Engineering (BBE) program supports fundamental engineering research that advances the understanding of cellular and biomolecular processes in engineering biology and eventually leads to the development of enabling technology for advanced manufacturing and/or applications in support of the biopharmaceutical, biotechnology, and bioenergy industries, or with applications in health or the environment.  A quantitative treatment of biological and engineering problems of biological processes is considered vital to successful research projects in the BBE program.
  •  
    The Biotechnology and Biochemical Engineering (BBE) program supports fundamental engineering research that advances the understanding of cellular and biomolecular processes in engineering biology and eventually leads to the development of enabling technology for advanced manufacturing and/or applications in support of the biopharmaceutical, biotechnology, and bioenergy industries, or with applications in health or the environment.  A quantitative treatment of biological and engineering problems of biological processes is considered vital to successful research projects in the BBE program.
MiamiOH OARS

Disability and Rehabilitation Engineering - 0 views

  •  
    TheDisability and Rehabilitation Engineeringprogram is part of the Engineering Biology and Health cluster, which also includes: 1) the Biophotonics program; 2) the Biosensing program; 3) the Cellular and Biochemical Engineering program; and 4) the Engineering of Biomedical Systems program. TheDisability andRehabilitation Engineeringprogram supports fundamental engineering research that will improve the quality of life of persons with disabilities through: development of new technologies, devices, or software; advancement of knowledge regarding healthy or pathological human motion; or understanding of injury mechanisms. Research may be supported that is directed toward the characterization, restoration, rehabilitation, and/or substitution of human functional ability or cognition, or to the interaction between persons with disabilities and their environment. Areas of particular interest are neuroengineering and rehabilitation robotics. The program will also consider research in the areas of: new engineering approaches to understand healthy or pathological motion, both as a target for rehabilitation and as a means to characterize motion related to disability or injury; understanding injury at the tissue- or system-level such that interventions may be developed to reduce the impact of trauma and subsequent disability; or understanding the role of gut microbiota in modulating disability in the context of rehabilitation. Emphasis is placed on significant advancement of fundamental engineering knowledge that facilitates transformative outcomes.
MiamiOH OARS

Process Systems, Reaction Engineering, and Molecular Thermodynamics - 0 views

  •  
    The Process Systems, Reaction Engineering and Molecular Thermodynamics program is part of the Chemical Process Systems cluster, which also includes: 1) the Catalysis program; 2) the Electrochemical Systems program; and 3) the Interfacial Engineering program. The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics program is to advance fundamental engineering research on the rates and mechanisms of chemical reactions, systems engineering and molecular thermodynamics as they relate to the design and optimization of chemical reactors and the production of specialized materials that have important impacts on society. The program supports the development of advanced optimization and control algorithms for chemical processes, molecular and multi-scale modeling of complex chemical systems, fundamental studies on molecular thermodynamics, and the integration of this information into the design of complex chemical reactors. An important area supported by the program focuses on the development of energy-efficient and environmentally-friendly chemical processes and materials. Proposals should focus on: · Chemical reaction engineering: This area encompasses the interaction of transport phenomena and kinetics in reactive systems and the use of this knowledge in the design of complex chemical reactors. Focus areas include novel reactor designs, such as catalytic and membrane reactors, micro-reactors, and atomic layer deposition systems; studies of reactions in supercritical fluids; novel activation techniques, such as plasmas, acoustics, and microwaves; design of multifunctional systems, such as "chemical-factory/lab-on-a-chip" concepts; and biomass conversion to fuels and chemicals. The program also supports new approaches that enable the design of modular chemical manufacturing systems.
MiamiOH OARS

Cellular and Biochemical Engineering | NSF - National Science Foundation - 0 views

  •  
    The Cellular and Biochemical Engineering (CBE) program supports fundamental engineering research that advances the understanding of cellular and biomolecular processes in engineering biology and eventually leads to the development of enabling technology for advanced biomanufacturing in support of the therapeutic cells, biochemical, biopharmaceutical and biotechnology industries.  A quantitative treatment of biological and engineering problems of biological processes is considered vital to successful research projects in the CBE program.  Fundamental to many research projects in this area is the understanding of how biomolecules, cells and cell populations interact in the biomanufacturing environment, and how those molecular-level interactions lead to changes in structure, function, and behavior.  The program encourages highly innovative and potentially transformative engineering research leading to novel bioprocessing and biomanufacturing approaches, and proposals that address emerging research areas and technologies that effectively integrate knowledge and practices from different disciplines while incorporating ongoing research into educational activities.
MiamiOH OARS

Biotechnology, Biochemical, and Biomass Engineering - 0 views

  •  
    The Biotechnology, Biochemical, and Biomass Engineering (BBBE) program supports fundamental engineering research that advances the understanding of cellular and biomolecular processes (in vivo, in vitro, and/or ex vivo) and eventually leads to the development of enabling technology and/or applications in support of the biopharmaceutical, biotechnology, and bioenergy industries, or with applications in health or the environment.  Quantitative assessments of bioprocesses are considered vital to successful research projects in the BBBE program.  Fundamental to many research projects in this area is the understanding of how biomolecules and cells interact in their environment, and how those molecular level interactions lead to changes in structure, function, phenotype, and/or behavior.  The program encourages proposals that address emerging research areas and technologies that effectively integrate knowledge and practices from different disciplines, and effectively incorporate ongoing research into educational activities. Research projects of particular interest in BBBE include, but are not limited to: Metabolic engineering and synthetic biology Quantitative systems biotechnology Tissue engineering and stem cell culture technologies Protein engineering/protein design Development of novel "omics" tools for biotechnology applications
MiamiOH OARS

Environmental Engineering | NSF - National Science Foundation - 0 views

  •  
    The goal of the Environmental Engineering program is to support transformative research which applies scientific and engineering principles to avoid or minimize solid, liquid, and gaseous discharges, resulting from human activities on land, inland and coastal waters, and air, while promoting resource and energy conservation and recovery.  The program also fosters cutting-edge scientific research for identifying, evaluating, and monitoring the waste assimilative capacity of the natural environment and for removing or reducing contaminants from polluted air, water, and soils. Any proposal investigating sensors, materials or devices that does not integrate these products with an environmental engineering activity or area of research may be returned without review.
  •  
    The goal of the Environmental Engineering program is to support transformative research which applies scientific and engineering principles to avoid or minimize solid, liquid, and gaseous discharges, resulting from human activities on land, inland and coastal waters, and air, while promoting resource and energy conservation and recovery.  The program also fosters cutting-edge scientific research for identifying, evaluating, and monitoring the waste assimilative capacity of the natural environment and for removing or reducing contaminants from polluted air, water, and soils. Any proposal investigating sensors, materials or devices that does not integrate these products with an environmental engineering activity or area of research may be returned without review.
MiamiOH OARS

Process Systems, Reaction Engineering and Molecular Thermodynamics | NSF - National Sci... - 0 views

  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
MiamiOH OARS

Process Systems, Reaction Engineering and Molecular Thermodynamics | NSF - National Sci... - 0 views

  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding.
  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding.
MiamiOH OARS

Process Systems, Reaction Engineering and Molecular Thermodynamics | NSF - National Sci... - 0 views

  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
MiamiOH OARS

Nano-Biosensing | NSF - National Science Foundation - 0 views

  •  
    The Nano-Biosensing program is part of the Engineering Biology and Health cluster, which includes also 1) Cellular and Biochemical Engineering; 2) Engineering of Biomedical Systems; 3) Biophotonics; and 4) Disability and Rehabilitation Engineering. The Nano-Biosensing program supports fundamental engineering research on devices and methods for measurement and quantification of biological analytes. Proposals that incorporate emerging nanotechnology methods are especially encouraged. Areas of interest include: -Multi-purpose sensor platforms that exceed the performance of current state-of-the-art devices. -Novel transduction principles, mechanisms and sensor designs suitable for measurement in practical matrix and sample-preparation-free approaches. These include error-free detection of pathogens and toxins in food matrices, waterborne pathogens, parasites, toxins, biomarkers in body fluids, and others that improve human condition. -Nano-biosensors that enable measurement of biomolecular interactions in their native states, transmembrane transport, intracellular transport and reactions, and other biological phenomena. -Studies that examine intracellular measurements must include discussion on the significance of the measurement. 
MiamiOH OARS

nsf.gov - Funding - Biotechnology, Biochemical, and Biomass Engineering - US National S... - 0 views

  •  
    The Biotechnology, Biochemical, and Biomass Engineering (BBBE) program supports fundamental engineering research that advances the understanding of cellular and biomolecular processes (in vivo, in vitro, and/or ex vivo) and eventually leads to the development of enabling technology and/or applications in support of the biopharmaceutical, biotechnology, and bioenergy industries, or with applications in health or the environment.  Quantitative assessments of bioprocesses are considered vital to successful research projects in the BBBE program.  Fundamental to many research projects in this area is the understanding of how biomolecules and cells interact in their environment, and how those molecular level interactions lead to changes in structure, function, phenotype, and/or behavior.  The program encourages proposals that address emerging research areas and technologies that effectively integrate knowledge and practices from different disciplines, and effectively incorporate ongoing research into educational activities. Research projects of particular interest in BBBE include, but are not limited to: Metabolic engineering and synthetic biology Quantitative systems biotechnology Tissue engineering and stem cell culture technologies Protein engineering/protein design Development of novel "omics" tools for biotechnology applications
MiamiOH OARS

Harnessing the Data Revolution (HDR): Institutes for Data-Intensive Research in Science... - 0 views

  •  
    In 2016, the National Science Foundation (NSF) unveiled a set of "Big Ideas," 10 bold, long-term research and process ideas that identify areas for future investment at the frontiers of science and engineering (see https://www.nsf.gov/news/special_reports/big_ideas/index.jsp). The Big Ideas represent unique opportunities to position our Nation at the cutting edge of global science and engineering leadership by bringing together diverse disciplinary perspectives to support convergence research. As such, when responding to this solicitation, even though proposals must be submitted to the Directorate for Computer & Information Science & Engineering/Office of Advanced Cyberinfrastructure(CISE/OAC), once received, the proposals will be managed by a cross-disciplinary team of NSF Program Directors. NSF's Harnessing the Data Revolution (HDR) Big Ideais a national-scale activity to enable new modes of data-driven discovery that will allow fundamental questions to be asked and answered at the frontiers of science and engineering.
MiamiOH OARS

nsf.gov - Funding - Partnerships for International Research and Education - US National... - 0 views

  •  
    Partnerships for International Research and Education (PIRE) is an NSF-wide program that supports international activities across all NSF supported disciplines. The primary goal of PIRE is to support high quality projects in which advances in research and education could not occur without international collaboration. PIRE seeks to catalyze a higher level of international engagement in the U.S. science and engineering community. International partnerships are essential to addressing critical science and engineering problems. In the global context, U.S. researchers and educators must be able to operate effectively in teams with partners from different national environments and cultural backgrounds. PIRE promotes excellence in science and engineering through international collaboration and facilitates development of a diverse, globally-engaged, U.S. science and engineering workforce.
MiamiOH OARS

Enabling Quantum Leap: Quantum Idea Incubator for Transformational Advances in Quantum ... - 0 views

  •  
    n 2016, the National Science Foundation (NSF) unveiled a set of "Big Ideas," 10 bold, long-term research and process ideas that identify areas for future investment at the frontiers of science and engineering (seehttps://www.nsf.gov/news/special_reports/big_ideas/index.jsp). The Big Ideas represent unique opportunities to position our Nation at the cutting edge of global science and engineering leadership by bringing together diverse disciplinary perspectives to support convergence research. As such, when responding to this solicitation, even though proposals must be submitted to the Directorate for Mathematical & Physical Sciences/Office of Multidisciplinary Activities (MPS/OMA),once received, the proposals will be managed by a cross-disciplinary team of NSF Program Directors. The Quantum Idea Incubator for Transformational Advances in Quantum Systems (QII - TAQS) program is designed to support interdisciplinary teams that will explore highly innovative, original, and potentially transformative ideas for developing and applying quantum science, quantum computing, and quantum engineering. Proposals with the potential to deliver new concepts, new platforms, and/or new approaches that will accelerate the science, computing, and engineering of quantum technologies are encouraged. Breakthroughs in quantum sensing, quantum communications, quantum simulations, or quantum computing systems are anticipated.
MiamiOH OARS

U.S. Nuclear Regulatory Commission Funding Opportunity Announcement (FOA), Scholarship ... - 0 views

  •  
    The primary objective is to support scholarships for nuclear science, engineering, technology and related disciplines to develop a workforce capable of supporting the design, construction, operation, and regulation of nuclear facilities and the safe handling of nuclear materials. The primary objective is to support fellowships for nuclear science, engineering, technology and related disciplines to develop a workforce capable of supporting the design, construction, operation, and regulation of nuclear facilities and the safe handling of nuclear materials. The primary objective is to support faculty development for nuclear science, engineering, technology and related disciplines to develop a workforce capable of supporting the design, construction, operation, and regulation of nuclear facilities and the safe handling of nuclear materials. The grants specifically target probationary, tenure-track faculty during the first 6 years of their career and new faculty hires in the following academic areas: Nuclear, Mechanical, Civil, Environmental, Electrical, Fire Protection, Geotechnical, Structural and Materials Sciences Engineering as well as Health Physics. The program provides support to enable newer faculty to enhance their careers as professors and researchers in the university department where employed.
MiamiOH OARS

National Security Science and Engineering Faculty Fellowship - 0 views

  •  
    The National Security Science and Engineering Faculty Fellowship (NSSEFF) program is sponsored by the Basic Research Office, Office of Assistant Secretary of Defense for Research and Engineering (ASD (R&E)). NSSEFF supports innovative basic research within academia, as well as education initiatives that seek to create and develop the next generation of scientists and engineers for the defense and national security workforce.
MiamiOH OARS

Environmental Engineering - 0 views

  •  
    The Environmental Engineering program supports fundamental research and educational activities across the broad field of environmental engineering.  The goal of this program is to encourage transformative research which applies scientific and engineering principles to avoid or minimize solid, liquid, and gaseous discharges, resulting from human activity, into land, inland and coastal waters, and air, while promoting resource and energy conservation and recovery.  The program also fosters cutting-edge scientific research for identifying, evaluating, and monitoring the waste assimilative capacity of the natural environment and for removing or reducing contaminants from polluted air, water, and soils.
MiamiOH OARS

Emerging Frontiers in Research and Innovation 2021 (EFRI-2021) (nsf20614) | NSF - Natio... - 0 views

  •  
    The Emerging Frontiers in Research and Innovation (EFRI) program of the NSF Directorate for Engineering (ENG) serves a critical role in helping ENG focus on important emerging areas in a timely manner. This solicitation is a funding opportunity for interdisciplinary teams of researchers to embark on rapidly advancing frontiers of fundamental engineering research. For this solicitation, we will consider proposals that aim to investigate emerging frontiers in one of the following two research areas: Distributed Chemical Manufacturing (DCheM) Engineering the Elimination of End-of-Life Plastics (E3P) This solicitation will be coordinated with the Directorate for Biological Sciences, the Directorate for Mathematical and Physical Sciences and the Directorate for Social, Behavioral and Economic Sciences. EFRI seeks proposals with potentially transformative ideas that represent an opportunity for a significant shift in fundamental engineering knowledge with a strong potential for long term impact on national needs or a grand challenge. The proposals must also meet the detailed requirements delineated in this solicitation.
MiamiOH OARS

nsf.gov - Funding - Partnerships for Innovation: Accelerating Innovation Research - US ... - 0 views

  •  
    To continue to strengthen the innovation ecosystem, NSF is revising NSF 12-511 to promote two choices under the Partnerships for Innovation (PFI): Accelerating Innovation Research (AIR) subprogram.  The first choice, Technology Translation, encourages the translation of technologically-promising research discoveries made by prior and/or current NSF-funded investigators toward a path of commercialization; while the second choice, Research Alliance, promotes synergistic collaborations between an existing NSF-funded research alliance (including consortia such as Engineering Research Centers, Industry University Cooperative Research Centers, Science and Technology Centers, Nanoscale Science and Engineering Centers, Materials Research Science and Engineering Centers, Centers for Chemical Innovation, and Emerging Frontiers in Research and Innovation grantees) and other public and private entities to motivate the translation and transfer of research discoveries into innovative technologies and commercial reality.  Both of these choices are designed to accelerate innovation that results in the creation of new wealth and the building of strong local, regional, and national economies.
1 - 20 of 362 Next › Last »
Showing 20 items per page