Skip to main content

Home/ Math-a-manics/ Group items tagged engagement

Rss Feed Group items tagged

Peter Kronfeld

Student-Built EV Is More Than Just a Car | Autopia | Wired.com - 0 views

  • “We’re trying to take kids who haven’t been engaged in school and hook them to an expanded vision of what their future might be,” he said. When they return to their own schools, the hope is that they’ll be more interested in history, math and English — and have a sense of environmental stewardship as well.
  • “The most important thing really is teaching kids through hands on, experiential learning,” said Rees. “Our kids do this because they’re inspired to be there every week, to work with adults and do hands on things.”
Peter Kronfeld

Go Ahead, Mess With Texas Instruments - Phil Nichols - The Atlantic - 0 views

  • If you had asked them, most of my high school teachers would have called me an unmotivated student or said that I lacked discipline and didn't take learning seriously. And yet, that abandoned storage bin told another story: with the aid of my calculator, I'd crafted narratives, drawn storyboards, visualized foreign and familiar environments and coded them into existence. I'd learned two programming languages and developed an online network of support from experienced programmers. I'd honed heuristics for research and discovered workarounds when I ran into obstacles. I'd found outlets to share my creations and used feedback from others to revise and refine my work. The TI-83 Plus had helped me cultivate many of the overt and discrete habits of mind necessary for autonomous, self-directed learning. And even more, it did this without resorting to grades, rewards, or other extrinsic motivators that schools often use to coerce student engagement.
  • I've now begun to see Texas Instruments graphing calculators as unique among educational technologies in that they enable learning that is couched in discovery more than formal teaching.
  • take the notion of "correctness." School typically assumes that answers fall neatly into categories of "right" and "wrong." As a conventional tool for computing "right" answers, calculators often legitimize this idea; the calculator solves problems, gives answers. But once an endorsed, conventional calculator becomes a subversive, programmable computer it destabilizes this polarity. Programming undermines the distinction between "right" and "wrong" by emphasizing the fluidity between the two. In programming, there is no "right" answer. Sure, a program might not compile or run, but making it offers multiple pathways to success, many of which are only discovered through a series of generative failures. Programming does not reify "rightness;" instead, it orients the programmer toward intentional reading, debugging, and refining of language to ensure clarity. This is a form of learning that privileges the process of discovery over the interventions of formal teaching. It can fuel an intrinsic desire to pursue similar learning experiences, but even more, it gradually transforms the outlook of the student
  • ...3 more annotations...
  • Subversion encourages students to take an imaginative stance toward learning, to embrace failure as an integral part of success, to see the world for what it is and consider what it might look like under a different set of conditions.
  • The iPad is among the recent panaceas being peddled to schools, but like those that came before, its ostensibly subversive shell houses a fairly conventional approach to learning. Where Texas Instruments graphing calculators include a programming framework accessible even to amateurs, writing code for an iPad is restricted to those who purchase an Apple developer account, create programs that align with Apple standards, and submit their finished products for Apple's approval prior to distribution. As such, for the average student, imaginative activities on an iPad are always mediated by pre-existing apps and therefore, are limited to virtual worlds created by others, not by students themselves. Pair this with the fact that most teachers and administrators only allow classroom use of a few endorsed apps and it becomes clear that these devices are doing more to centralize the school's authority over the learning process than to encourage self-directed creative activity.
  • learning to program taught habits of mind that persist to this day in small yet vital ways. In my work as a teacher, I often hear colleagues lamenting the widespread use of calculator games among students. They consider such forms of "play" an abuse of educational technology and a threat to student learning. But this assumption ignores the tacit learning that arises from repurposing conventional learning apparatuses. My TI-83 Plus awoke a curiosity that exerted a subtle but powerful push toward autonomy and self-direction.
  •  
    Learning to program a graphing calculator gave the author a deeper education. Results: intrinsic motivation and an ability to "embrace failure as an integral part of success", as well as developing creativity, problem-solving skills, and persistence. Interesting critique of the iPad as a more conventional tool of learning vs. subversive.
Peter Kronfeld

Kids Like to Learn Algebra, if It Comes in the Right App - Wired Science - 0 views

  • non-­scientist gamers developed more-­complex proteins than biochemists did
  • As harder concepts are introduced, students who need more time on a level get additional problems; those who understand it move on.
  • 93 percent of K–12 students successfully mastered concepts after only 90 minutes of gameplay, and they didn’t want to stop
Peter Kronfeld

How a Radical New Teaching Method Could Unleash a Generation of Geniuses | Wired Busine... - 0 views

  • As she headed into fifth grade, she assumed she was in for more of the same—lectures, memorization, and busy work. Sergio Juárez Correa was used to teaching that kind of class. For five years, he had stood in front of students and worked his way through the government-mandated curriculum. It was mind-numbingly boring for him and the students, and he’d come to the conclusion that it was a waste of time. Test scores were poor, and even the students who did well weren’t truly engaged.
  • Juárez Correa didn’t know it yet, but he had happened on an emerging educational philosophy, one that applies the logic of the digital age to the classroom. That logic is inexorable: Access to a world of infinite information has changed how we communicate, process information, and think. Decentralized systems have proven to be more productive and agile than rigid, top-down ones. Innovation, creativity, and independent thinking are increasingly crucial to the global economy. And yet the dominant model of public education is still fundamentally rooted in the industrial revolution that spawned it, when workplaces valued punctuality, regularity, attention, and silence above all else.
  • knowledge isn’t a commodity that’s delivered from teacher to student but something that emerges from the students’ own curiosity-fueled exploration. Teachers provide prompts, not answers, and then they step aside so students can teach themselves and one another. They are creating ways for children to discover their passion—and uncovering a generation of geniuses in the process.
  • ...5 more annotations...
  • “So,” Juárez Correa said, “what do you want to learn?”
  • His defining principle: “The children are completely in charge.”
  • if you’re not the one who’s controlling your learning, you’re not going to learn as well,”
  • Peter Gray, a research professor at Boston College who studies children’s natural ways of learning, argues that human cognitive machinery is fundamentally incompatible with conventional schooling. Gray points out that young children, motivated by curiosity and playfulness, teach themselves a tremendous amount about the world. And yet when they reach school age, we supplant that innate drive to learn with an imposed curriculum. “We’re teaching the child that his questions don’t matter, that what matters are the questions of the curriculum. That’s just not the way natural selection designed us to learn. It designed us to solve problems and figure things out that are part of our real lives.”
  • He squatted next to her and asked why she hadn’t expressed much interest in math in the past, since she was clearly good at it. “Because no one made it this interesting,” she said.
Peter Kronfeld

Shooting for the Sun - Magazine - The Atlantic - 0 views

  • JTEC was only a set of mathematical equations and the beginnings of a prototype, but Johnson had made the tantalizing claim that his device would be able to turn solar heat into electricity with twice the efficiency of a photovoltaic cell
  •  
    Might interest students that don't find math relevant or engaging. What teenager doesn't like a SuperSoaker?
Peter Kronfeld

Vi Hart's Videos Bend and Stretch Math to Inspire - NYTimes.com - 0 views

  • Then, in November, she posted on YouTube a video about doodling in math class, which married a distaste for the way math is taught in school with an exuberant exploration of math as art .
  • At first glance, Ms. Hart’s fascination with mathematics might seem odd and unexpected. She graduated with a degree in music, and she never took a math course in college.
  • The ensuing attention has come with job offers and an income. In one week in December, she earned $300 off the advertising revenue that YouTube shares with video creators. She is also happy that, unlike in her early efforts, which drew an audience typical of mathematics research — older and male, mostly — the biggest demographic for her new videos, at least among registered users, are teenage girls.
  •  
    Great argument for math's relationship to art, against math as mere calculation drudgery. Check out the links to engaging YouTube videos.
1 - 6 of 6
Showing 20 items per page