Skip to main content

Home/ Larvata/ Group items tagged svg

Rss Feed Group items tagged

張 旭

Data Sources - Configuration Language | Terraform | HashiCorp Developer - 0 views

  • Each provider may offer data sources alongside its set of resource types.
  • When distinguishing from data resources, the primary kind of resource (as declared by a resource block) is known as a managed resource.
  • Each data resource is associated with a single data source, which determines the kind of object (or objects) it reads and what query constraint arguments are available.
  • ...4 more annotations...
  • Terraform reads data resources during the planning phase when possible, but announces in the plan when it must defer reading resources until the apply phase to preserve the order of operations.
  • local-only data sources exist for rendering templates, reading local files, and rendering AWS IAM policies.
  • As with managed resources, when count or for_each is present it is important to distinguish the resource itself from the multiple resource instances it creates. Each instance will separately read from its data source with its own variant of the constraint arguments, producing an indexed result.
  • Data instance arguments may refer to computed values, in which case the attributes of the instance itself cannot be resolved until all of its arguments are defined. I
張 旭

Providers - Configuration Language | Terraform | HashiCorp Developer - 0 views

  • Terraform relies on plugins called providers to interact with cloud providers, SaaS providers, and other APIs.
  • Terraform configurations must declare which providers they require so that Terraform can install and use them.
  • Each provider adds a set of resource types and/or data sources that Terraform can manage.
  • ...6 more annotations...
  • Every resource type is implemented by a provider; without providers, Terraform can't manage any kind of infrastructure.
  • The Terraform Registry is the main directory of publicly available Terraform providers, and hosts providers for most major infrastructure platforms.
  • Dependency Lock File documents an additional HCL file that can be included with a configuration, which tells Terraform to always use a specific set of provider versions.
  • Terraform CLI finds and installs providers when initializing a working directory. It can automatically download providers from a Terraform registry, or load them from a local mirror or cache.
  • To save time and bandwidth, Terraform CLI supports an optional plugin cache. You can enable the cache using the plugin_cache_dir setting in the CLI configuration file.
  • you can use Terraform CLI to create a dependency lock file and commit it to version control along with your configuration.
crazylion lee

Textures.js - 0 views

  •  
    "SVG patterns for Data Visualization"
crazylion lee

flowchart.js - 0 views

  •  
    "Draws simple SVG flow chart diagrams from textual representation of the diagram"
crazylion lee

Vega - 0 views

  •  
    "Vega is a declarative format for creating, saving, and sharing visualization designs. With Vega, visualizations are described in JSON, and generate interactive views using either HTML5 Canvas or SVG."
張 旭

Syntax - Configuration Language | Terraform | HashiCorp Developer - 0 views

  • the native syntax of the Terraform language, which is a rich language designed to be relatively easy for humans to read and write.
  • Terraform's configuration language is based on a more general language called HCL, and HCL's documentation usually uses the word "attribute" instead of "argument."
  • A particular block type may have any number of required labels, or it may require none
  • ...34 more annotations...
  • After the block type keyword and any labels, the block body is delimited by the { and } characters
  • Identifiers can contain letters, digits, underscores (_), and hyphens (-). The first character of an identifier must not be a digit, to avoid ambiguity with literal numbers.
  • The # single-line comment style is the default comment style and should be used in most cases.
  • he idiomatic style is to use the Unix convention
  • Indent two spaces for each nesting level.
  • align their equals signs
  • Use empty lines to separate logical groups of arguments within a block.
  • Use one blank line to separate the arguments from the blocks.
  • "meta-arguments" (as defined by the Terraform language semantics)
  • Avoid separating multiple blocks of the same type with other blocks of a different type, unless the block types are defined by semantics to form a family.
  • Resource names must start with a letter or underscore, and may contain only letters, digits, underscores, and dashes.
  • Each resource is associated with a single resource type, which determines the kind of infrastructure object it manages and what arguments and other attributes the resource supports.
  • Each resource type is implemented by a provider, which is a plugin for Terraform that offers a collection of resource types.
  • By convention, resource type names start with their provider's preferred local name.
  • Most publicly available providers are distributed on the Terraform Registry, which also hosts their documentation.
  • The Terraform language defines several meta-arguments, which can be used with any resource type to change the behavior of resources.
  • use precondition and postcondition blocks to specify assumptions and guarantees about how the resource operates.
  • Some resource types provide a special timeouts nested block argument that allows you to customize how long certain operations are allowed to take before being considered to have failed.
  • Timeouts are handled entirely by the resource type implementation in the provider
  • Most resource types do not support the timeouts block at all.
  • A resource block declares that you want a particular infrastructure object to exist with the given settings.
  • Destroy resources that exist in the state but no longer exist in the configuration.
  • Destroy and re-create resources whose arguments have changed but which cannot be updated in-place due to remote API limitations.
  • Expressions within a Terraform module can access information about resources in the same module, and you can use that information to help configure other resources. Use the <RESOURCE TYPE>.<NAME>.<ATTRIBUTE> syntax to reference a resource attribute in an expression.
  • resources often provide read-only attributes with information obtained from the remote API; this often includes things that can't be known until the resource is created, like the resource's unique random ID.
  • data sources, which are a special type of resource used only for looking up information.
  • some dependencies cannot be recognized implicitly in configuration.
  • local-only resource types exist for generating private keys, issuing self-signed TLS certificates, and even generating random ids.
  • The behavior of local-only resources is the same as all other resources, but their result data exists only within the Terraform state.
  • The count meta-argument accepts a whole number, and creates that many instances of the resource or module.
  • count.index — The distinct index number (starting with 0) corresponding to this instance.
  • the count value must be known before Terraform performs any remote resource actions. This means count can't refer to any resource attributes that aren't known until after a configuration is applied
  • Within nested provisioner or connection blocks, the special self object refers to the current resource instance, not the resource block as a whole.
  • This was fragile, because the resource instances were still identified by their index instead of the string values in the list.
  •  
    "the native syntax of the Terraform language, which is a rich language designed to be relatively easy for humans to read and write. "
張 旭

The for_each Meta-Argument - Configuration Language | Terraform | HashiCorp Developer - 0 views

  • A given resource or module block cannot use both count and for_each
  • The for_each meta-argument accepts a map or a set of strings, and creates an instance for each item in that map or set
  • each.key — The map key (or set member) corresponding to this instance.
  • ...10 more annotations...
  • each.value — The map value corresponding to this instance. (If a set was provided, this is the same as each.key.)
  • for_each keys cannot be the result (or rely on the result of) of impure functions, including uuid, bcrypt, or timestamp, as their evaluation is deferred during the main evaluation step.
  • The value used in for_each is used to identify the resource instance and will always be disclosed in UI output, which is why sensitive values are not allowed.
  • if you would like to call keys(local.map), where local.map is an object with sensitive values (but non-sensitive keys), you can create a value to pass to for_each with toset([for k,v in local.map : k]).
  • for_each can't refer to any resource attributes that aren't known until after a configuration is applied (such as a unique ID generated by the remote API when an object is created).
  • he for_each argument does not implicitly convert lists or tuples to sets.
  • Transform a multi-level nested structure into a flat list by using nested for expressions with the flatten function.
  • Instances are identified by a map key (or set member) from the value provided to for_each
  • Within nested provisioner or connection blocks, the special self object refers to the current resource instance, not the resource block as a whole.
  • Conversion from list to set discards the ordering of the items in the list and removes any duplicate elements.
張 旭

Production environment | Kubernetes - 0 views

  • to promote an existing cluster for production use
  • Separating the control plane from the worker nodes.
  • Having enough worker nodes available
  • ...22 more annotations...
  • You can use role-based access control (RBAC) and other security mechanisms to make sure that users and workloads can get access to the resources they need, while keeping workloads, and the cluster itself, secure. You can set limits on the resources that users and workloads can access by managing policies and container resources.
  • you need to plan how to scale to relieve increased pressure from more requests to the control plane and worker nodes or scale down to reduce unused resources.
  • Managed control plane: Let the provider manage the scale and availability of the cluster's control plane, as well as handle patches and upgrades.
  • The simplest Kubernetes cluster has the entire control plane and worker node services running on the same machine.
  • You can deploy a control plane using tools such as kubeadm, kops, and kubespray.
  • Secure communications between control plane services are implemented using certificates.
  • Certificates are automatically generated during deployment or you can generate them using your own certificate authority.
  • Separate and backup etcd service: The etcd services can either run on the same machines as other control plane services or run on separate machines
  • Create multiple control plane systems: For high availability, the control plane should not be limited to a single machine
  • Some deployment tools set up Raft consensus algorithm to do leader election of Kubernetes services. If the primary goes away, another service elects itself and take over.
  • Groups of zones are referred to as regions.
  • if you installed with kubeadm, there are instructions to help you with Certificate Management and Upgrading kubeadm clusters.
  • Production-quality workloads need to be resilient and anything they rely on needs to be resilient (such as CoreDNS).
  • Add nodes to the cluster: If you are managing your own cluster you can add nodes by setting up your own machines and either adding them manually or having them register themselves to the cluster’s apiserver.
  • Set up node health checks: For important workloads, you want to make sure that the nodes and pods running on those nodes are healthy.
  • Authentication: The apiserver can authenticate users using client certificates, bearer tokens, an authenticating proxy, or HTTP basic auth.
  • Authorization: When you set out to authorize your regular users, you will probably choose between RBAC and ABAC authorization.
  • Role-based access control (RBAC): Lets you assign access to your cluster by allowing specific sets of permissions to authenticated users. Permissions can be assigned for a specific namespace (Role) or across the entire cluster (ClusterRole).
  • Attribute-based access control (ABAC): Lets you create policies based on resource attributes in the cluster and will allow or deny access based on those attributes.
  • Set limits on workload resources
  • Set namespace limits: Set per-namespace quotas on things like memory and CPU
  • Prepare for DNS demand: If you expect workloads to massively scale up, your DNS service must be ready to scale up as well.
張 旭

phusion/baseimage-docker - 1 views

    • 張 旭
       
      原始的 docker 在執行命令時,預設就是將傳入的 COMMAND 當成 PID 1 的程序,執行完畢就結束這個  docker,其他的 daemons 並不會執行,而 baseimage 解決了這個問題。
    • crazylion lee
       
      好棒棒
  • docker exec
  • Through SSH
  • ...57 more annotations...
  • docker exec -t -i YOUR-CONTAINER-ID bash -l
  • Login to the container
  • Baseimage-docker only advocates running multiple OS processes inside a single container.
  • Password and challenge-response authentication are disabled by default. Only key authentication is allowed.
  • A tool for running a command as another user
  • The Docker developers advocate the philosophy of running a single logical service per container. A logical service can consist of multiple OS processes.
  • All syslog messages are forwarded to "docker logs".
  • Baseimage-docker advocates running multiple OS processes inside a single container, and a single logical service can consist of multiple OS processes.
  • Baseimage-docker provides tools to encourage running processes as different users
  • sometimes it makes sense to run multiple services in a single container, and sometimes it doesn't.
  • Splitting your logical service into multiple OS processes also makes sense from a security standpoint.
  • using environment variables to pass parameters to containers is very much the "Docker way"
  • Baseimage-docker provides a facility to run a single one-shot command, while solving all of the aforementioned problems
  • the shell script must run the daemon without letting it daemonize/fork it.
  • All executable scripts in /etc/my_init.d, if this directory exists. The scripts are run in lexicographic order.
  • variables will also be passed to all child processes
  • Environment variables on Unix are inherited on a per-process basis
  • there is no good central place for defining environment variables for all applications and services
  • centrally defining environment variables
  • One of the ideas behind Docker is that containers should be stateless, easily restartable, and behave like a black box.
  • a one-shot command in a new container
  • immediately exit after the command exits,
  • However the downside of this approach is that the init system is not started. That is, while invoking COMMAND, important daemons such as cron and syslog are not running. Also, orphaned child processes are not properly reaped, because COMMAND is PID 1.
  • add additional daemons (e.g. your own app) to the image by creating runit entries.
  • Nginx is one such example: it removes all environment variables unless you explicitly instruct it to retain them through the env configuration option.
  • Mechanisms for easily running multiple processes, without violating the Docker philosophy
  • Ubuntu is not designed to be run inside Docker
  • According to the Unix process model, the init process -- PID 1 -- inherits all orphaned child processes and must reap them
  • Syslog-ng seems to be much more stable
  • cron daemon
  • Rotates and compresses logs
  • /sbin/setuser
  • A tool for installing apt packages that automatically cleans up after itself.
  • a single logical service inside a single container
  • A daemon is a program which runs in the background of its system, such as a web server.
  • The shell script must be called run, must be executable, and is to be placed in the directory /etc/service/<NAME>. runsv will switch to the directory and invoke ./run after your container starts.
  • If any script exits with a non-zero exit code, the booting will fail.
  • If your process is started with a shell script, make sure you exec the actual process, otherwise the shell will receive the signal and not your process.
  • any environment variables set with docker run --env or with the ENV command in the Dockerfile, will be picked up by my_init
  • not possible for a child process to change the environment variables of other processes
  • they will not see the environment variables that were originally passed by Docker.
  • We ignore HOME, SHELL, USER and a bunch of other environment variables on purpose, because not ignoring them will break multi-user containers.
  • my_init imports environment variables from the directory /etc/container_environment
  • /etc/container_environment.sh - a dump of the environment variables in Bash format.
  • modify the environment variables in my_init (and therefore the environment variables in all child processes that are spawned after that point in time), by altering the files in /etc/container_environment
  • my_init only activates changes in /etc/container_environment when running startup scripts
  • environment variables don't contain sensitive data, then you can also relax the permissions
  • Syslog messages are forwarded to the console
  • syslog-ng is started separately before the runit supervisor process, and shutdown after runit exits.
  • RUN apt-get update && apt-get upgrade -y -o Dpkg::Options::="--force-confold"
  • /sbin/my_init --skip-startup-files --quiet --
  • By default, no keys are installed, so nobody can login
  • provide a pregenerated, insecure key (PuTTY format)
  • RUN /usr/sbin/enable_insecure_key
  • docker run YOUR_IMAGE /sbin/my_init --enable-insecure-key
  • RUN cat /tmp/your_key.pub >> /root/.ssh/authorized_keys && rm -f /tmp/your_key.pub
  • The default baseimage-docker installs syslog-ng, cron and sshd services during the build process
張 旭

phusion/passenger-docker: Docker base images for Ruby, Python, Node.js and Meteor web apps - 0 views

  • Ubuntu 20.04 LTS as base system
  • 2.7.5 is configured as the default.
  • Python 3.8
  • ...23 more annotations...
  • A build system, git, and development headers for many popular libraries, so that the most popular Ruby, Python and Node.js native extensions can be compiled without problems.
  • Nginx 1.18. Disabled by default
  • production-grade features, such as process monitoring, administration and status inspection.
  • Redis 5.0. Not installed by default.
  • The image has an app user with UID 9999 and home directory /home/app. Your application is supposed to run as this user.
  • running applications without root privileges is good security practice.
  • Your application should be placed inside /home/app.
  • COPY --chown=app:app
  • Passenger works like a mod_ruby, mod_nodejs, etc. It changes Nginx into an application server and runs your app from Nginx.
  • placing a .conf file in the directory /etc/nginx/sites-enabled
  • The best way to configure Nginx is by adding .conf files to /etc/nginx/main.d and /etc/nginx/conf.d
  • files in conf.d are included in the Nginx configuration's http context.
  • any environment variables you set with docker run -e, Docker linking and /etc/container_environment, won't reach Nginx.
  • To preserve these variables, place an Nginx config file ending with *.conf in the directory /etc/nginx/main.d, in which you tell Nginx to preserve these variables.
  • By default, Phusion Passenger sets all of the following environment variables to the value production
  • Setting these environment variables yourself (e.g. using docker run -e RAILS_ENV=...) will not have any effect, because Phusion Passenger overrides all of these environment variables.
  • PASSENGER_APP_ENV environment variable
  • passenger-docker autogenerates an Nginx configuration file (/etc/nginx/conf.d/00_app_env.conf) during container boot.
  • The configuration file is in /etc/redis/redis.conf. Modify it as you see fit, but make sure daemonize no is set.
  • You can add additional daemons to the image by creating runit entries.
  • The shell script must be called run, must be executable
  • the shell script must run the daemon without letting it daemonize/fork it.
  • We use RVM to install and to manage Ruby interpreters.
1 - 14 of 14
Showing 20 items per page