Skip to main content

Home/ Larvata/ Group items tagged ship

Rss Feed Group items tagged

crazylion lee

Real Artists Ship - Native Issue Tracking - 1 views

  •  
    "Ship is a new take on issue tracking for software projects with a focus on SPEED!"
張 旭

Introduction To The Queue System - Diving Laravel - 0 views

  • Laravel is shipped with a built-in queue system that helps you run tasks in the background
  • The QueueManager is registered into the container and it knows how to connect to the different built-in queue drivers
  • for example when we called the Queue::push() method, what happened is that the manager selected the desired queue driver, connected to it, and called the push method on that driver.
  • ...2 more annotations...
  • All calls to methods that don't exist in the QueueManager class will be sent to the loaded driver
  • when you do Queue::push() you're actually calling the push method on the queue driver you're using
  •  
    "Laravel is shipped with a built-in queue system that helps you run tasks in the background "
crazylion lee

Deep Learning - 0 views

  •  
    "The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. The online version of the book is now complete and will remain available online for free. The deep learning textbook can now be pre-ordered on Amazon. Pre-orders should ship on December 16, 2016. For up to date announcements, join our mailing list."
crazylion lee

coreos/torus: Torus Distributed Storage - 1 views

  •  
    "Torus is an open source project for distributed storage coordinated through etcd. Torus provides a resource pool and basic file primitives from a set of daemons running atop multiple nodes. These primitives are made consistent by being append-only and coordinated by etcd. From these primitives, a Torus server can support multiple types of volumes, the semantics of which can be broken into subprojects. It ships with a simple block-device volume plugin, but is extensible to more."
crazylion lee

Deploy together. Fearlessly. - 0 views

shared by crazylion lee on 03 Apr 16 - No Cached
  •  
    "Dockbit turns your software deployments into repeatable, manageable workflows. Bring your team together and ship better."
crazylion lee

a1studmuffin/SpaceshipGenerator: A Blender script to procedurally generate 3D spaceships - 0 views

  •  
    "A Blender script to procedurally generate 3D spaceships"
張 旭

What is DevOps? | Atlassian - 0 views

  • DevOps is a set of practices that automates the processes between software development and IT teams, in order that they can build, test, and release software faster and more reliably.
  • increased trust, faster software releases, ability to solve critical issues quickly, and better manage unplanned work.
  • bringing together the best of software development and IT operations.
  • ...39 more annotations...
  • DevOps is a culture, a movement, a philosophy.
  • a firm handshake between development and operations
  • DevOps isn’t magic, and transformations don’t happen overnight.
  • Infrastructure as code
  • Culture is the #1 success factor in DevOps.
  • Building a culture of shared responsibility, transparency and faster feedback is the foundation of every high performing DevOps team.
  •  'not our problem' mentality
  • DevOps is that change in mindset of looking at the development process holistically and breaking down the barrier between Dev and Ops.
  • Speed is everything.
  • Lack of automated test and review cycles block the release to production and poor incident response time kills velocity and team confidence
  • Open communication helps Dev and Ops teams swarm on issues, fix incidents, and unblock the release pipeline faster.
  • Unplanned work is a reality that every team faces–a reality that most often impacts team productivity.
  • “cross-functional collaboration.”
  • All the tooling and automation in the world are useless if they aren’t accompanied by a genuine desire on the part of development and IT/Ops professionals to work together.
  • DevOps doesn’t solve tooling problems. It solves human problems.
  • Forming project- or product-oriented teams to replace function-based teams is a step in the right direction.
  • sharing a common goal and having a plan to reach it together
  • join sprint planning sessions, daily stand-ups, and sprint demos.
  • DevOps culture across every department
  • open channels of communication, and talk regularly
  • DevOps isn’t one team’s job. It’s everyone’s job.
  • automation eliminates repetitive manual work, yields repeatable processes, and creates reliable systems.
  • Build, test, deploy, and provisioning automation
  • continuous delivery: the practice of running each code change through a gauntlet of automated tests, often facilitated by cloud-based infrastructure, then packaging up successful builds and promoting them up toward production using automated deploys.
  • automated deploys alert IT/Ops to server “drift” between environments, which reduces or eliminates surprises when it’s time to release.
  • “configuration as code.”
  • when DevOps uses automated deploys to send thoroughly tested code to identically provisioned environments, “Works on my machine!” becomes irrelevant.
  • A DevOps mindset sees opportunities for continuous improvement everywhere.
  • regular retrospectives
  • A/B testing
  • failure is inevitable. So you might as well set up your team to absorb it, recover, and learn from it (some call this “being anti-fragile”).
  • Postmortems focus on where processes fell down and how to strengthen them – not on which team member f'ed up the code.
  • Our engineers are responsible for QA, writing, and running their own tests to get the software out to customers.
  • How long did it take to go from development to deployment? 
  • How long does it take to recover after a system failure?
  • service level agreements (SLAs)
  • Devops isn't any single person's job. It's everyone's job.
  • DevOps is big on the idea that the same people who build an application should be involved in shipping and running it.
  • developers and operators pair with each other in each phase of the application’s lifecycle.
張 旭

The Twelve-Factor App - 0 views

  • The process formation is the array of processes that are used to do the app’s regular business
  • one-off administrative or maintenance tasks for the app
  • One-off admin processes should be run in an identical environment as the regular long-running processes of the app.
  • ...2 more annotations...
  • Admin code must ship with application code to avoid synchronization issues.
  • Twelve-factor strongly favors languages which provide a REPL shell out of the box, and which make it easy to run one-off scripts.
張 旭

Volumes - Kubernetes - 0 views

  • On-disk files in a Container are ephemeral,
  • when a Container crashes, kubelet will restart it, but the files will be lost - the Container starts with a clean state
  • In Docker, a volume is simply a directory on disk or in another Container.
  • ...105 more annotations...
  • A Kubernetes volume, on the other hand, has an explicit lifetime - the same as the Pod that encloses it.
  • a volume outlives any Containers that run within the Pod, and data is preserved across Container restarts.
    • 張 旭
       
      Kubernetes Volume 是跟著 Pod 的生命週期在走
  • Kubernetes supports many types of volumes, and a Pod can use any number of them simultaneously.
  • To use a volume, a Pod specifies what volumes to provide for the Pod (the .spec.volumes field) and where to mount those into Containers (the .spec.containers.volumeMounts field).
  • A process in a container sees a filesystem view composed from their Docker image and volumes.
  • Volumes can not mount onto other volumes or have hard links to other volumes.
  • Each Container in the Pod must independently specify where to mount each volume
  • localnfs
  • cephfs
  • awsElasticBlockStore
  • glusterfs
  • vsphereVolume
  • An awsElasticBlockStore volume mounts an Amazon Web Services (AWS) EBS Volume into your Pod.
  • the contents of an EBS volume are preserved and the volume is merely unmounted.
  • an EBS volume can be pre-populated with data, and that data can be “handed off” between Pods.
  • create an EBS volume using aws ec2 create-volume
  • the nodes on which Pods are running must be AWS EC2 instances
  • EBS only supports a single EC2 instance mounting a volume
  • check that the size and EBS volume type are suitable for your use!
  • A cephfs volume allows an existing CephFS volume to be mounted into your Pod.
  • the contents of a cephfs volume are preserved and the volume is merely unmounted.
    • 張 旭
       
      相當於自己的 AWS EBS
  • CephFS can be mounted by multiple writers simultaneously.
  • have your own Ceph server running with the share exported
  • configMap
  • The configMap resource provides a way to inject configuration data into Pods
  • When referencing a configMap object, you can simply provide its name in the volume to reference it
  • volumeMounts: - name: config-vol mountPath: /etc/config volumes: - name: config-vol configMap: name: log-config items: - key: log_level path: log_level
  • create a ConfigMap before you can use it.
  • A Container using a ConfigMap as a subPath volume mount will not receive ConfigMap updates.
  • An emptyDir volume is first created when a Pod is assigned to a Node, and exists as long as that Pod is running on that node.
  • When a Pod is removed from a node for any reason, the data in the emptyDir is deleted forever.
  • By default, emptyDir volumes are stored on whatever medium is backing the node - that might be disk or SSD or network storage, depending on your environment.
  • you can set the emptyDir.medium field to "Memory" to tell Kubernetes to mount a tmpfs (RAM-backed filesystem)
  • volumeMounts: - mountPath: /cache name: cache-volume volumes: - name: cache-volume emptyDir: {}
  • An fc volume allows an existing fibre channel volume to be mounted in a Pod.
  • configure FC SAN Zoning to allocate and mask those LUNs (volumes) to the target WWNs beforehand so that Kubernetes hosts can access them.
  • Flocker is an open-source clustered Container data volume manager. It provides management and orchestration of data volumes backed by a variety of storage backends.
  • emptyDir
  • flocker
  • A flocker volume allows a Flocker dataset to be mounted into a Pod
  • have your own Flocker installation running
  • A gcePersistentDisk volume mounts a Google Compute Engine (GCE) Persistent Disk into your Pod.
  • Using a PD on a Pod controlled by a ReplicationController will fail unless the PD is read-only or the replica count is 0 or 1
  • A glusterfs volume allows a Glusterfs (an open source networked filesystem) volume to be mounted into your Pod.
  • have your own GlusterFS installation running
  • A hostPath volume mounts a file or directory from the host node’s filesystem into your Pod.
  • a powerful escape hatch for some applications
  • access to Docker internals; use a hostPath of /var/lib/docker
  • allowing a Pod to specify whether a given hostPath should exist prior to the Pod running, whether it should be created, and what it should exist as
  • specify a type for a hostPath volume
  • the files or directories created on the underlying hosts are only writable by root.
  • hostPath: # directory location on host path: /data # this field is optional type: Directory
  • An iscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your Pod.
  • have your own iSCSI server running
  • A feature of iSCSI is that it can be mounted as read-only by multiple consumers simultaneously.
  • A local volume represents a mounted local storage device such as a disk, partition or directory.
  • Local volumes can only be used as a statically created PersistentVolume.
  • Compared to hostPath volumes, local volumes can be used in a durable and portable manner without manually scheduling Pods to nodes, as the system is aware of the volume’s node constraints by looking at the node affinity on the PersistentVolume.
  • If a node becomes unhealthy, then the local volume will also become inaccessible, and a Pod using it will not be able to run.
  • PersistentVolume spec using a local volume and nodeAffinity
  • PersistentVolume nodeAffinity is required when using local volumes. It enables the Kubernetes scheduler to correctly schedule Pods using local volumes to the correct node.
  • PersistentVolume volumeMode can now be set to “Block” (instead of the default value “Filesystem”) to expose the local volume as a raw block device.
  • When using local volumes, it is recommended to create a StorageClass with volumeBindingMode set to WaitForFirstConsumer
  • An nfs volume allows an existing NFS (Network File System) share to be mounted into your Pod.
  • NFS can be mounted by multiple writers simultaneously.
  • have your own NFS server running with the share exported
  • A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
  • PersistentVolumes are a way for users to “claim” durable storage (such as a GCE PersistentDisk or an iSCSI volume) without knowing the details of the particular cloud environment.
  • A projected volume maps several existing volume sources into the same directory.
  • All sources are required to be in the same namespace as the Pod. For more details, see the all-in-one volume design document.
  • Each projected volume source is listed in the spec under sources
  • A Container using a projected volume source as a subPath volume mount will not receive updates for those volume sources.
  • RBD volumes can only be mounted by a single consumer in read-write mode - no simultaneous writers allowed
  • A secret volume is used to pass sensitive information, such as passwords, to Pods
  • store secrets in the Kubernetes API and mount them as files for use by Pods
  • secret volumes are backed by tmpfs (a RAM-backed filesystem) so they are never written to non-volatile storage.
  • create a secret in the Kubernetes API before you can use it
  • A Container using a Secret as a subPath volume mount will not receive Secret updates.
  • StorageOS runs as a Container within your Kubernetes environment, making local or attached storage accessible from any node within the Kubernetes cluster.
  • Data can be replicated to protect against node failure. Thin provisioning and compression can improve utilization and reduce cost.
  • StorageOS provides block storage to Containers, accessible via a file system.
  • A vsphereVolume is used to mount a vSphere VMDK Volume into your Pod.
  • supports both VMFS and VSAN datastore.
  • create VMDK using one of the following methods before using with Pod.
  • share one volume for multiple uses in a single Pod.
  • The volumeMounts.subPath property can be used to specify a sub-path inside the referenced volume instead of its root.
  • volumeMounts: - name: workdir1 mountPath: /logs subPathExpr: $(POD_NAME)
  • env: - name: POD_NAME valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.name
  • Use the subPathExpr field to construct subPath directory names from Downward API environment variables
  • enable the VolumeSubpathEnvExpansion feature gate
  • The subPath and subPathExpr properties are mutually exclusive.
  • There is no limit on how much space an emptyDir or hostPath volume can consume, and no isolation between Containers or between Pods.
  • emptyDir and hostPath volumes will be able to request a certain amount of space using a resource specification, and to select the type of media to use, for clusters that have several media types.
  • the Container Storage Interface (CSI) and Flexvolume. They enable storage vendors to create custom storage plugins without adding them to the Kubernetes repository.
  • all volume plugins (like volume types listed above) were “in-tree” meaning they were built, linked, compiled, and shipped with the core Kubernetes binaries and extend the core Kubernetes API.
  • Container Storage Interface (CSI) defines a standard interface for container orchestration systems (like Kubernetes) to expose arbitrary storage systems to their container workloads.
  • Once a CSI compatible volume driver is deployed on a Kubernetes cluster, users may use the csi volume type to attach, mount, etc. the volumes exposed by the CSI driver.
  • The csi volume type does not support direct reference from Pod and may only be referenced in a Pod via a PersistentVolumeClaim object.
  • This feature requires CSIInlineVolume feature gate to be enabled:--feature-gates=CSIInlineVolume=true
  • In-tree plugins that support CSI Migration and have a corresponding CSI driver implemented are listed in the “Types of Volumes” section above.
  • Mount propagation allows for sharing volumes mounted by a Container to other Containers in the same Pod, or even to other Pods on the same node.
  • Mount propagation of a volume is controlled by mountPropagation field in Container.volumeMounts.
  • HostToContainer - This volume mount will receive all subsequent mounts that are mounted to this volume or any of its subdirectories.
  • Bidirectional - This volume mount behaves the same the HostToContainer mount. In addition, all volume mounts created by the Container will be propagated back to the host and to all Containers of all Pods that use the same volume.
  • Edit your Docker’s systemd service file. Set MountFlags as follows:MountFlags=shared
張 旭

Logstash Alternatives: Pros & Cons of 5 Log Shippers [2019] - Sematext - 0 views

  • In this case, Elasticsearch. And because Elasticsearch can be down or struggling, or the network can be down, the shipper would ideally be able to buffer and retry
  • Logstash is typically used for collecting, parsing, and storing logs for future use as part of log management.
  • Logstash’s biggest con or “Achille’s heel” has always been performance and resource consumption (the default heap size is 1GB).
  • ...37 more annotations...
  • This can be a problem for high traffic deployments, when Logstash servers would need to be comparable with the Elasticsearch ones.
  • Filebeat was made to be that lightweight log shipper that pushes to Logstash or Elasticsearch.
  • differences between Logstash and Filebeat are that Logstash has more functionality, while Filebeat takes less resources.
  • Filebeat is just a tiny binary with no dependencies.
  • For example, how aggressive it should be in searching for new files to tail and when to close file handles when a file didn’t get changes for a while.
  • For example, the apache module will point Filebeat to default access.log and error.log paths
  • Filebeat’s scope is very limited,
  • Initially it could only send logs to Logstash and Elasticsearch, but now it can send to Kafka and Redis, and in 5.x it also gains filtering capabilities.
  • Filebeat can parse JSON
  • you can push directly from Filebeat to Elasticsearch, and have Elasticsearch do both parsing and storing.
  • You shouldn’t need a buffer when tailing files because, just as Logstash, Filebeat remembers where it left off
  • For larger deployments, you’d typically use Kafka as a queue instead, because Filebeat can talk to Kafka as well
  • The default syslog daemon on most Linux distros, rsyslog can do so much more than just picking logs from the syslog socket and writing to /var/log/messages.
  • It can tail files, parse them, buffer (on disk and in memory) and ship to a number of destinations, including Elasticsearch.
  • rsyslog is the fastest shipper
  • Its grammar-based parsing module (mmnormalize) works at constant speed no matter the number of rules (we tested this claim).
  • use it as a simple router/shipper, any decent machine will be limited by network bandwidth
  • It’s also one of the lightest parsers you can find, depending on the configured memory buffers.
  • rsyslog requires more work to get the configuration right
  • the main difference between Logstash and rsyslog is that Logstash is easier to use while rsyslog lighter.
  • rsyslog fits well in scenarios where you either need something very light yet capable (an appliance, a small VM, collecting syslog from within a Docker container).
  • rsyslog also works well when you need that ultimate performance.
  • syslog-ng as an alternative to rsyslog (though historically it was actually the other way around).
  • a modular syslog daemon, that can do much more than just syslog
  • Unlike rsyslog, it features a clear, consistent configuration format and has nice documentation.
  • Similarly to rsyslog, you’d probably want to deploy syslog-ng on boxes where resources are tight, yet you do want to perform potentially complex processing.
  • syslog-ng has an easier, more polished feel than rsyslog, but likely not that ultimate performance
  • Fluentd was built on the idea of logging in JSON wherever possible (which is a practice we totally agree with) so that log shippers down the line don’t have to guess which substring is which field of which type.
  • Fluentd plugins are in Ruby and very easy to write.
  • structured data through Fluentd, it’s not made to have the flexibility of other shippers on this list (Filebeat excluded).
  • Fluent Bit, which is to Fluentd similar to how Filebeat is for Logstash.
  • Fluentd is a good fit when you have diverse or exotic sources and destinations for your logs, because of the number of plugins.
  • Splunk isn’t a log shipper, it’s a commercial logging solution
  • Graylog is another complete logging solution, an open-source alternative to Splunk.
  • everything goes through graylog-server, from authentication to queries.
  • Graylog is nice because you have a complete logging solution, but it’s going to be harder to customize than an ELK stack.
  • it depends
張 旭

The Squeaky Blog | Why we don't use a staging environment - 0 views

  • Pre-live environments are never at parity with production
  • multiple people use staging to validate their changes before release.
  • Branches are then constantly out of sync with each other, and problems often surface when you merge, rebase, and backfill hotfixes.
  • ...10 more annotations...
  • Big Bang releases
  • there is a lengthy suite of tests and checks that run before it is deployed to staging. During this period, which could end up being hours, engineers will likely pick up another task. I’ve seen people merge, and then forget that their changes are on staging, more times than I can count.
  • only merge code that is ready to go live
  • written sufficient tests and have validated our changes in development.
  • All branches are cut from main, and all changes get merged back into main.
  • If we ever have an issue in production, we always roll forward.
  • Feature flags can be enabled on a per-user basis so we can monitor performance and gather feedback
  • Experimental features can be enabled by users in their account settings.
  • we have monitoring, logging, and alarms around all of our services. We also blue/green deploy, by draining and replacing a percentage of containers.
  • Dropping your staging environment in favour of true continuous integration and deployment can create a different mindset for shipping software.
  •  
    "Pre-live environments are never at parity with production "
張 旭

Auto DevOps | GitLab - 0 views

  • Scan for vulnerabilities and security flaws.
  • Auto DevOps starts by building and testing your application.
  • preview your changes in a per-branch basis.
  • ...9 more annotations...
  • you don’t need to set up the deployment upfront. Auto DevOps still builds and tests your application. You can define the deployment later.
  • ship your app first, then explore the customizations later.
  • Consistency
  • Auto DevOps works with any Kubernetes cluster.
  • To use Auto DevOps for individual projects, you can enable it in a project-by-project basis.
  • Only project Maintainers can enable or disable Auto DevOps at the project level.
  • We strongly advise you to use GitLab Container Registry with Auto DevOps to simplify configuration and prevent any unforeseen issues.
  • The GitLab integration with Helm does not support installing applications when behind a proxy.
    • 張 旭
       
      已經廢棄了,不要用
    • 張 旭
       
      已經廢棄了,不要用
1 - 12 of 12
Showing 20 items per page