Skip to main content

Home/ Larvata/ Group items tagged project

Rss Feed Group items tagged

張 旭

Auto DevOps | GitLab - 0 views

  • Auto DevOps provides pre-defined CI/CD configuration which allows you to automatically detect, build, test, deploy, and monitor your applications
  • Just push your code and GitLab takes care of everything else.
  • Auto DevOps will be automatically disabled on the first pipeline failure.
  • ...78 more annotations...
  • Your project will continue to use an alternative CI/CD configuration file if one is found
  • Auto DevOps works with any Kubernetes cluster;
  • using the Docker or Kubernetes executor, with privileged mode enabled.
  • Base domain (needed for Auto Review Apps and Auto Deploy)
  • Kubernetes (needed for Auto Review Apps, Auto Deploy, and Auto Monitoring)
  • Prometheus (needed for Auto Monitoring)
  • scrape your Kubernetes cluster.
  • project level as a variable: KUBE_INGRESS_BASE_DOMAIN
  • A wildcard DNS A record matching the base domain(s) is required
  • Once set up, all requests will hit the load balancer, which in turn will route them to the Kubernetes pods that run your application(s).
  • review/ (every environment starting with review/)
  • staging
  • production
  • need to define a separate KUBE_INGRESS_BASE_DOMAIN variable for all the above based on the environment.
  • Continuous deployment to production: Enables Auto Deploy with master branch directly deployed to production.
  • Continuous deployment to production using timed incremental rollout
  • Automatic deployment to staging, manual deployment to production
  • Auto Build creates a build of the application using an existing Dockerfile or Heroku buildpacks.
  • If a project’s repository contains a Dockerfile, Auto Build will use docker build to create a Docker image.
  • Each buildpack requires certain files to be in your project’s repository for Auto Build to successfully build your application.
  • Auto Test automatically runs the appropriate tests for your application using Herokuish and Heroku buildpacks by analyzing your project to detect the language and framework.
  • Auto Code Quality uses the Code Quality image to run static analysis and other code checks on the current code.
  • Static Application Security Testing (SAST) uses the SAST Docker image to run static analysis on the current code and checks for potential security issues.
  • Dependency Scanning uses the Dependency Scanning Docker image to run analysis on the project dependencies and checks for potential security issues.
  • License Management uses the License Management Docker image to search the project dependencies for their license.
  • Vulnerability Static Analysis for containers uses Clair to run static analysis on a Docker image and checks for potential security issues.
  • Review Apps are temporary application environments based on the branch’s code so developers, designers, QA, product managers, and other reviewers can actually see and interact with code changes as part of the review process. Auto Review Apps create a Review App for each branch. Auto Review Apps will deploy your app to your Kubernetes cluster only. When no cluster is available, no deployment will occur.
  • The Review App will have a unique URL based on the project ID, the branch or tag name, and a unique number, combined with the Auto DevOps base domain.
  • Review apps are deployed using the auto-deploy-app chart with Helm, which can be customized.
  • Your apps should not be manipulated outside of Helm (using Kubernetes directly).
  • Dynamic Application Security Testing (DAST) uses the popular open source tool OWASP ZAProxy to perform an analysis on the current code and checks for potential security issues.
  • Auto Browser Performance Testing utilizes the Sitespeed.io container to measure the performance of a web page.
  • add the paths to a file named .gitlab-urls.txt in the root directory, one per line.
  • After a branch or merge request is merged into the project’s default branch (usually master), Auto Deploy deploys the application to a production environment in the Kubernetes cluster, with a namespace based on the project name and unique project ID
  • Auto Deploy doesn’t include deployments to staging or canary by default, but the Auto DevOps template contains job definitions for these tasks if you want to enable them.
  • Apps are deployed using the auto-deploy-app chart with Helm.
  • For internal and private projects a GitLab Deploy Token will be automatically created, when Auto DevOps is enabled and the Auto DevOps settings are saved.
  • If the GitLab Deploy Token cannot be found, CI_REGISTRY_PASSWORD is used. Note that CI_REGISTRY_PASSWORD is only valid during deployment.
  • If present, DB_INITIALIZE will be run as a shell command within an application pod as a helm post-install hook.
  • a post-install hook means that if any deploy succeeds, DB_INITIALIZE will not be processed thereafter.
  • DB_MIGRATE will be run as a shell command within an application pod as a helm pre-upgrade hook.
    • 張 旭
       
      如果專案類型不同,就要去查 buildpacks 裡面如何叫用該指令,例如 laravel 的 migration
    • 張 旭
       
      如果是自己的 Dockerfile 建立起來的,看來就不用鳥 buildpacks 的作法
  • Once your application is deployed, Auto Monitoring makes it possible to monitor your application’s server and response metrics right out of the box.
  • annotate the NGINX Ingress deployment to be scraped by Prometheus using prometheus.io/scrape: "true" and prometheus.io/port: "10254"
  • If you are also using Auto Review Apps and Auto Deploy and choose to provide your own Dockerfile, make sure you expose your application to port 5000 as this is the port assumed by the default Helm chart.
  • While Auto DevOps provides great defaults to get you started, you can customize almost everything to fit your needs; from custom buildpacks, to Dockerfiles, Helm charts, or even copying the complete CI/CD configuration into your project to enable staging and canary deployments, and more.
  • If your project has a Dockerfile in the root of the project repo, Auto DevOps will build a Docker image based on the Dockerfile rather than using buildpacks.
  • Auto DevOps uses Helm to deploy your application to Kubernetes.
  • Bundled chart - If your project has a ./chart directory with a Chart.yaml file in it, Auto DevOps will detect the chart and use it instead of the default one.
  • Create a project variable AUTO_DEVOPS_CHART with the URL of a custom chart to use or create two project variables AUTO_DEVOPS_CHART_REPOSITORY with the URL of a custom chart repository and AUTO_DEVOPS_CHART with the path to the chart.
  • make use of the HELM_UPGRADE_EXTRA_ARGS environment variable to override the default values in the values.yaml file in the default Helm chart.
  • specify the use of a custom Helm chart per environment by scoping the environment variable to the desired environment.
    • 張 旭
       
      Auto DevOps 就是一套人家寫好好的傳便便的 .gitlab-ci.yml
  • Your additions will be merged with the Auto DevOps template using the behaviour described for include
  • copy and paste the contents of the Auto DevOps template into your project and edit this as needed.
  • In order to support applications that require a database, PostgreSQL is provisioned by default.
  • Set up the replica variables using a project variable and scale your application by just redeploying it!
  • You should not scale your application using Kubernetes directly.
  • Some applications need to define secret variables that are accessible by the deployed application.
  • Auto DevOps detects variables where the key starts with K8S_SECRET_ and make these prefixed variables available to the deployed application, as environment variables.
  • Auto DevOps pipelines will take your application secret variables to populate a Kubernetes secret.
  • Environment variables are generally considered immutable in a Kubernetes pod.
  • if you update an application secret without changing any code then manually create a new pipeline, you will find that any running application pods will not have the updated secrets.
  • Variables with multiline values are not currently supported
  • The normal behavior of Auto DevOps is to use Continuous Deployment, pushing automatically to the production environment every time a new pipeline is run on the default branch.
  • If STAGING_ENABLED is defined in your project (e.g., set STAGING_ENABLED to 1 as a CI/CD variable), then the application will be automatically deployed to a staging environment, and a production_manual job will be created for you when you’re ready to manually deploy to production.
  • If CANARY_ENABLED is defined in your project (e.g., set CANARY_ENABLED to 1 as a CI/CD variable) then two manual jobs will be created: canary which will deploy the application to the canary environment production_manual which is to be used by you when you’re ready to manually deploy to production.
  • If INCREMENTAL_ROLLOUT_MODE is set to manual in your project, then instead of the standard production job, 4 different manual jobs will be created: rollout 10% rollout 25% rollout 50% rollout 100%
  • The percentage is based on the REPLICAS variable and defines the number of pods you want to have for your deployment.
  • To start a job, click on the play icon next to the job’s name.
  • Once you get to 100%, you cannot scale down, and you’d have to roll back by redeploying the old version using the rollback button in the environment page.
  • With INCREMENTAL_ROLLOUT_MODE set to manual and with STAGING_ENABLED
  • not all buildpacks support Auto Test yet
  • When a project has been marked as private, GitLab’s Container Registry requires authentication when downloading containers.
  • Authentication credentials will be valid while the pipeline is running, allowing for a successful initial deployment.
  • After the pipeline completes, Kubernetes will no longer be able to access the Container Registry.
  • We strongly advise using GitLab Container Registry with Auto DevOps in order to simplify configuration and prevent any unforeseen issues.
張 旭

Glossary - CircleCI - 0 views

  • User authentication may use LDAP for an instance of the CircleCI application that is installed on your private server or cloud
  • The first user to log into a private installation of CircleCI
  • Contexts provide a mechanism for securing and sharing environment variables across projects.
  • ...22 more annotations...
  • The environment variables are defined as name/value pairs and are injected at runtime.
  • The CircleCI Docker Layer Caching feature allows builds to reuse Docker image layers
  • from previous builds.
  • Image layers are stored in separate volumes in the cloud and are not shared between projects.
  • Layers may only be used by builds from the same project.
  • Environment variables store customer data that is used by a project.
  • Defines the underlying technology to run a job.
  • machine to run your job inside a full virtual machine.
  • docker to run your job inside a Docker container with a specified image
  • A job is a collection of steps.
  • The first image listed in config.yml
  • A CircleCI project shares the name of the code repository for which it automates workflows, tests, and deployment.
  • must be added with the Add Project button
  • Following a project enables a user to subscribe to email notifications for the project build status and adds the project to their CircleCI dashboard.
  • A step is a collection of executable commands
  • Users must be added to a GitHub or Bitbucket org to view or follow associated CircleCI projects.
  • Users may not view project data that is stored in environment variables.  
  • A Workflow is a set of rules for defining a collection of jobs and their run order.
  • Workflows are implemented as a directed acyclic graph (DAG) of jobs for greatest flexibility.
  • referred to as Pipelines
  • A workspace is a workflows-aware storage mechanism.
  • A workspace stores data unique to the job, which may be needed in downstream jobs.
crazylion lee

gerrit - Gerrit Code Review - Google Project Hosting - 0 views

  •  
    "Web based code review and project management for Git based projects. "
張 旭

pre-commit - 0 views

  • a multi-language package manager for pre-commit hooks
  • pre-commit is specifically designed to not require root access
  • We copied and pasted unwieldy bash scripts from project to project and had to manually change the hooks to work for different project structures.
  • ...3 more annotations...
  • adding pre-commit plugins to your project is done with the .pre-commit-config.yaml configuration file.
  • The pre-commit config file describes what repositories and hooks are installed.
  • This configuration says to download the pre-commit-hooks project and run its trailing-whitespace hook
  •  
    "a multi-language package manager for pre-commit hooks"
張 旭

mvn clean install - a short guide to Maven - 0 views

  • An equivalent in other languages would be Javascript’s npm, Ruby’s gems or PHP’s composer.
  • Maven expects a certain directory structure for your Java source code to live in and when you later do a mvn clean install , the whole compilation and packaging work will be done for you.
  • any directory that contains a pom.xml file is also a valid Maven project.
  • ...17 more annotations...
  • A pom.xml file contains everything needed to describe your Java project.
  • Java source code is to be meant to live in the "/src/main/java" folder
  • Maven will put compiled Java classes into the "target/classes" folder
  • Maven will also build a .jar or .war file, depending on your project, that lives in the "target" folder.
  • Maven has the concept of a build lifecycle, which is made up of different phases.
  • clean is not part of Maven’s default lifecycle, you end up with commands like mvn clean install or mvn clean package. Install or package will trigger all preceding phases, but you need to specify clean in addition.
  • Maven will always download your project dependencies into your local maven repository first and then reference them for your build.
  • local repositories (in your user’s home directory: ~/.m2/)
  • clean: deletes the /target folder.
  • mvn clean package
  • mvn clean install
  • package: Converts your .java source code into a .jar/.war file and puts it into the /target folder.
  • install: First, it does a package(!). Then it takes that .jar/.war file and puts it into your local Maven repository, which lives in ~/.m2/repository.
  • calling 'mvn install' would be enough if Maven was smart enough to do reliable, incremental builds.
  • figuring out what Java source files/modules changed and only compile those.
  • developers got it ingrained to always call 'mvn clean install' (even though this increases build time a lot in bigger projects).
  • make sure that Maven always tries to download the latest snapshot dependency versions
張 旭

Auto DevOps | GitLab - 0 views

  • Scan for vulnerabilities and security flaws.
  • Auto DevOps starts by building and testing your application.
  • preview your changes in a per-branch basis.
  • ...9 more annotations...
  • you don’t need to set up the deployment upfront. Auto DevOps still builds and tests your application. You can define the deployment later.
  • ship your app first, then explore the customizations later.
  • Consistency
  • Auto DevOps works with any Kubernetes cluster.
  • To use Auto DevOps for individual projects, you can enable it in a project-by-project basis.
  • Only project Maintainers can enable or disable Auto DevOps at the project level.
  • We strongly advise you to use GitLab Container Registry with Auto DevOps to simplify configuration and prevent any unforeseen issues.
  • The GitLab integration with Helm does not support installing applications when behind a proxy.
    • 張 旭
       
      已經廢棄了,不要用
    • 張 旭
       
      已經廢棄了,不要用
crazylion lee

Gobot - 0 views

shared by crazylion lee on 17 Jan 14 - No Cached
  •  
    Gobot is set of libraries in the Go programming language for robotics and physical computing. It provides a simple, yet powerful way to create solutions that incorporate multiple, different hardware devices at the same time. Want to use Ruby on robots? Check out our sister project Artoo (http://artoo.io). Want to use Node.js? Check out our sister project Cylon (http://cylonjs.com).
crazylion lee

CocoaPods.org - 0 views

  •  
    "CocoaPods is the dependency manager for Swift and Objective-C Cocoa projects. It has over ten thousand libraries and can help you scale your projects elegantly."
張 旭

Using Ansible and Ansible Tower with shared roles - 2 views

  • clearly defined roles for dedicated tasks
  • a predefined structure of folders and files to hold your automation code.
  • Roles can be part of your project repository.
  • ...8 more annotations...
  • a better way is to keep a role in its own repository.
  • to be available to a playbook, the role still needs to be included.
  • The best way to make shared roles available to your playbooks is to use a function built into Ansible itself: by using the command ansible-galaxy
  • ansible galaxy can read a file specifying which external roles need to be imported for a successful Ansible run: requirements.yml
  • requirements.yml ensures that the used role can be pinned to a certain release tag value, commit hash, or branch name.
  • Each time Ansible Tower checks out a project it looks for a roles/requirements.yml. If such a file is present, a new version of each listed role is copied to the local checkout of the project and thus available to the relevant playbooks.
  • stick to the directory name roles, sitting in the root of your project directory.
  • have one requirements.yml only, and keep it at roles/requirements.yml
  •  
    "clearly defined roles for dedicated tasks"
crazylion lee

Duet Project Management - 0 views

  •  
    "Duet is self hosted so your data is always private, and it's completely brandable so that it matches your business. Best of all, its low one time fee means you will save hundreds over similar software "
crazylion lee

Blue Ocean - 0 views

  •  
    " Blue Ocean is a new project that rethinks the user experience of Jenkins. Designed from the ground up for Jenkins Pipeline and compatible with Freestyle jobs, Blue Ocean reduces clutter and increases clarity for every member of your team through the following key features:"
crazylion lee

journeyapps/zxing-android-embedded: Port of the ZXing Android application as an Android... - 0 views

  •  
    "Port of the ZXing Android application as an Android library project, for embedding in an Android application."
crazylion lee

bruli/php-git-hooks: Git hooks for PHP projects - 0 views

  •  
    "Git hooks for PHP projects"
張 旭

Volumes - Kubernetes - 0 views

  • On-disk files in a Container are ephemeral,
  • when a Container crashes, kubelet will restart it, but the files will be lost - the Container starts with a clean state
  • In Docker, a volume is simply a directory on disk or in another Container.
  • ...105 more annotations...
  • A Kubernetes volume, on the other hand, has an explicit lifetime - the same as the Pod that encloses it.
  • a volume outlives any Containers that run within the Pod, and data is preserved across Container restarts.
    • 張 旭
       
      Kubernetes Volume 是跟著 Pod 的生命週期在走
  • Kubernetes supports many types of volumes, and a Pod can use any number of them simultaneously.
  • To use a volume, a Pod specifies what volumes to provide for the Pod (the .spec.volumes field) and where to mount those into Containers (the .spec.containers.volumeMounts field).
  • A process in a container sees a filesystem view composed from their Docker image and volumes.
  • Volumes can not mount onto other volumes or have hard links to other volumes.
  • Each Container in the Pod must independently specify where to mount each volume
  • localnfs
  • cephfs
  • awsElasticBlockStore
  • glusterfs
  • vsphereVolume
  • An awsElasticBlockStore volume mounts an Amazon Web Services (AWS) EBS Volume into your Pod.
  • the contents of an EBS volume are preserved and the volume is merely unmounted.
  • an EBS volume can be pre-populated with data, and that data can be “handed off” between Pods.
  • create an EBS volume using aws ec2 create-volume
  • the nodes on which Pods are running must be AWS EC2 instances
  • EBS only supports a single EC2 instance mounting a volume
  • check that the size and EBS volume type are suitable for your use!
  • A cephfs volume allows an existing CephFS volume to be mounted into your Pod.
  • the contents of a cephfs volume are preserved and the volume is merely unmounted.
    • 張 旭
       
      相當於自己的 AWS EBS
  • CephFS can be mounted by multiple writers simultaneously.
  • have your own Ceph server running with the share exported
  • configMap
  • The configMap resource provides a way to inject configuration data into Pods
  • When referencing a configMap object, you can simply provide its name in the volume to reference it
  • volumeMounts: - name: config-vol mountPath: /etc/config volumes: - name: config-vol configMap: name: log-config items: - key: log_level path: log_level
  • create a ConfigMap before you can use it.
  • A Container using a ConfigMap as a subPath volume mount will not receive ConfigMap updates.
  • An emptyDir volume is first created when a Pod is assigned to a Node, and exists as long as that Pod is running on that node.
  • When a Pod is removed from a node for any reason, the data in the emptyDir is deleted forever.
  • By default, emptyDir volumes are stored on whatever medium is backing the node - that might be disk or SSD or network storage, depending on your environment.
  • you can set the emptyDir.medium field to "Memory" to tell Kubernetes to mount a tmpfs (RAM-backed filesystem)
  • volumeMounts: - mountPath: /cache name: cache-volume volumes: - name: cache-volume emptyDir: {}
  • An fc volume allows an existing fibre channel volume to be mounted in a Pod.
  • configure FC SAN Zoning to allocate and mask those LUNs (volumes) to the target WWNs beforehand so that Kubernetes hosts can access them.
  • Flocker is an open-source clustered Container data volume manager. It provides management and orchestration of data volumes backed by a variety of storage backends.
  • emptyDir
  • flocker
  • A flocker volume allows a Flocker dataset to be mounted into a Pod
  • have your own Flocker installation running
  • A gcePersistentDisk volume mounts a Google Compute Engine (GCE) Persistent Disk into your Pod.
  • Using a PD on a Pod controlled by a ReplicationController will fail unless the PD is read-only or the replica count is 0 or 1
  • A glusterfs volume allows a Glusterfs (an open source networked filesystem) volume to be mounted into your Pod.
  • have your own GlusterFS installation running
  • A hostPath volume mounts a file or directory from the host node’s filesystem into your Pod.
  • a powerful escape hatch for some applications
  • access to Docker internals; use a hostPath of /var/lib/docker
  • allowing a Pod to specify whether a given hostPath should exist prior to the Pod running, whether it should be created, and what it should exist as
  • specify a type for a hostPath volume
  • the files or directories created on the underlying hosts are only writable by root.
  • hostPath: # directory location on host path: /data # this field is optional type: Directory
  • An iscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your Pod.
  • have your own iSCSI server running
  • A feature of iSCSI is that it can be mounted as read-only by multiple consumers simultaneously.
  • A local volume represents a mounted local storage device such as a disk, partition or directory.
  • Local volumes can only be used as a statically created PersistentVolume.
  • Compared to hostPath volumes, local volumes can be used in a durable and portable manner without manually scheduling Pods to nodes, as the system is aware of the volume’s node constraints by looking at the node affinity on the PersistentVolume.
  • If a node becomes unhealthy, then the local volume will also become inaccessible, and a Pod using it will not be able to run.
  • PersistentVolume spec using a local volume and nodeAffinity
  • PersistentVolume nodeAffinity is required when using local volumes. It enables the Kubernetes scheduler to correctly schedule Pods using local volumes to the correct node.
  • PersistentVolume volumeMode can now be set to “Block” (instead of the default value “Filesystem”) to expose the local volume as a raw block device.
  • When using local volumes, it is recommended to create a StorageClass with volumeBindingMode set to WaitForFirstConsumer
  • An nfs volume allows an existing NFS (Network File System) share to be mounted into your Pod.
  • NFS can be mounted by multiple writers simultaneously.
  • have your own NFS server running with the share exported
  • A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
  • PersistentVolumes are a way for users to “claim” durable storage (such as a GCE PersistentDisk or an iSCSI volume) without knowing the details of the particular cloud environment.
  • A projected volume maps several existing volume sources into the same directory.
  • All sources are required to be in the same namespace as the Pod. For more details, see the all-in-one volume design document.
  • Each projected volume source is listed in the spec under sources
  • A Container using a projected volume source as a subPath volume mount will not receive updates for those volume sources.
  • RBD volumes can only be mounted by a single consumer in read-write mode - no simultaneous writers allowed
  • A secret volume is used to pass sensitive information, such as passwords, to Pods
  • store secrets in the Kubernetes API and mount them as files for use by Pods
  • secret volumes are backed by tmpfs (a RAM-backed filesystem) so they are never written to non-volatile storage.
  • create a secret in the Kubernetes API before you can use it
  • A Container using a Secret as a subPath volume mount will not receive Secret updates.
  • StorageOS runs as a Container within your Kubernetes environment, making local or attached storage accessible from any node within the Kubernetes cluster.
  • Data can be replicated to protect against node failure. Thin provisioning and compression can improve utilization and reduce cost.
  • StorageOS provides block storage to Containers, accessible via a file system.
  • A vsphereVolume is used to mount a vSphere VMDK Volume into your Pod.
  • supports both VMFS and VSAN datastore.
  • create VMDK using one of the following methods before using with Pod.
  • share one volume for multiple uses in a single Pod.
  • The volumeMounts.subPath property can be used to specify a sub-path inside the referenced volume instead of its root.
  • volumeMounts: - name: workdir1 mountPath: /logs subPathExpr: $(POD_NAME)
  • env: - name: POD_NAME valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.name
  • Use the subPathExpr field to construct subPath directory names from Downward API environment variables
  • enable the VolumeSubpathEnvExpansion feature gate
  • The subPath and subPathExpr properties are mutually exclusive.
  • There is no limit on how much space an emptyDir or hostPath volume can consume, and no isolation between Containers or between Pods.
  • emptyDir and hostPath volumes will be able to request a certain amount of space using a resource specification, and to select the type of media to use, for clusters that have several media types.
  • the Container Storage Interface (CSI) and Flexvolume. They enable storage vendors to create custom storage plugins without adding them to the Kubernetes repository.
  • all volume plugins (like volume types listed above) were “in-tree” meaning they were built, linked, compiled, and shipped with the core Kubernetes binaries and extend the core Kubernetes API.
  • Container Storage Interface (CSI) defines a standard interface for container orchestration systems (like Kubernetes) to expose arbitrary storage systems to their container workloads.
  • Once a CSI compatible volume driver is deployed on a Kubernetes cluster, users may use the csi volume type to attach, mount, etc. the volumes exposed by the CSI driver.
  • The csi volume type does not support direct reference from Pod and may only be referenced in a Pod via a PersistentVolumeClaim object.
  • This feature requires CSIInlineVolume feature gate to be enabled:--feature-gates=CSIInlineVolume=true
  • In-tree plugins that support CSI Migration and have a corresponding CSI driver implemented are listed in the “Types of Volumes” section above.
  • Mount propagation allows for sharing volumes mounted by a Container to other Containers in the same Pod, or even to other Pods on the same node.
  • Mount propagation of a volume is controlled by mountPropagation field in Container.volumeMounts.
  • HostToContainer - This volume mount will receive all subsequent mounts that are mounted to this volume or any of its subdirectories.
  • Bidirectional - This volume mount behaves the same the HostToContainer mount. In addition, all volume mounts created by the Container will be propagated back to the host and to all Containers of all Pods that use the same volume.
  • Edit your Docker’s systemd service file. Set MountFlags as follows:MountFlags=shared
張 旭

Ansible Tower vs Ansible AWX for Automation - 4sysops - 0 views

  • you can run Ansible freely by downloading the module and running configurations and playbooks from the command line.
  • AWX Project from Red Hat. It provides an open-source version of Ansible Tower that may suit the needs of Tower functionality in many environments.
  • Ansible Tower may be the more familiar option for Ansible users as it is the commercial GUI Ansible tool that provides the officially supported GUI interface, API access, role-based access, scheduling, notifications, and other nice features that allow businesses to manage environments easily with Ansible.
  • ...5 more annotations...
  • Ansible AWX is the open-sourced project that was the foundation on which Ansible Tower was created. With this being said, Ansible AWX is a development branch of code that only undergoes minimal testing and quality engineering testing.
  • Ansible AWX is a powerful open-source, freely available project for testing or using Ansible AWX in a lab, development, or other POC environment.
  • to use an external PostgreSQL database, please note that the minimum version is 9.6+
  • Full enterprise features and functionality of Tower
  • Not limited to 10 nodes
張 旭

The package-lock.json file - 0 views

  • You don't commit to Git your node_modules folder, which is generally huge, and when you try to replicate the project on another machine by using the npm install command,
  • Even if a patch or minor release should not introduce breaking changes
  • The package-lock.json sets your currently installed version of each package in stone, and npm will use those exact versions when running npm ci
  • ...1 more annotation...
  • The package-lock.json file needs to be committed to your Git repository
  •  
    "You don't commit to Git your node_modules folder, which is generally huge, and when you try to replicate the project on another machine by using the npm install command,"
crazylion lee

VPT 7 | Conversations with spaces - 0 views

  •  
    "VPT (VideoProjectionTool) is a free multipurpose realtime projection software tool for Mac and Windows created by HC Gilje. "
crazylion lee

Task Management for Teams - MeisterTask - 0 views

  •  
    "The most intuitive project and task management tool on the web"
crazylion lee

Introducing debugger.html ★ Mozilla Hacks - the Web developer blog - 0 views

  •  
    "debugger.html is a modern JavaScript debugger from Mozilla, built as a web application with React and Redux. This project was started early this year in an effort to replace the current debugger within the Firefox Developer Tools. Also, we wanted to make a debugger capable of debugging multiple targets and functioning in a standalone mode."
1 - 20 of 80 Next › Last »
Showing 20 items per page