Skip to main content

Home/ Larvata/ Group items tagged merge

Rss Feed Group items tagged

張 旭

Introduction to GitLab Flow | GitLab - 0 views

  • GitLab flow as a clearly defined set of best practices. It combines feature-driven development and feature branches with issue tracking.
  • In Git, you add files from the working copy to the staging area. After that, you commit them to your local repo. The third step is pushing to a shared remote repository.
  • branching model
  • ...68 more annotations...
  • The biggest problem is that many long-running branches emerge that all contain part of the changes.
  • It is a convention to call your default branch master and to mostly branch from and merge to this.
  • Nowadays, most organizations practice continuous delivery, which means that your default branch can be deployed.
  • Continuous delivery removes the need for hotfix and release branches, including all the ceremony they introduce.
  • Merging everything into the master branch and frequently deploying means you minimize the amount of unreleased code, which is in line with lean and continuous delivery best practices.
  • GitHub flow assumes you can deploy to production every time you merge a feature branch.
  • You can deploy a new version by merging master into the production branch. If you need to know what code is in production, you can just checkout the production branch to see.
  • Production branch
  • Environment branches
  • have an environment that is automatically updated to the master branch.
  • deploy the master branch to staging.
  • To deploy to pre-production, create a merge request from the master branch to the pre-production branch.
  • Go live by merging the pre-production branch into the production branch.
  • Release branches
  • work with release branches if you need to release software to the outside world.
  • each branch contains a minor version
  • After announcing a release branch, only add serious bug fixes to the branch.
  • merge these bug fixes into master, and then cherry-pick them into the release branch.
  • Merging into master and then cherry-picking into release is called an “upstream first” policy
  • Tools such as GitHub and Bitbucket choose the name “pull request” since the first manual action is to pull the feature branch.
  • Tools such as GitLab and others choose the name “merge request” since the final action is to merge the feature branch.
  • If you work on a feature branch for more than a few hours, it is good to share the intermediate result with the rest of the team.
  • the merge request automatically updates when new commits are pushed to the branch.
  • If the assigned person does not feel comfortable, they can request more changes or close the merge request without merging.
  • In GitLab, it is common to protect the long-lived branches, e.g., the master branch, so that most developers can’t modify them.
  • if you want to merge into a protected branch, assign your merge request to someone with maintainer permissions.
  • After you merge a feature branch, you should remove it from the source control software.
  • Having a reason for every code change helps to inform the rest of the team and to keep the scope of a feature branch small.
  • If there is no issue yet, create the issue
  • The issue title should describe the desired state of the system.
  • For example, the issue title “As an administrator, I want to remove users without receiving an error” is better than “Admin can’t remove users.”
  • create a branch for the issue from the master branch
  • If you open the merge request but do not assign it to anyone, it is a “Work In Progress” merge request.
  • Start the title of the merge request with [WIP] or WIP: to prevent it from being merged before it’s ready.
  • When they press the merge button, GitLab merges the code and creates a merge commit that makes this event easily visible later on.
  • Merge requests always create a merge commit, even when the branch could be merged without one. This merge strategy is called “no fast-forward” in Git.
  • Suppose that a branch is merged but a problem occurs and the issue is reopened. In this case, it is no problem to reuse the same branch name since the first branch was deleted when it was merged.
  • At any time, there is at most one branch for every issue.
  • It is possible that one feature branch solves more than one issue.
  • GitLab closes these issues when the code is merged into the default branch.
  • If you have an issue that spans across multiple repositories, create an issue for each repository and link all issues to a parent issue.
  • use an interactive rebase (rebase -i) to squash multiple commits into one or reorder them.
  • you should never rebase commits you have pushed to a remote server.
  • Rebasing creates new commits for all your changes, which can cause confusion because the same change would have multiple identifiers.
  • if someone has already reviewed your code, rebasing makes it hard to tell what changed since the last review.
  • never rebase commits authored by other people.
  • it is a bad idea to rebase commits that you have already pushed.
  • If you revert a merge commit and then change your mind, revert the revert commit to redo the merge.
  • Often, people avoid merge commits by just using rebase to reorder their commits after the commits on the master branch.
  • Using rebase prevents a merge commit when merging master into your feature branch, and it creates a neat linear history.
  • every time you rebase, you have to resolve similar conflicts.
  • Sometimes you can reuse recorded resolutions (rerere), but merging is better since you only have to resolve conflicts once.
  • A good way to prevent creating many merge commits is to not frequently merge master into the feature branch.
  • keep your feature branches short-lived.
  • Most feature branches should take less than one day of work.
  • If your feature branches often take more than a day of work, try to split your features into smaller units of work.
  • You could also use feature toggles to hide incomplete features so you can still merge back into master every day.
  • you should try to prevent merge commits, but not eliminate them.
  • Your codebase should be clean, but your history should represent what actually happened.
  • If you rebase code, the history is incorrect, and there is no way for tools to remedy this because they can’t deal with changing commit identifiers
  • Commit often and push frequently
  • You should push your feature branch frequently, even when it is not yet ready for review.
  • A commit message should reflect your intention, not just the contents of the commit.
  • each merge request must be tested before it is accepted.
  • test the master branch after each change.
  • If new commits in master cause merge conflicts with the feature branch, merge master back into the branch to make the CI server re-run the tests.
  • When creating a feature branch, always branch from an up-to-date master.
  • Do not merge from upstream again if your code can work and merge cleanly without doing so.
張 旭

Introduction to GitLab Flow | GitLab - 0 views

  • Git allows a wide variety of branching strategies and workflows.
  • not integrated with issue tracking systems
  • The biggest problem is that many long-running branches emerge that all contain part of the changes.
  • ...47 more annotations...
  • most organizations practice continuous delivery, which means that your default branch can be deployed.
  • Merging everything into the master branch and frequently deploying means you minimize the amount of unreleased code, which is in line with lean and continuous delivery best practices.
  • you can deploy to production every time you merge a feature branch.
  • deploy a new version by merging master into the production branch.
  • you can have your deployment script create a tag on each deployment.
  • to have an environment that is automatically updated to the master branch
  • commits only flow downstream, ensures that everything is tested in all environments.
  • first merge these bug fixes into master, and then cherry-pick them into the release branch.
  • Merging into master and then cherry-picking into release is called an “upstream first” policy
  • “merge request” since the final action is to merge the feature branch.
  • “pull request” since the first manual action is to pull the feature branch
  • it is common to protect the long-lived branches
  • After you merge a feature branch, you should remove it from the source control software
  • When you are ready to code, create a branch for the issue from the master branch. This branch is the place for any work related to this change.
  • A merge request is an online place to discuss the change and review the code.
  • If you open the merge request but do not assign it to anyone, it is a “Work In Progress” merge request.
  • Start the title of the merge request with “[WIP]” or “WIP:” to prevent it from being merged before it’s ready.
  • To automatically close linked issues, mention them with the words “fixes” or “closes,” for example, “fixes #14” or “closes #67.” GitLab closes these issues when the code is merged into the default branch.
  • If you have an issue that spans across multiple repositories, create an issue for each repository and link all issues to a parent issue.
  • With Git, you can use an interactive rebase (rebase -i) to squash multiple commits into one or reorder them.
  • you should never rebase commits you have pushed to a remote server.
  • Rebasing creates new commits for all your changes, which can cause confusion because the same change would have multiple identifiers.
  • if someone has already reviewed your code, rebasing makes it hard to tell what changed since the last review.
  • never rebase commits authored by other people.
  • it is a bad idea to rebase commits that you have already pushed.
  • always use the “no fast-forward” (--no-ff) strategy when you merge manually.
  • you should try to avoid merge commits in feature branches
  • people avoid merge commits by just using rebase to reorder their commits after the commits on the master branch. Using rebase prevents a merge commit when merging master into your feature branch, and it creates a neat linear history.
  • you should never rebase commits you have pushed to a remote server
  • Sometimes you can reuse recorded resolutions (rerere), but merging is better since you only have to resolve conflicts once.
  • not frequently merge master into the feature branch.
  • utilizing new code,
  • resolving merge conflicts
  • updating long-running branches.
  • just cherry-picking a commit.
  • If your feature branch has a merge conflict, creating a merge commit is a standard way of solving this.
  • keep your feature branches short-lived.
  • split your features into smaller units of work
  • you should try to prevent merge commits, but not eliminate them.
  • Your codebase should be clean, but your history should represent what actually happened.
  • Splitting up work into individual commits provides context for developers looking at your code later.
  • push your feature branch frequently, even when it is not yet ready for review.
  • Commit often and push frequently
  • A commit message should reflect your intention, not just the contents of the commit.
  • Testing before merging
  • When using GitLab flow, developers create their branches from this master branch, so it is essential that it never breaks. Therefore, each merge request must be tested before it is accepted.
  • When creating a feature branch, always branch from an up-to-date master
  •  
    "Git allows a wide variety of branching strategies and workflows."
張 旭

- 0 views

  • A fast-forward merge can happen when the current branch has no extra commits compared to the branch we’re merging.
  • With a no-fast-forward merge, Git creates a new merging commit on the active branch.
  • We can manually remove the changes we don't want to keep, save the changes, add the changed file again, and commit the changes
  • ...14 more annotations...
  • A git rebase copies the commits from the current branch, and puts these copied commits on top of the specified branch.
  • The branch that we're rebasing always has the latest changes that we want to keep!
  • A git rebase changes the history of the project as new hashes are created for the copied commits!
  • Rebasing is great whenever you're working on a feature branch, and the master branch has been updated.
  • An interactive rebase can also be useful on the branch you're currently working on, and want to modify some commits.
  • A git reset gets rid of all the current staged files and gives us control over where HEAD should point to.
  • A soft reset moves HEAD to the specified commit (or the index of the commit compared to HEAD)
  • Git should simply reset its state back to where it was on the specified commit: this even includes the changes in your working directory and staged files!
  • By reverting a certain commit, we create a new commit that contains the reverted changes!
  • Performing a git revert is very useful in order to undo a certain commit, without modifying the history of the branch.
  • By cherry-picking a commit, we create a new commit on our active branch that contains the changes that were introduced by the cherry-picked commit.
  • a fetch simply downloads new data.
  • A git pull is actually two commands in one: a git fetch, and a git merge
  • git reflog is a very useful command in order to show a log of all the actions that have been taken
張 旭

Override Files - Configuration Language - Terraform by HashiCorp - 0 views

  • In both the required_version and required_providers settings, each override constraint entirely replaces the constraints for the same component in the original block.
  • If both the base block and the override block both set required_version then the constraints in the base block are entirely ignored.
  • Terraform normally loads all of the .tf and .tf.json files within a directory and expects each one to define a distinct set of configuration objects.
  • ...14 more annotations...
  • If two files attempt to define the same object, Terraform returns an error.
  • a human-edited configuration file in the Terraform language native syntax could be partially overridden using a programmatically-generated file in JSON syntax.
  • Terraform has special handling of any configuration file whose name ends in _override.tf or _override.tf.json
  • Terraform initially skips these override files when loading configuration, and then afterwards processes each one in turn (in lexicographical order).
  • merges the override block contents into the existing object.
  • Over-use of override files hurts readability, since a reader looking only at the original files cannot easily see that some portions of those files have been overridden without consulting all of the override files that are present.
  • When using override files, use comments in the original files to warn future readers about which override files apply changes to each block.
  • A top-level block in an override file merges with a block in a normal configuration file that has the same block header.
  • Within a top-level block, an attribute argument within an override block replaces any argument of the same name in the original block.
  • Within a top-level block, any nested blocks within an override block replace all blocks of the same type in the original block.
  • The contents of nested configuration blocks are not merged.
  • If more than one override file defines the same top-level block, the overriding effect is compounded, with later blocks taking precedence over earlier blocks
  • The settings within terraform blocks are considered individually when merging.
  • If the required_providers argument is set, its value is merged on an element-by-element basis, which allows an override block to adjust the constraint for a single provider without affecting the constraints for other providers.
  •  
    "In both the required_version and required_providers settings, each override constraint entirely replaces the constraints for the same component in the original block. "
張 旭

Trunk-based Development | Atlassian - 0 views

  • Trunk-based development is a version control management practice where developers merge small, frequent updates to a core “trunk” or main branch.
  • Gitflow and trunk-based development. 
  • Gitflow, which was popularized first, is a stricter development model where only certain individuals can approve changes to the main code. This maintains code quality and minimizes the number of bugs.
  • ...20 more annotations...
  • Trunk-based development is a more open model since all developers have access to the main code. This enables teams to iterate quickly and implement CI/CD.
  • Developers can create short-lived branches with a few small commits compared to other long-lived feature branching strategies.
  • Gitflow is an alternative Git branching model that uses long-lived feature branches and multiple primary branches.
  • Gitflow also has separate primary branch lines for development, hotfixes, features, and releases.
  • Trunk-based development is far more simplified since it focuses on the main branch as the source of fixes and releases.
  • Trunk-based development eases the friction of code integration.
  • trunk-based development model reduces these conflicts.
  • Adding an automated test suite and code coverage monitoring for this stream of commits enables continuous integration.
  • When new code is merged into the trunk, automated integration and code coverage tests run to validate the code quality.
  • Trunk-based development strives to keep the trunk branch “green”, meaning it's ready to deploy at any commit.
  • With continuous integration, developers perform trunk-based development in conjunction with automated tests that run after each committee to a trunk.
  • If trunk-based development was like music it would be a rapid staccato -- short, succinct notes in rapid succession, with the repository commits being the notes.
  • Instead of creating a feature branch and waiting to build out the complete specification, developers can instead create a trunk commit that introduces the feature flag and pushes new trunk commits that build out the feature specification within the flag.
  • Automated testing is necessary for any modern software project intending to achieve CI/CD.
  • Short running unit and integration tests are executed during development and upon code merge.
  • Automated tests provide a layer of preemptive code review.
  • Once a branch merges, it is best practice to delete it.
  • A repository with a large amount of active branches has some unfortunate side effects
  • Merge branches to the trunk at least once a day
  • The “continuous” in CI/CD implies that updates are constantly flowing.
張 旭

10 Common Git Problems and How to Fix Them - DEV Community - 0 views

  • Please keep in mind that --amend actually will create a new commit which replaces the previous one, so don’t use it for modifying commits which already have been pushed to a central repository.
  • git rebase --interactive
  • Just pick the commit(s) you want to update, change pick to reword (or r for short), and you will be taken to a new view where you can edit the message.
  • ...8 more annotations...
  • you can completely remove commits by deleting them from the list, as well as edit, reorder, and squash them.
  • Squashing allows you to merge several commits into one
  • In case you don’t want to create additional revert commits but only apply the necessary changes to your working tree, you can use the --no-commit/-n option.
  • reuse recorded resolution
  • Unfortunately it turns out that one of the branches isn’t quite there yet, so you decide to un-merge it again. Several days (or weeks) later when the branch is finally ready you merge it again, but thanks to the recorded resolutions, you won’t have to resolve the same merge conflicts again.
  • You can also define global hooks to use in all your projects by creating a template directory that git will use when initializing a new repository
  • removing sensitive data
  • Keep in mind that this will rewrite your project’s entire history, which can be very disruptive in a distributed workflow.
張 旭

The Squeaky Blog | Why we don't use a staging environment - 0 views

  • Pre-live environments are never at parity with production
  • multiple people use staging to validate their changes before release.
  • Branches are then constantly out of sync with each other, and problems often surface when you merge, rebase, and backfill hotfixes.
  • ...10 more annotations...
  • Big Bang releases
  • there is a lengthy suite of tests and checks that run before it is deployed to staging. During this period, which could end up being hours, engineers will likely pick up another task. I’ve seen people merge, and then forget that their changes are on staging, more times than I can count.
  • only merge code that is ready to go live
  • written sufficient tests and have validated our changes in development.
  • All branches are cut from main, and all changes get merged back into main.
  • If we ever have an issue in production, we always roll forward.
  • Feature flags can be enabled on a per-user basis so we can monitor performance and gather feedback
  • Experimental features can be enabled by users in their account settings.
  • we have monitoring, logging, and alarms around all of our services. We also blue/green deploy, by draining and replacing a percentage of containers.
  • Dropping your staging environment in favour of true continuous integration and deployment can create a different mindset for shipping software.
  •  
    "Pre-live environments are never at parity with production "
張 旭

Backends: Configuration - Terraform by HashiCorp - 0 views

  • merged configuration is stored on disk in the .terraform directory, which should be ignored from version control.
  • When using partial configuration, Terraform requires at a minimum that an empty backend configuration is specified in one of the root Terraform configuration files, to specify the backend type.
  •  
    "merged configuration is stored on disk in the .terraform directory, which should be ignored from version control."
張 旭

Auto DevOps | GitLab - 0 views

  • Auto DevOps provides pre-defined CI/CD configuration which allows you to automatically detect, build, test, deploy, and monitor your applications
  • Just push your code and GitLab takes care of everything else.
  • Auto DevOps will be automatically disabled on the first pipeline failure.
  • ...78 more annotations...
  • Your project will continue to use an alternative CI/CD configuration file if one is found
  • Auto DevOps works with any Kubernetes cluster;
  • using the Docker or Kubernetes executor, with privileged mode enabled.
  • Base domain (needed for Auto Review Apps and Auto Deploy)
  • Kubernetes (needed for Auto Review Apps, Auto Deploy, and Auto Monitoring)
  • Prometheus (needed for Auto Monitoring)
  • scrape your Kubernetes cluster.
  • project level as a variable: KUBE_INGRESS_BASE_DOMAIN
  • A wildcard DNS A record matching the base domain(s) is required
  • Once set up, all requests will hit the load balancer, which in turn will route them to the Kubernetes pods that run your application(s).
  • review/ (every environment starting with review/)
  • staging
  • production
  • need to define a separate KUBE_INGRESS_BASE_DOMAIN variable for all the above based on the environment.
  • Continuous deployment to production: Enables Auto Deploy with master branch directly deployed to production.
  • Continuous deployment to production using timed incremental rollout
  • Automatic deployment to staging, manual deployment to production
  • Auto Build creates a build of the application using an existing Dockerfile or Heroku buildpacks.
  • If a project’s repository contains a Dockerfile, Auto Build will use docker build to create a Docker image.
  • Each buildpack requires certain files to be in your project’s repository for Auto Build to successfully build your application.
  • Auto Test automatically runs the appropriate tests for your application using Herokuish and Heroku buildpacks by analyzing your project to detect the language and framework.
  • Auto Code Quality uses the Code Quality image to run static analysis and other code checks on the current code.
  • Static Application Security Testing (SAST) uses the SAST Docker image to run static analysis on the current code and checks for potential security issues.
  • Dependency Scanning uses the Dependency Scanning Docker image to run analysis on the project dependencies and checks for potential security issues.
  • License Management uses the License Management Docker image to search the project dependencies for their license.
  • Vulnerability Static Analysis for containers uses Clair to run static analysis on a Docker image and checks for potential security issues.
  • Review Apps are temporary application environments based on the branch’s code so developers, designers, QA, product managers, and other reviewers can actually see and interact with code changes as part of the review process. Auto Review Apps create a Review App for each branch. Auto Review Apps will deploy your app to your Kubernetes cluster only. When no cluster is available, no deployment will occur.
  • The Review App will have a unique URL based on the project ID, the branch or tag name, and a unique number, combined with the Auto DevOps base domain.
  • Review apps are deployed using the auto-deploy-app chart with Helm, which can be customized.
  • Your apps should not be manipulated outside of Helm (using Kubernetes directly).
  • Dynamic Application Security Testing (DAST) uses the popular open source tool OWASP ZAProxy to perform an analysis on the current code and checks for potential security issues.
  • Auto Browser Performance Testing utilizes the Sitespeed.io container to measure the performance of a web page.
  • add the paths to a file named .gitlab-urls.txt in the root directory, one per line.
  • After a branch or merge request is merged into the project’s default branch (usually master), Auto Deploy deploys the application to a production environment in the Kubernetes cluster, with a namespace based on the project name and unique project ID
  • Auto Deploy doesn’t include deployments to staging or canary by default, but the Auto DevOps template contains job definitions for these tasks if you want to enable them.
  • Apps are deployed using the auto-deploy-app chart with Helm.
  • For internal and private projects a GitLab Deploy Token will be automatically created, when Auto DevOps is enabled and the Auto DevOps settings are saved.
  • If the GitLab Deploy Token cannot be found, CI_REGISTRY_PASSWORD is used. Note that CI_REGISTRY_PASSWORD is only valid during deployment.
  • If present, DB_INITIALIZE will be run as a shell command within an application pod as a helm post-install hook.
  • a post-install hook means that if any deploy succeeds, DB_INITIALIZE will not be processed thereafter.
  • DB_MIGRATE will be run as a shell command within an application pod as a helm pre-upgrade hook.
    • 張 旭
       
      如果專案類型不同,就要去查 buildpacks 裡面如何叫用該指令,例如 laravel 的 migration
    • 張 旭
       
      如果是自己的 Dockerfile 建立起來的,看來就不用鳥 buildpacks 的作法
  • Once your application is deployed, Auto Monitoring makes it possible to monitor your application’s server and response metrics right out of the box.
  • annotate the NGINX Ingress deployment to be scraped by Prometheus using prometheus.io/scrape: "true" and prometheus.io/port: "10254"
  • If you are also using Auto Review Apps and Auto Deploy and choose to provide your own Dockerfile, make sure you expose your application to port 5000 as this is the port assumed by the default Helm chart.
  • While Auto DevOps provides great defaults to get you started, you can customize almost everything to fit your needs; from custom buildpacks, to Dockerfiles, Helm charts, or even copying the complete CI/CD configuration into your project to enable staging and canary deployments, and more.
  • If your project has a Dockerfile in the root of the project repo, Auto DevOps will build a Docker image based on the Dockerfile rather than using buildpacks.
  • Auto DevOps uses Helm to deploy your application to Kubernetes.
  • Bundled chart - If your project has a ./chart directory with a Chart.yaml file in it, Auto DevOps will detect the chart and use it instead of the default one.
  • Create a project variable AUTO_DEVOPS_CHART with the URL of a custom chart to use or create two project variables AUTO_DEVOPS_CHART_REPOSITORY with the URL of a custom chart repository and AUTO_DEVOPS_CHART with the path to the chart.
  • make use of the HELM_UPGRADE_EXTRA_ARGS environment variable to override the default values in the values.yaml file in the default Helm chart.
  • specify the use of a custom Helm chart per environment by scoping the environment variable to the desired environment.
    • 張 旭
       
      Auto DevOps 就是一套人家寫好好的傳便便的 .gitlab-ci.yml
  • Your additions will be merged with the Auto DevOps template using the behaviour described for include
  • copy and paste the contents of the Auto DevOps template into your project and edit this as needed.
  • In order to support applications that require a database, PostgreSQL is provisioned by default.
  • Set up the replica variables using a project variable and scale your application by just redeploying it!
  • You should not scale your application using Kubernetes directly.
  • Some applications need to define secret variables that are accessible by the deployed application.
  • Auto DevOps detects variables where the key starts with K8S_SECRET_ and make these prefixed variables available to the deployed application, as environment variables.
  • Auto DevOps pipelines will take your application secret variables to populate a Kubernetes secret.
  • Environment variables are generally considered immutable in a Kubernetes pod.
  • if you update an application secret without changing any code then manually create a new pipeline, you will find that any running application pods will not have the updated secrets.
  • Variables with multiline values are not currently supported
  • The normal behavior of Auto DevOps is to use Continuous Deployment, pushing automatically to the production environment every time a new pipeline is run on the default branch.
  • If STAGING_ENABLED is defined in your project (e.g., set STAGING_ENABLED to 1 as a CI/CD variable), then the application will be automatically deployed to a staging environment, and a production_manual job will be created for you when you’re ready to manually deploy to production.
  • If CANARY_ENABLED is defined in your project (e.g., set CANARY_ENABLED to 1 as a CI/CD variable) then two manual jobs will be created: canary which will deploy the application to the canary environment production_manual which is to be used by you when you’re ready to manually deploy to production.
  • If INCREMENTAL_ROLLOUT_MODE is set to manual in your project, then instead of the standard production job, 4 different manual jobs will be created: rollout 10% rollout 25% rollout 50% rollout 100%
  • The percentage is based on the REPLICAS variable and defines the number of pods you want to have for your deployment.
  • To start a job, click on the play icon next to the job’s name.
  • Once you get to 100%, you cannot scale down, and you’d have to roll back by redeploying the old version using the rollback button in the environment page.
  • With INCREMENTAL_ROLLOUT_MODE set to manual and with STAGING_ENABLED
  • not all buildpacks support Auto Test yet
  • When a project has been marked as private, GitLab’s Container Registry requires authentication when downloading containers.
  • Authentication credentials will be valid while the pipeline is running, allowing for a successful initial deployment.
  • After the pipeline completes, Kubernetes will no longer be able to access the Container Registry.
  • We strongly advise using GitLab Container Registry with Auto DevOps in order to simplify configuration and prevent any unforeseen issues.
crazylion lee

Security/Server Side TLS - MozillaWiki - 0 views

  •  
    The goal of this document is to help operational teams with the configuration of TLS on servers. All Mozilla sites and deployment should follow the recommendations below. The Operations Security (OpSec) team maintains this document as a reference guide to navigate the TLS landscape. It contains information on TLS protocols, known issues and vulnerabilities, configuration examples and testing tools. Changes are reviewed and merged by the OpSec team, and broadcasted to the various Operational teams.
張 旭

Understanding the GitHub flow · GitHub Guides - 0 views

  • anything in the master branch is always deployable.
  • Your branch name should be descriptive
  • Commits also create a transparent history of your work that others can follow to understand what you've done and why.
  • ...9 more annotations...
  • each commit is considered a separate unit of change.
  • By writing clear commit messages, you can make it easier for other people to follow along and provide feedback.
  • Pull Requests initiate discussion about your commits.
  • If you're using a Fork & Pull Model, Pull Requests provide a way to notify project maintainers about the changes you'd like them to consider.
  • Pull Requests are designed to encourage and capture this type of conversation.
  • You can also continue to push to your branch in light of discussion and feedback about your commits.
  • If your branch causes issues, you can roll it back by deploying the existing master into production.
  • With GitHub, you can deploy from a branch for final testing in production before merging to master.
  • your changes have been verified in production, it is time to merge your code into the master branch.
  •  
    "anything in the master branch is always deployable."
張 旭

Choose when to run jobs | GitLab - 0 views

  • Rules are evaluated in order until the first match.
  • no rules match, so the job is not added to any other pipeline.
  • define a set of rules to exclude jobs in a few cases, but run them in all other cases
  • ...32 more annotations...
  • use all rules keywords, like if, changes, and exists, in the same rule. The rule evaluates to true only when all included keywords evaluate to true.
  • use parentheses with && and || to build more complicated variable expressions.
  • Use workflow to specify which types of pipelines can run.
  • every push to an open merge request’s source branch causes duplicated pipelines.
  • avoid duplicate pipelines by changing the job rules to avoid either push (branch) pipelines or merge request pipelines.
  • do not mix only/except jobs with rules jobs in the same pipeline.
  • For behavior similar to the only/except keywords, you can check the value of the $CI_PIPELINE_SOURCE variable
  • commonly used variables for if clauses
  • rules:changes expressions to determine when to add jobs to a pipeline
  • Use !reference tags to reuse rules in different jobs.
  • Use except to define when a job does not run.
  • only or except used without refs is the same as only:refs / except/refs
  • If you change multiple files, but only one file ends in .md, the build job is still skipped.
  • If you use multiple keywords with only or except, the keywords are evaluated as a single conjoined expression.
  • only includes the job if all of the keys have at least one condition that matches.
  • except excludes the job if any of the keys have at least one condition that matches.
  • With only, individual keys are logically joined by an AND
  • With except, individual keys are logically joined by an OR
  • To specify a job as manual, add when: manual to the job in the .gitlab-ci.yml file.
  • Use protected environments to define a list of users authorized to run a manual job.
  • Use when: delayed to execute scripts after a waiting period, or if you want to avoid jobs immediately entering the pending state.
  • To split a large job into multiple smaller jobs that run in parallel, use the parallel keyword
  • run a trigger job multiple times in parallel in a single pipeline, but with different variable values for each instance of the job.
  • The @ symbol denotes the beginning of a ref’s repository path. To match a ref name that contains the @ character in a regular expression, you must use the hex character code match \x40.
  • Compare a variable to a string
  • Check if a variable is undefined
  • Check if a variable is empty
  • Check if a variable exists
  • Check if a variable is empty
  • Matches are found when using =~.
  • Matches are not found when using !~.
  • Join variable expressions together with && or ||
  •  
    "Rules are evaluated in order until the first match."
張 旭

Rails Database Best Practices - 0 views

  • Databases are extremely feature rich and are really freakin fast when used properly
  • create succinct helpers for accessing subsets of data that are relevant in specific situations
  • Relations are chainable
  • ...24 more annotations...
  • Return an ActiveRecord::Relation
  • Filtering in Ruby is slower
  • Please don't do this
  • trigger the query and therefore, we lose our Relation
  • leaving trivial ordering out of scopes all together.
  • where
  • where
  • .merge() makes it easy to use scopes from other models that have been joined into the query, reducing potential duplication.
  • ActiveRecord provides an easy API for doing many things with our database, but it also makes it pretty easy to do things inefficiently. The layer of abstraction hides what’s really happening.
  • first pure SQL, then ActiveRecord
  • Databases can only do fast lookups for columns with indexes, otherwise it’s doing a sequential scan
  • Add an index on every id column as well as any column that is used in a where clause.
  • use a Query class to encapsulate the potentially gnarly query.
  • subqueries
  • this Query returns an ActiveRecord::Relation
  • where
  • where
  • Single Responsibility Principle
  • Avoid ad-hoc queries outside of Scopes and Query Objects
  • encapsulate data access into scopes and Query objects
  • An ad-hoc query embedded in a controller (or view, task, etc) is harder to test in isolation and cannot be reused
  • to scopes and Query objects
    • 張 旭
       
      將查詢方式都封裝成 scope 或 query 物件。
  • Every databases provides more datatypes than your ORM might have you believe
  • Both Postgres and MySQL have full-text search capabilities
張 旭

Probably Done Before: Visualizing Docker Containers and Images - 0 views

  •  In my opinion, understanding how a technology works under the hood is the best way to achieve learning speed and to build confidence that you are using the tool in the correct way.
  • union view
    • 張 旭
       
      把多層 image layer 串接起來,看上去就像是在讀一個 image 檔案而已。
  • The top-level layer may be read by a union-ing file system (AUFS on my docker implementation) to present a single cohesive view of all the changes as one read-only file system
  • ...36 more annotations...
  • it is nearly the same thing as an image, except that the top layer is read-write
  • A container is defined only as a read-write layer atop an image (of read-only layers itself).  It does not have to be running.
  • a running container
    • 張 旭
       
      之前一直搞錯了!不是 run 起來的才會叫 container,只要有 read-write layer 就是了!
  • the the isolated process-space and processes within
  • A running container is defined as a read-write "union view" and
  • kernel-level technologies like cgroups, namespaces
  • The processes within this process-space may change, delete or create files within the "union view" file that will be captured in the read-write layer
  • there is no longer a running container
    • 張 旭
       
      這行指令執行結束之後,running container 就停掉了,但是該 container 還在!
  • each layer contains a pointer to a parent layer using the Id
  • The 'docker create' command adds a read-write layer to the top stack based on the image id.  It does not run this container.
  • The command 'docker start' creates a process space around the union view of the container's layers.
  • can only be one process space per container.
  • the docker run command starts with an image, creates a container, and starts the container
  • 'git pull' (which is a combination of 'git fetch' and 'git merge')
  • 'docker ps' lists out the inventory of running containers on your system
  • 'docker ps -a' where the 'a' is short for 'all' lists out all the containers on your system, whether stopped or running.
  • Only those images that have containers attached to them or that have been pulled are considered top-level.
  • 'docker stop' issues a SIGTERM to a running container which politely stops all the processes in that process-space.
  • results is a normal, but non-running, container
  • 'docker kill' issues a non-polite SIGKILL command to all the processes in a running container.
  • 'docker stop' and 'docker kill' which send actual UNIX signals to a running process
  • 'docker pause' uses a special cgroups feature to freeze/pause a running process-space
  • 'docker rm' removes the read-write layer that defines a container from your host system
  • It effectively deletes files
  • 'docker rmi' removes the read-layer that defines a "union view" of an image.
  • 'docker commit' takes a container's top-level read-write layer and burns it into a read-only layer.
  • turns a container (whether running or stopped) into an immutable image
  • uses the FROM directive in the Dockerfile file as the starting image and iteratively 1) runs (create and start) 2) modifies and 3) commits.
  • At each step in the iteration a new layer is created.
  • 'docker exec' command runs on a running container and executes a process in that running container's process space
  • 'docker inspect' fetches the metadata that has been associated with the top-layer of the container or image
  • 'docker save' creates a single tar file that can be used to import on a different host system
  • only be run on an image
  • 'docker export' command creates a tar file of the contents of the "union view" and flattens it for consumption for non-Docker usages
  • This command removes the metadata and the layers.  This command can only be run on containers.
  • 'docker history' command takes an image-id and recursively prints out the read-only layers
張 旭

How to write excellent Dockerfiles - 0 views

  • minimize image size, build time and number of layers.
  • maximize build cache usage
  • Container should do one thing
    • 張 旭
       
      這個有待商榷,在 baseimage 的 blog 介紹中有詳細的討論。
  • ...25 more annotations...
  • Use COPY and RUN commands in proper order
  • Merge multiple RUN commands into one
  • alpine versions should be enough
  • Use exec inside entrypoint script
  • Prefer COPY over ADD
  • Specify default environment variables, ports and volumes inside Dockerfile
  • problems with zombie processes
  • prepare separate Docker image for each component, and use Docker Compose to easily start multiple containers at the same time
  • Layers are cached and reused
  • Layers are immutable
  • They both makes you cry
  • rely on our base image updates
  • make a cleanup
  • alpine is a very tiny linux distribution, just about 4 MB in size.
  • Your disk will love you :)
  • WORKDIR command changes default directory, where we run our RUN / CMD / ENTRYPOINT commands.
  • CMD is a default command run after creating container without other command specified.
  • put your command inside array
  • entrypoint adds complexity
  • Entrypoint is a script, that will be run instead of command, and receive command as arguments
  • Without it, we would not be able to stop our application grecefully (SIGTERM is swallowed by bash script).
  • Use "exec" inside entrypoint script
  • ADD has some logic for downloading remote files and extracting archives.
  • stick with COPY.
  • ADD
    • 張 旭
       
      不是說要用 COPY 嗎?
張 旭

Configuration - docker-sync 0.5.10 documentation - 0 views

  • Be sure to use a sync-name which is unique, since it will be a container name.
    • 張 旭
       
      慣例是 docker-sync 的 container name 後綴都是 -sync
  • split your docker-compose configuration for production and development (as usual)
  • ...9 more annotations...
  • production stack (docker-compose.yml) does not need any changes and would look like this (and is portable, no docker-sync adjustments).
  • docker-compose-dev.yml ( it needs to be called that way, look like this ) will override
    • 張 旭
       
      開發版的 docker-compose-dev.yml 僅會覆寫 production docker-compose.yml 的 volumes 設定,也就接上 docker-sync.yml 的 volumes,其它都維持不變
  • nocopy # nocopy is important
  • nocopy # nocopy is important
  • docker-compose -f docker-compose.yml -f docker-compose-dev.yml up
  • add the external volume and the mount here
  • In case the folder we mount to has been declared as a VOLUME during image build, its content will be merged with the name volume we mount from the host
    • 張 旭
       
      如果在 Dockerfile 裡面有宣告一個 volume,那麼在 docker build 的時候這個 volume mount point 會被記錄起來,在 container 跑起來的時候,會將 host (server) 上的同名的 volume 內容合併進來 (取代)。也就是說 container 跑起來的時候,會去接上已經存在的既有的 host (server) 上的 volume。
  • enforce the content from our host on the initial wiring
  • set your environment variables by creating a .env file at the root of your project
  •  
    "Be sure to use a sync-name which is unique, since it will be a container name."
張 旭

Kubernetes - Traefik - 0 views

  • allow fine-grained control of Kubernetes resources and API.
  • authorize Traefik to use the Kubernetes API.
  • namespace-specific RoleBindings
  • ...29 more annotations...
  • a single, global ClusterRoleBinding.
  • RoleBindings per namespace enable to restrict granted permissions to the very namespaces only that Traefik is watching over, thereby following the least-privileges principle.
  • The scalability can be much better when using a Deployment
  • you will have a Single-Pod-per-Node model when using a DaemonSet,
  • DaemonSets automatically scale to new nodes, when the nodes join the cluster
  • DaemonSets ensure that only one replica of pods run on any single node.
  • DaemonSets can be run with the NET_BIND_SERVICE capability, which will allow it to bind to port 80/443/etc on each host. This will allow bypassing the kube-proxy, and reduce traffic hops.
  • start with the Daemonset
  • The Deployment has easier up and down scaling possibilities.
  • The DaemonSet automatically scales to all nodes that meets a specific selector and guarantees to fill nodes one at a time.
  • Rolling updates are fully supported from Kubernetes 1.7 for DaemonSets as well.
  • provide the TLS certificate via a Kubernetes secret in the same namespace as the ingress.
  • If there are any errors while loading the TLS section of an ingress, the whole ingress will be skipped.
  • create secret generic
  • Name-based Routing
  • Path-based Routing
  • Traefik will merge multiple Ingress definitions for the same host/path pair into one definition.
  • specify priority for ingress routes
  • traefik.frontend.priority
  • When specifying an ExternalName, Traefik will forward requests to the given host accordingly and use HTTPS when the Service port matches 443.
  • By default Traefik will pass the incoming Host header to the upstream resource.
  • traefik.frontend.passHostHeader: "false"
  • type: ExternalName
  • By default, Traefik processes every Ingress objects it observes.
  • It is also possible to set the ingressClass option in Traefik to a particular value. Traefik will only process matching Ingress objects.
  • It is possible to split Ingress traffic in a fine-grained manner between multiple deployments using service weights.
  • use case is canary releases where a deployment representing a newer release is to receive an initially small but ever-increasing fraction of the requests over time.
  • annotations: traefik.ingress.kubernetes.io/service-weights: | my-app: 99% my-app-canary: 1%
  • Over time, the ratio may slowly shift towards the canary deployment until it is deemed to replace the previous main application, in steps such as 5%/95%, 10%/90%, 50%/50%, and finally 100%/0%.
張 旭

Helm | - 0 views

  • A chart is a collection of files that describe a related set of Kubernetes resources.
  • A single chart might be used to deploy something simple, like a memcached pod, or something complex, like a full web app stack with HTTP servers, databases, caches, and so on.
  • Charts are created as files laid out in a particular directory tree, then they can be packaged into versioned archives to be deployed.
  • ...170 more annotations...
  • A chart is organized as a collection of files inside of a directory.
  • values.yaml # The default configuration values for this chart
  • charts/ # A directory containing any charts upon which this chart depends.
  • templates/ # A directory of templates that, when combined with values, # will generate valid Kubernetes manifest files.
  • version: A SemVer 2 version (required)
  • apiVersion: The chart API version, always "v1" (required)
  • Every chart must have a version number. A version must follow the SemVer 2 standard.
  • non-SemVer names are explicitly disallowed by the system.
  • When generating a package, the helm package command will use the version that it finds in the Chart.yaml as a token in the package name.
  • the appVersion field is not related to the version field. It is a way of specifying the version of the application.
  • appVersion: The version of the app that this contains (optional). This needn't be SemVer.
  • If the latest version of a chart in the repository is marked as deprecated, then the chart as a whole is considered to be deprecated.
  • deprecated: Whether this chart is deprecated (optional, boolean)
  • one chart may depend on any number of other charts.
  • dependencies can be dynamically linked through the requirements.yaml file or brought in to the charts/ directory and managed manually.
  • the preferred method of declaring dependencies is by using a requirements.yaml file inside of your chart.
  • A requirements.yaml file is a simple file for listing your dependencies.
  • The repository field is the full URL to the chart repository.
  • you must also use helm repo add to add that repo locally.
  • helm dependency update and it will use your dependency file to download all the specified charts into your charts/ directory for you.
  • When helm dependency update retrieves charts, it will store them as chart archives in the charts/ directory.
  • Managing charts with requirements.yaml is a good way to easily keep charts updated, and also share requirements information throughout a team.
  • All charts are loaded by default.
  • The condition field holds one or more YAML paths (delimited by commas). If this path exists in the top parent’s values and resolves to a boolean value, the chart will be enabled or disabled based on that boolean value.
  • The tags field is a YAML list of labels to associate with this chart.
  • all charts with tags can be enabled or disabled by specifying the tag and a boolean value.
  • The --set parameter can be used as usual to alter tag and condition values.
  • Conditions (when set in values) always override tags.
  • The first condition path that exists wins and subsequent ones for that chart are ignored.
  • The keys containing the values to be imported can be specified in the parent chart’s requirements.yaml file using a YAML list. Each item in the list is a key which is imported from the child chart’s exports field.
  • specifying the key data in our import list, Helm looks in the exports field of the child chart for data key and imports its contents.
  • the parent key data is not contained in the parent’s final values. If you need to specify the parent key, use the ‘child-parent’ format.
  • To access values that are not contained in the exports key of the child chart’s values, you will need to specify the source key of the values to be imported (child) and the destination path in the parent chart’s values (parent).
  • To drop a dependency into your charts/ directory, use the helm fetch command
  • A dependency can be either a chart archive (foo-1.2.3.tgz) or an unpacked chart directory.
  • name cannot start with _ or .. Such files are ignored by the chart loader.
  • a single release is created with all the objects for the chart and its dependencies.
  • Helm Chart templates are written in the Go template language, with the addition of 50 or so add-on template functions from the Sprig library and a few other specialized functions
  • When Helm renders the charts, it will pass every file in that directory through the template engine.
  • Chart developers may supply a file called values.yaml inside of a chart. This file can contain default values.
  • Chart users may supply a YAML file that contains values. This can be provided on the command line with helm install.
  • When a user supplies custom values, these values will override the values in the chart’s values.yaml file.
  • Template files follow the standard conventions for writing Go templates
  • {{default "minio" .Values.storage}}
  • Values that are supplied via a values.yaml file (or via the --set flag) are accessible from the .Values object in a template.
  • pre-defined, are available to every template, and cannot be overridden
  • the names are case sensitive
  • Release.Name: The name of the release (not the chart)
  • Release.IsUpgrade: This is set to true if the current operation is an upgrade or rollback.
  • Release.Revision: The revision number. It begins at 1, and increments with each helm upgrade
  • Chart: The contents of the Chart.yaml
  • Files: A map-like object containing all non-special files in the chart.
  • Files can be accessed using {{index .Files "file.name"}} or using the {{.Files.Get name}} or {{.Files.GetString name}} functions.
  • .helmignore
  • access the contents of the file as []byte using {{.Files.GetBytes}}
  • Any unknown Chart.yaml fields will be dropped
  • Chart.yaml cannot be used to pass arbitrarily structured data into the template.
  • A values file is formatted in YAML.
  • A chart may include a default values.yaml file
  • be merged into the default values file.
  • The default values file included inside of a chart must be named values.yaml
  • accessible inside of templates using the .Values object
  • Values files can declare values for the top-level chart, as well as for any of the charts that are included in that chart’s charts/ directory.
  • Charts at a higher level have access to all of the variables defined beneath.
  • lower level charts cannot access things in parent charts
  • Values are namespaced, but namespaces are pruned.
  • the scope of the values has been reduced and the namespace prefix removed
  • Helm supports special “global” value.
  • a way of sharing one top-level variable with all subcharts, which is useful for things like setting metadata properties like labels.
  • If a subchart declares a global variable, that global will be passed downward (to the subchart’s subcharts), but not upward to the parent chart.
  • global variables of parent charts take precedence over the global variables from subcharts.
  • helm lint
  • A chart repository is an HTTP server that houses one or more packaged charts
  • Any HTTP server that can serve YAML files and tar files and can answer GET requests can be used as a repository server.
  • Helm does not provide tools for uploading charts to remote repository servers.
  • the only way to add a chart to $HELM_HOME/starters is to manually copy it there.
  • Helm provides a hook mechanism to allow chart developers to intervene at certain points in a release’s life cycle.
  • Execute a Job to back up a database before installing a new chart, and then execute a second job after the upgrade in order to restore data.
  • Hooks are declared as an annotation in the metadata section of a manifest
  • Hooks work like regular templates, but they have special annotations
  • pre-install
  • post-install: Executes after all resources are loaded into Kubernetes
  • pre-delete
  • post-delete: Executes on a deletion request after all of the release’s resources have been deleted.
  • pre-upgrade
  • post-upgrade
  • pre-rollback
  • post-rollback: Executes on a rollback request after all resources have been modified.
  • crd-install
  • test-success: Executes when running helm test and expects the pod to return successfully (return code == 0).
  • test-failure: Executes when running helm test and expects the pod to fail (return code != 0).
  • Hooks allow you, the chart developer, an opportunity to perform operations at strategic points in a release lifecycle
  • Tiller then loads the hook with the lowest weight first (negative to positive)
  • Tiller returns the release name (and other data) to the client
  • If the resources is a Job kind, Tiller will wait until the job successfully runs to completion.
  • if the job fails, the release will fail. This is a blocking operation, so the Helm client will pause while the Job is run.
  • If they have hook weights (see below), they are executed in weighted order. Otherwise, ordering is not guaranteed.
  • good practice to add a hook weight, and set it to 0 if weight is not important.
  • The resources that a hook creates are not tracked or managed as part of the release.
  • leave the hook resource alone.
  • To destroy such resources, you need to either write code to perform this operation in a pre-delete or post-delete hook or add "helm.sh/hook-delete-policy" annotation to the hook template file.
  • Hooks are just Kubernetes manifest files with special annotations in the metadata section
  • One resource can implement multiple hooks
  • no limit to the number of different resources that may implement a given hook.
  • When subcharts declare hooks, those are also evaluated. There is no way for a top-level chart to disable the hooks declared by subcharts.
  • Hook weights can be positive or negative numbers but must be represented as strings.
  • sort those hooks in ascending order.
  • Hook deletion policies
  • "before-hook-creation" specifies Tiller should delete the previous hook before the new hook is launched.
  • By default Tiller will wait for 60 seconds for a deleted hook to no longer exist in the API server before timing out.
  • Custom Resource Definitions (CRDs) are a special kind in Kubernetes.
  • The crd-install hook is executed very early during an installation, before the rest of the manifests are verified.
  • A common reason why the hook resource might already exist is that it was not deleted following use on a previous install/upgrade.
  • Helm uses Go templates for templating your resource files.
  • two special template functions: include and required
  • include function allows you to bring in another template, and then pass the results to other template functions.
  • The required function allows you to declare a particular values entry as required for template rendering.
  • If the value is empty, the template rendering will fail with a user submitted error message.
  • When you are working with string data, you are always safer quoting the strings than leaving them as bare words
  • Quote Strings, Don’t Quote Integers
  • when working with integers do not quote the values
  • env variables values which are expected to be string
  • to include a template, and then perform an operation on that template’s output, Helm has a special include function
  • The above includes a template called toYaml, passes it $value, and then passes the output of that template to the nindent function.
  • Go provides a way for setting template options to control behavior when a map is indexed with a key that’s not present in the map
  • The required function gives developers the ability to declare a value entry as required for template rendering.
  • The tpl function allows developers to evaluate strings as templates inside a template.
  • Rendering a external configuration file
  • (.Files.Get "conf/app.conf")
  • Image pull secrets are essentially a combination of registry, username, and password.
  • Automatically Roll Deployments When ConfigMaps or Secrets change
  • configmaps or secrets are injected as configuration files in containers
  • a restart may be required should those be updated with a subsequent helm upgrade
  • The sha256sum function can be used to ensure a deployment’s annotation section is updated if another file changes
  • checksum/config: {{ include (print $.Template.BasePath "/configmap.yaml") . | sha256sum }}
  • helm upgrade --recreate-pods
  • "helm.sh/resource-policy": keep
  • resources that should not be deleted when Helm runs a helm delete
  • this resource becomes orphaned. Helm will no longer manage it in any way.
  • create some reusable parts in your chart
  • In the templates/ directory, any file that begins with an underscore(_) is not expected to output a Kubernetes manifest file.
  • by convention, helper templates and partials are placed in a _helpers.tpl file.
  • The current best practice for composing a complex application from discrete parts is to create a top-level umbrella chart that exposes the global configurations, and then use the charts/ subdirectory to embed each of the components.
  • SAP’s Converged charts: These charts install SAP Converged Cloud a full OpenStack IaaS on Kubernetes. All of the charts are collected together in one GitHub repository, except for a few submodules.
  • Deis’s Workflow: This chart exposes the entire Deis PaaS system with one chart. But it’s different from the SAP chart in that this umbrella chart is built from each component, and each component is tracked in a different Git repository.
  • YAML is a superset of JSON
  • any valid JSON structure ought to be valid in YAML.
  • As a best practice, templates should follow a YAML-like syntax unless the JSON syntax substantially reduces the risk of a formatting issue.
  • There are functions in Helm that allow you to generate random data, cryptographic keys, and so on.
  • a chart repository is a location where packaged charts can be stored and shared.
  • A chart repository is an HTTP server that houses an index.yaml file and optionally some packaged charts.
  • Because a chart repository can be any HTTP server that can serve YAML and tar files and can answer GET requests, you have a plethora of options when it comes down to hosting your own chart repository.
  • It is not required that a chart package be located on the same server as the index.yaml file.
  • A valid chart repository must have an index file. The index file contains information about each chart in the chart repository.
  • The Helm project provides an open-source Helm repository server called ChartMuseum that you can host yourself.
  • $ helm repo index fantastic-charts --url https://fantastic-charts.storage.googleapis.com
  • A repository will not be added if it does not contain a valid index.yaml
  • add the repository to their helm client via the helm repo add [NAME] [URL] command with any name they would like to use to reference the repository.
  • Helm has provenance tools which help chart users verify the integrity and origin of a package.
  • Integrity is established by comparing a chart to a provenance record
  • The provenance file contains a chart’s YAML file plus several pieces of verification information
  • Chart repositories serve as a centralized collection of Helm charts.
  • Chart repositories must make it possible to serve provenance files over HTTP via a specific request, and must make them available at the same URI path as the chart.
  • We don’t want to be “the certificate authority” for all chart signers. Instead, we strongly favor a decentralized model, which is part of the reason we chose OpenPGP as our foundational technology.
  • The Keybase platform provides a public centralized repository for trust information.
  • A chart contains a number of Kubernetes resources and components that work together.
  • A test in a helm chart lives under the templates/ directory and is a pod definition that specifies a container with a given command to run.
  • The pod definition must contain one of the helm test hook annotations: helm.sh/hook: test-success or helm.sh/hook: test-failure
  • helm test
  • nest your test suite under a tests/ directory like <chart-name>/templates/tests/
1 - 20 of 27 Next ›
Showing 20 items per page