Skip to main content

Home/ Larvata/ Group items tagged mapping

Rss Feed Group items tagged

張 旭

Helm | - 0 views

  • Templates generate manifest files, which are YAML-formatted resource descriptions that Kubernetes can understand.
  • service.yaml: A basic manifest for creating a service endpoint for your deployment
  • In Kubernetes, a ConfigMap is simply a container for storing configuration data.
  • ...88 more annotations...
  • deployment.yaml: A basic manifest for creating a Kubernetes deployment
  • using the suffix .yaml for YAML files and .tpl for helpers.
  • It is just fine to put a plain YAML file like this in the templates/ directory.
  • helm get manifest
  • The helm get manifest command takes a release name (full-coral) and prints out all of the Kubernetes resources that were uploaded to the server. Each file begins with --- to indicate the start of a YAML document
  • Names should be unique to a release
  • The name: field is limited to 63 characters because of limitations to the DNS system.
  • release names are limited to 53 characters
  • {{ .Release.Name }}
  • A template directive is enclosed in {{ and }} blocks.
  • The values that are passed into a template can be thought of as namespaced objects, where a dot (.) separates each namespaced element.
  • The leading dot before Release indicates that we start with the top-most namespace for this scope
  • The Release object is one of the built-in objects for Helm
  • When you want to test the template rendering, but not actually install anything, you can use helm install ./mychart --debug --dry-run
  • Using --dry-run will make it easier to test your code, but it won’t ensure that Kubernetes itself will accept the templates you generate.
  • Objects are passed into a template from the template engine.
  • create new objects within your templates
  • Objects can be simple, and have just one value. Or they can contain other objects or functions.
  • Release is one of the top-level objects that you can access in your templates.
  • Release.Namespace: The namespace to be released into (if the manifest doesn’t override)
  • Values: Values passed into the template from the values.yaml file and from user-supplied files. By default, Values is empty.
  • Chart: The contents of the Chart.yaml file.
  • Files: This provides access to all non-special files in a chart.
  • Files.Get is a function for getting a file by name
  • Files.GetBytes is a function for getting the contents of a file as an array of bytes instead of as a string. This is useful for things like images.
  • Template: Contains information about the current template that is being executed
  • BasePath: The namespaced path to the templates directory of the current chart
  • The built-in values always begin with a capital letter.
  • Go’s naming convention
  • use only initial lower case letters in order to distinguish local names from those built-in.
  • If this is a subchart, the values.yaml file of a parent chart
  • Individual parameters passed with --set
  • values.yaml is the default, which can be overridden by a parent chart’s values.yaml, which can in turn be overridden by a user-supplied values file, which can in turn be overridden by --set parameters.
  • While structuring data this way is possible, the recommendation is that you keep your values trees shallow, favoring flatness.
  • If you need to delete a key from the default values, you may override the value of the key to be null, in which case Helm will remove the key from the overridden values merge.
  • Kubernetes would then fail because you can not declare more than one livenessProbe handler.
  • When injecting strings from the .Values object into the template, we ought to quote these strings.
  • quote
  • Template functions follow the syntax functionName arg1 arg2...
  • While we talk about the “Helm template language” as if it is Helm-specific, it is actually a combination of the Go template language, some extra functions, and a variety of wrappers to expose certain objects to the templates.
  • Drawing on a concept from UNIX, pipelines are a tool for chaining together a series of template commands to compactly express a series of transformations.
  • pipelines are an efficient way of getting several things done in sequence
  • The repeat function will echo the given string the given number of times
  • default DEFAULT_VALUE GIVEN_VALUE. This function allows you to specify a default value inside of the template, in case the value is omitted.
  • all static default values should live in the values.yaml, and should not be repeated using the default command
  • Operators are implemented as functions that return a boolean value.
  • To use eq, ne, lt, gt, and, or, not etcetera place the operator at the front of the statement followed by its parameters just as you would a function.
  • if and
  • if or
  • with to specify a scope
  • range, which provides a “for each”-style loop
  • block declares a special kind of fillable template area
  • A pipeline is evaluated as false if the value is: a boolean false a numeric zero an empty string a nil (empty or null) an empty collection (map, slice, tuple, dict, array)
  • incorrect YAML because of the whitespacing
  • When the template engine runs, it removes the contents inside of {{ and }}, but it leaves the remaining whitespace exactly as is.
  • {{- (with the dash and space added) indicates that whitespace should be chomped left, while -}} means whitespace to the right should be consumed.
  • Newlines are whitespace!
  • an * at the end of the line indicates a newline character that would be removed
  • Be careful with the chomping modifiers.
  • the indent function
  • Scopes can be changed. with can allow you to set the current scope (.) to a particular object.
  • Inside of the restricted scope, you will not be able to access the other objects from the parent scope.
  • range
  • The range function will “range over” (iterate through) the pizzaToppings list.
  • Just like with sets the scope of ., so does a range operator.
  • The toppings: |- line is declaring a multi-line string.
  • not a YAML list. It’s a big string.
  • the data in ConfigMaps data is composed of key/value pairs, where both the key and the value are simple strings.
  • The |- marker in YAML takes a multi-line string.
  • range can be used to iterate over collections that have a key and a value (like a map or dict).
  • In Helm templates, a variable is a named reference to another object. It follows the form $name
  • Variables are assigned with a special assignment operator: :=
  • {{- $relname := .Release.Name -}}
  • capture both the index and the value
  • the integer index (starting from zero) to $index and the value to $topping
  • For data structures that have both a key and a value, we can use range to get both
  • Variables are normally not “global”. They are scoped to the block in which they are declared.
  • one variable that is always global - $ - this variable will always point to the root context.
  • $.
  • $.
  • Helm template language is its ability to declare multiple templates and use them together.
  • A named template (sometimes called a partial or a subtemplate) is simply a template defined inside of a file, and given a name.
  • when naming templates: template names are global.
  • If you declare two templates with the same name, whichever one is loaded last will be the one used.
  • you should be careful to name your templates with chart-specific names.
  • templates in subcharts are compiled together with top-level templates
  • naming convention is to prefix each defined template with the name of the chart: {{ define "mychart.labels" }}
  • Helm has over 60 available functions.
張 旭

Running rootless Podman as a non-root user | Enable Sysadmin - 0 views

  • By default, rootless Podman runs as root within the container.
  • the processes in the container have the default list of namespaced capabilities which allow the processes to act like root inside of the user namespace
  • the directory is owned by UID 26, but UID 26 is not mapped into the container and is not the same UID that Postgres runs with while in the container.
  • ...8 more annotations...
  • Podman launches a container inside of the user namespace, which is mapped with the range of UIDs defined for the user in /etc/subuid and /etc/subgid
  • The easy solution to this problem is to chown the html directory to match the UID that Postgresql runs with inside of the container.
  • use the podman unshare command, which drops you into the same user namespace that rootless Podman uses
  • This setup also means that the processes inside of the container are running as the user’s UID. If the container process escaped the container, the process would have full access to files in your home directory based on UID separation.
  • SELinux would still block the access, but I have heard that some people disable SELinux.
  • If you run the processes within the container as a different non-root UID, however, then those processes will run as that UID. If they escape the container, they would only have world access to content in your home directory.
  • run a podman unshare command, or set up the directories' group ownership as owned by your UID (root inside of the container).
  • running containers as non-root should always be your top priority for security reasons.
crazylion lee

Introducing GeoViews | Continuum - 0 views

  •  
    "GeoViews is a new Python library that makes it easy to explore and visualize geographical, meteorological, oceanographic, weather, climate, and other real-world data. GeoViews was developed by Continuum Analytics, in collaboration with the Met Office. GeoViews is completely open source, available under a BSD license freely for both commercial and non-commercial use, and can be obtained as described at the Github site."
crazylion lee

VPT 7 | Conversations with spaces - 0 views

  •  
    "VPT (VideoProjectionTool) is a free multipurpose realtime projection software tool for Mac and Windows created by HC Gilje. "
crazylion lee

GeoNames - 0 views

  •  
    "The GeoNames geographical database covers all countries and contains over eight million placenames that are available for download free of charge."
crazylion lee

Home | MapInfo.com - 0 views

shared by crazylion lee on 09 Jun 14 - Cached
張 旭

Active Record Validations - Ruby on Rails Guides - 0 views

  • validates :name, presence: true
  • Validations are used to ensure that only valid data is saved into your database
  • Model-level validations are the best way to ensure that only valid data is saved into your database.
  • ...117 more annotations...
  • native database constraints
  • client-side validations
  • controller-level validations
  • Database constraints and/or stored procedures make the validation mechanisms database-dependent and can make testing and maintenance more difficult
  • Client-side validations can be useful, but are generally unreliable
  • combined with other techniques, client-side validation can be a convenient way to provide users with immediate feedback
  • it's a good idea to keep your controllers skinny
  • model-level validations are the most appropriate in most circumstances.
  • Active Record uses the new_record? instance method to determine whether an object is already in the database or not.
  • Creating and saving a new record will send an SQL INSERT operation to the database. Updating an existing record will send an SQL UPDATE operation instead. Validations are typically run before these commands are sent to the database
  • The bang versions (e.g. save!) raise an exception if the record is invalid.
  • save and update return false
  • create just returns the object
  • skip validations, and will save the object to the database regardless of its validity.
  • be used with caution
  • update_all
  • save also has the ability to skip validations if passed validate: false as argument.
  • save(validate: false)
  • valid? triggers your validations and returns true if no errors
  • After Active Record has performed validations, any errors found can be accessed through the errors.messages instance method
  • By definition, an object is valid if this collection is empty after running validations.
  • validations are not run when using new.
  • invalid? is simply the inverse of valid?.
  • To verify whether or not a particular attribute of an object is valid, you can use errors[:attribute]. I
  • only useful after validations have been run
  • Every time a validation fails, an error message is added to the object's errors collection,
  • All of them accept the :on and :message options, which define when the validation should be run and what message should be added to the errors collection if it fails, respectively.
  • validates that a checkbox on the user interface was checked when a form was submitted.
  • agree to your application's terms of service
  • 'acceptance' does not need to be recorded anywhere in your database (if you don't have a field for it, the helper will just create a virtual attribute).
  • It defaults to "1" and can be easily changed.
  • use this helper when your model has associations with other models and they also need to be validated
  • valid? will be called upon each one of the associated objects.
  • work with all of the association types
  • Don't use validates_associated on both ends of your associations.
    • 張 旭
       
      關聯式的物件驗證,在其中一方啟動就好了!
  • each associated object will contain its own errors collection
  • errors do not bubble up to the calling model
  • when you have two text fields that should receive exactly the same content
  • This validation creates a virtual attribute whose name is the name of the field that has to be confirmed with "_confirmation" appended.
  • To require confirmation, make sure to add a presence check for the confirmation attribute
  • this set can be any enumerable object.
  • The exclusion helper has an option :in that receives the set of values that will not be accepted for the validated attributes.
  • :in option has an alias called :within
  • validates the attributes' values by testing whether they match a given regular expression, which is specified using the :with option.
  • attribute does not match the regular expression by using the :without option.
  • validates that the attributes' values are included in a given set
  • :in option has an alias called :within
  • specify length constraints
  • :minimum
  • :maximum
  • :in (or :within)
  • :is - The attribute length must be equal to the given value.
  • :wrong_length, :too_long, and :too_short options and %{count} as a placeholder for the number corresponding to the length constraint being used.
  • split the value in a different way using the :tokenizer option:
    • 張 旭
       
      自己提供切割算字數的方式
  • validates that your attributes have only numeric values
  • By default, it will match an optional sign followed by an integral or floating point number.
  • set :only_integer to true.
  • allows a trailing newline character.
  • :greater_than
  • :greater_than_or_equal_to
  • :equal_to
  • :less_than
  • :less_than_or_equal_to
  • :odd - Specifies the value must be an odd number if set to true.
  • :even - Specifies the value must be an even number if set to true.
  • validates that the specified attributes are not empty
  • if the value is either nil or a blank string
  • validate associated records whose presence is required, you must specify the :inverse_of option for the association
  • inverse_of
  • an association is present, you'll need to test whether the associated object itself is present, and not the foreign key used to map the association
  • false.blank? is true
  • validate the presence of a boolean field
  • ensure the value will NOT be nil
  • validates that the specified attributes are absent
  • not either nil or a blank string
  • be sure that an association is absent
  • false.present? is false
  • validate the absence of a boolean field you should use validates :field_name, exclusion: { in: [true, false] }.
  • validates that the attribute's value is unique right before the object gets saved
  • a :scope option that you can use to specify other attributes that are used to limit the uniqueness check
  • a :case_sensitive option that you can use to define whether the uniqueness constraint will be case sensitive or not.
  • There is no default error message for validates_with.
  • To implement the validate method, you must have a record parameter defined, which is the record to be validated.
  • the validator will be initialized only once for the whole application life cycle, and not on each validation run, so be careful about using instance variables inside it.
  • passes the record to a separate class for validation
  • use a plain old Ruby object
  • validates attributes against a block
  • The block receives the record, the attribute's name and the attribute's value. You can do anything you like to check for valid data within the block
  • will let validation pass if the attribute's value is blank?, like nil or an empty string
  • the :message option lets you specify the message that will be added to the errors collection when validation fails
  • skips the validation when the value being validated is nil
  • specify when the validation should happen
  • raise ActiveModel::StrictValidationFailed when the object is invalid
  • You can do that by using the :if and :unless options, which can take a symbol, a string, a Proc or an Array.
  • use the :if option when you want to specify when the validation should happen
  • using eval and needs to contain valid Ruby code.
  • Using a Proc object gives you the ability to write an inline condition instead of a separate method
  • have multiple validations use one condition, it can be easily achieved using with_options.
  • implement a validate method which takes a record as an argument and performs the validation on it
  • validates_with method
  • implement a validate_each method which takes three arguments: record, attribute, and value
  • combine standard validations with your own custom validators.
  • :expiration_date_cannot_be_in_the_past,    :discount_cannot_be_greater_than_total_value
  • By default such validations will run every time you call valid?
  • errors[] is used when you want to check the error messages for a specific attribute.
  • Returns an instance of the class ActiveModel::Errors containing all errors.
  • lets you manually add messages that are related to particular attributes
  • using []= setter
  • errors[:base] is an array, you can simply add a string to it and it will be used as an error message.
  • use this method when you want to say that the object is invalid, no matter the values of its attributes.
  • clear all the messages in the errors collection
  • calling errors.clear upon an invalid object won't actually make it valid: the errors collection will now be empty, but the next time you call valid? or any method that tries to save this object to the database, the validations will run again.
  • the total number of error messages for the object.
  • .errors.full_messages.each
  • .field_with_errors
張 旭

User Variables - Templates - Packer by HashiCorp - 0 views

  • User variables allow your templates to be further configured with variables from the command-line, environment variables, Vault, or files.
  • define it either within the variables section within your template, or using the command-line -var or -var-file flags.
  • If the default value is null, then the user variable will be required.
  • ...7 more annotations...
  • User variables are available globally within the rest of the template.
  • The env function is available only within the default value of a user variable, allowing you to default a user variable to an environment variable.
  • As Packer doesn't run inside a shell, it won't expand ~
  • To set user variables from the command line, the -var flag is used as a parameter to packer build (and some other commands).
  • Variables can also be set from an external JSON file. The -var-file flag reads a file containing a key/value mapping of variables to values and sets those variables.
  • -var-file=
  • sensitive variables won't get printed to the logs by adding them to the "sensitive-variables" list within the Packer template
張 旭

Boosting your kubectl productivity ♦︎ Learnk8s - 0 views

  • kubectl is your cockpit to control Kubernetes.
  • kubectl is a client for the Kubernetes API
  • Kubernetes API is an HTTP REST API.
  • ...75 more annotations...
  • This API is the real Kubernetes user interface.
  • Kubernetes is fully controlled through this API
  • every Kubernetes operation is exposed as an API endpoint and can be executed by an HTTP request to this endpoint.
  • the main job of kubectl is to carry out HTTP requests to the Kubernetes API
  • Kubernetes maintains an internal state of resources, and all Kubernetes operations are CRUD operations on these resources.
  • Kubernetes is a fully resource-centred system
  • Kubernetes API reference is organised as a list of resource types with their associated operations.
  • This is how kubectl works for all commands that interact with the Kubernetes cluster.
  • kubectl simply makes HTTP requests to the appropriate Kubernetes API endpoints.
  • it's totally possible to control Kubernetes with a tool like curl by manually issuing HTTP requests to the Kubernetes API.
  • Kubernetes consists of a set of independent components that run as separate processes on the nodes of a cluster.
  • components on the master nodes
  • Storage backend: stores resource definitions (usually etcd is used)
  • API server: provides Kubernetes API and manages storage backend
  • Controller manager: ensures resource statuses match specifications
  • Scheduler: schedules Pods to worker nodes
  • component on the worker nodes
  • Kubelet: manages execution of containers on a worker node
  • triggers the ReplicaSet controller, which is a sub-process of the controller manager.
  • the scheduler, who watches for Pod definitions that are not yet scheduled to a worker node.
  • creating and updating resources in the storage backend on the master node.
  • The kubelet of the worker node your ReplicaSet Pods have been scheduled to instructs the configured container runtime (which may be Docker) to download the required container images and run the containers.
  • Kubernetes components (except the API server and the storage backend) work by watching for resource changes in the storage backend and manipulating resources in the storage backend.
  • However, these components do not access the storage backend directly, but only through the Kubernetes API.
    • 張 旭
       
      很精彩,相互之間都是使用 API call 溝通,良好的微服務行為。
  • double usage of the Kubernetes API for internal components as well as for external users is a fundamental design concept of Kubernetes.
  • All other Kubernetes components and users read, watch, and manipulate the state (i.e. resources) of Kubernetes through the Kubernetes API
  • The storage backend stores the state (i.e. resources) of Kubernetes.
  • command completion is a shell feature that works by the means of a completion script.
  • A completion script is a shell script that defines the completion behaviour for a specific command. Sourcing a completion script enables completion for the corresponding command.
  • kubectl completion zsh
  • /etc/bash_completion.d directory (create it, if it doesn't exist)
  • source <(kubectl completion bash)
  • source <(kubectl completion zsh)
  • autoload -Uz compinit compinit
  • the API reference, which contains the full specifications of all resources.
  • kubectl api-resources
  • displays the resource names in their plural form (e.g. deployments instead of deployment). It also displays the shortname (e.g. deploy) for those resources that have one. Don't worry about these differences. All of these name variants are equivalent for kubectl.
  • .spec
  • custom columns output format comes in. It lets you freely define the columns and the data to display in them. You can choose any field of a resource to be displayed as a separate column in the output
  • kubectl get pods -o custom-columns='NAME:metadata.name,NODE:spec.nodeName'
  • kubectl explain pod.spec.
  • kubectl explain pod.metadata.
  • browse the resource specifications and try it out with any fields you like!
  • JSONPath is a language to extract data from JSON documents (it is similar to XPath for XML).
  • with kubectl explain, only a subset of the JSONPath capabilities is supported
  • Many fields of Kubernetes resources are lists, and this operator allows you to select items of these lists. It is often used with a wildcard as [*] to select all items of the list.
  • kubectl get pods -o custom-columns='NAME:metadata.name,IMAGES:spec.containers[*].image'
  • a Pod may contain more than one container.
  • The availability zones for each node are obtained through the special failure-domain.beta.kubernetes.io/zone label.
  • kubectl get nodes -o yaml kubectl get nodes -o json
  • The default kubeconfig file is ~/.kube/config
  • with multiple clusters, then you have connection parameters for multiple clusters configured in your kubeconfig file.
  • Within a cluster, you can set up multiple namespaces (a namespace is kind of "virtual" clusters within a physical cluster)
  • overwrite the default kubeconfig file with the --kubeconfig option for every kubectl command.
  • Namespace: the namespace to use when connecting to the cluster
  • a one-to-one mapping between clusters and contexts.
  • When kubectl reads a kubeconfig file, it always uses the information from the current context.
  • just change the current context in the kubeconfig file
  • to switch to another namespace in the same cluster, you can change the value of the namespace element of the current context
  • kubectl also provides the --cluster, --user, --namespace, and --context options that allow you to overwrite individual elements and the current context itself, regardless of what is set in the kubeconfig file.
  • for switching between clusters and namespaces is kubectx.
  • kubectl config get-contexts
  • just have to download the shell scripts named kubectl-ctx and kubectl-ns to any directory in your PATH and make them executable (for example, with chmod +x)
  • kubectl proxy
  • kubectl get roles
  • kubectl get pod
  • Kubectl plugins are distributed as simple executable files with a name of the form kubectl-x. The prefix kubectl- is mandatory,
  • To install a plugin, you just have to copy the kubectl-x file to any directory in your PATH and make it executable (for example, with chmod +x)
  • krew itself is a kubectl plugin
  • check out the kubectl-plugins GitHub topic
  • The executable can be of any type, a Bash script, a compiled Go program, a Python script, it really doesn't matter. The only requirement is that it can be directly executed by the operating system.
  • kubectl plugins can be written in any programming or scripting language.
  • you can write more sophisticated plugins with real programming languages, for example, using a Kubernetes client library. If you use Go, you can also use the cli-runtime library, which exists specifically for writing kubectl plugins.
  • a kubeconfig file consists of a set of contexts
  • changing the current context means changing the cluster, if you have only a single context per cluster.
chiehting

Top 5 Kubernetes Best Practices From Sandeep Dinesh (Google) - DZone Cloud - 0 views

  • Best Practices for Kubernetes
  • #1: Building Containers
  • Don’t Trust Arbitrary Base Images!
  • ...29 more annotations...
  • There’s a lot wrong with this: you could be using the wrong version of code that has exploits, has a bug in it, or worse it could have malware bundled in on purpose—you just don’t know.
  • Keep Base Images Small
  • Node.js for example, it includes an extra 600MB of libraries you don’t need.
  • Use the Builder Pattern
  • #2: Container Internals
  • Use a Non-Root User Inside the Container
  • Make the File System Read-Only
  • One Process per Container
  • Don’t Restart on Failure. Crash Cleanly Instead.
  • Log Everything to stdout and stderr
  • #3: Deployments
  • Use the “Record” Option for Easier Rollbacks
  • Use Plenty of Descriptive Labels
  • Use Sidecars for Proxies, Watchers, Etc.
  • Don’t Use Sidecars for Bootstrapping!
  • Don’t Use :Latest or No Tag
  • Readiness and Liveness Probes are Your Friend
  • #4: Services
  • Don’t Use type: LoadBalancer
  • Type: Nodeport Can Be “Good Enough”
  • Use Static IPs They Are Free!
  • Map External Services to Internal Ones
  • #5: Application Architecture
  • Use Helm Charts
  • All Downstream Dependencies Are Unreliable
  • Use Weave Cloud
  • Make Sure Your Microservices Aren’t Too Micro
  • Use Namespaces to Split Up Your Cluster
  • Role-Based Access Control
張 旭

Getting Started with MariaDB Galera Cluster - MariaDB Knowledge Base - 0 views

  • most users are not going to bootstrap a server by executing "mysqld --wsrep-new-cluster" manually.
  • galera_new_cluster
  • Prerequisites
  • ...7 more annotations...
  • Once you have a cluster running and you want to add/reconnect another node to it, you must supply an address of one of the cluster members in the cluster address URL
  • The new node only needs to connect to one of the existing members
  • It will automatically retrieve the cluster map and reconnect to the rest of the nodes
  • it's better to list all nodes of the cluster so that any node can join a cluster connecting to any other node, even if one or more are down
  • The wsrep_cluster_address parameter should be added in my.cnf of each node, listing all the nodes of the cluster,
  • the minimum recommended number of nodes in a cluster is 3
  • While two of the members will be engaged in state transfer, the remaining member(s) will be able to keep on serving client requests.
crazylion lee

mxgmn/WaveFunctionCollapse: Bitmap & tilemap generation from a single example with the ... - 0 views

  •  
    "Bitmap & tilemap generation from a single example with the help of ideas from quantum mechanics."
張 旭

elabs/pundit: Minimal authorization through OO design and pure Ruby classes - 0 views

  • The class implements some kind of query method
  • Pundit will call the current_user method to retrieve what to send into this argumen
  • put these classes in app/policies
  • ...49 more annotations...
  • in leveraging regular Ruby classes and object oriented design patterns to build a simple, robust and scaleable authorization system
  • map to the name of a particular controller action
  • In the generated ApplicationPolicy, the model object is called record.
  • record
  • authorize
  • authorize would have done something like this: raise "not authorized" unless PostPolicy.new(current_user, @post).update?
  • pass a second argument to authorize if the name of the permission you want to check doesn't match the action name.
  • you can chain it
  • authorize returns the object passed to it
  • the policy method in both the view and controller.
  • have some kind of view listing records which a particular user has access to
  • ActiveRecord::Relation
  • Instances of this class respond to the method resolve, which should return some kind of result which can be iterated over.
  • scope.where(published: true)
    • 張 旭
       
      我想大概的意思就是:如果是 admin 可以看到全部 post,如果不是只能看到 published = true 的 post
  • use this class from your controller via the policy_scope method:
  • PostPolicy::Scope.new(current_user, Post).resolve
  • policy_scope(@user.posts).each
  • This method will raise an exception if authorize has not yet been called.
  • verify_policy_scoped to your controller. This will raise an exception in the vein of verify_authorized. However, it tracks if policy_scope is used instead of authorize
  • need to conditionally bypass verification, you can use skip_authorization
  • skip_policy_scope
  • Having a mechanism that ensures authorization happens allows developers to thoroughly test authorization scenarios as units on the policy objects themselves.
  • Pundit doesn't do anything you couldn't have easily done yourself. It's a very small library, it just provides a few neat helpers.
  • all of the policy and scope classes are just plain Ruby classes
  • rails g pundit:policy post
  • define a filter that redirects unauthenticated users to the login page
  • fail more gracefully
  • raise Pundit::NotAuthorizedError, "must be logged in" unless user
  • having rails handle them as a 403 error and serving a 403 error page.
  • config.action_dispatch.rescue_responses["Pundit::NotAuthorizedError"] = :forbidden
  • with I18n to generate error messages
  • retrieve a policy for a record outside the controller or view
  • define a method in your controller called pundit_user
  • Pundit strongly encourages you to model your application in such a way that the only context you need for authorization is a user object and a domain model that you want to check authorization for.
  • Pundit does not allow you to pass additional arguments to policies
  • authorization is dependent on IP address in addition to the authenticated user
  • create a special class which wraps up both user and IP and passes it to the policy.
  • set up a permitted_attributes method in your policy
  • policy(@post).permitted_attributes
  • permitted_attributes(@post)
  • Pundit provides a convenient helper method
  • permit different attributes based on the current action,
  • If you have defined an action-specific method on your policy for the current action, the permitted_attributes helper will call it instead of calling permitted_attributes on your controller
  • If you don't have an instance for the first argument to authorize, then you can pass the class
  • restart the Rails server
  • Given there is a policy without a corresponding model / ruby class, you can retrieve it by passing a symbol
  • after_action :verify_authorized
  • It is not some kind of failsafe mechanism or authorization mechanism.
  • Pundit will work just fine without using verify_authorized and verify_policy_scoped
  •  
    "Minimal authorization through OO design and pure Ruby classes"
張 旭

Volumes - Kubernetes - 0 views

  • On-disk files in a Container are ephemeral,
  • when a Container crashes, kubelet will restart it, but the files will be lost - the Container starts with a clean state
  • In Docker, a volume is simply a directory on disk or in another Container.
  • ...105 more annotations...
  • A Kubernetes volume, on the other hand, has an explicit lifetime - the same as the Pod that encloses it.
  • a volume outlives any Containers that run within the Pod, and data is preserved across Container restarts.
    • 張 旭
       
      Kubernetes Volume 是跟著 Pod 的生命週期在走
  • Kubernetes supports many types of volumes, and a Pod can use any number of them simultaneously.
  • To use a volume, a Pod specifies what volumes to provide for the Pod (the .spec.volumes field) and where to mount those into Containers (the .spec.containers.volumeMounts field).
  • A process in a container sees a filesystem view composed from their Docker image and volumes.
  • Volumes can not mount onto other volumes or have hard links to other volumes.
  • Each Container in the Pod must independently specify where to mount each volume
  • localnfs
  • cephfs
  • awsElasticBlockStore
  • glusterfs
  • vsphereVolume
  • An awsElasticBlockStore volume mounts an Amazon Web Services (AWS) EBS Volume into your Pod.
  • the contents of an EBS volume are preserved and the volume is merely unmounted.
  • an EBS volume can be pre-populated with data, and that data can be “handed off” between Pods.
  • create an EBS volume using aws ec2 create-volume
  • the nodes on which Pods are running must be AWS EC2 instances
  • EBS only supports a single EC2 instance mounting a volume
  • check that the size and EBS volume type are suitable for your use!
  • A cephfs volume allows an existing CephFS volume to be mounted into your Pod.
  • the contents of a cephfs volume are preserved and the volume is merely unmounted.
    • 張 旭
       
      相當於自己的 AWS EBS
  • CephFS can be mounted by multiple writers simultaneously.
  • have your own Ceph server running with the share exported
  • configMap
  • The configMap resource provides a way to inject configuration data into Pods
  • When referencing a configMap object, you can simply provide its name in the volume to reference it
  • volumeMounts: - name: config-vol mountPath: /etc/config volumes: - name: config-vol configMap: name: log-config items: - key: log_level path: log_level
  • create a ConfigMap before you can use it.
  • A Container using a ConfigMap as a subPath volume mount will not receive ConfigMap updates.
  • An emptyDir volume is first created when a Pod is assigned to a Node, and exists as long as that Pod is running on that node.
  • When a Pod is removed from a node for any reason, the data in the emptyDir is deleted forever.
  • By default, emptyDir volumes are stored on whatever medium is backing the node - that might be disk or SSD or network storage, depending on your environment.
  • you can set the emptyDir.medium field to "Memory" to tell Kubernetes to mount a tmpfs (RAM-backed filesystem)
  • volumeMounts: - mountPath: /cache name: cache-volume volumes: - name: cache-volume emptyDir: {}
  • An fc volume allows an existing fibre channel volume to be mounted in a Pod.
  • configure FC SAN Zoning to allocate and mask those LUNs (volumes) to the target WWNs beforehand so that Kubernetes hosts can access them.
  • Flocker is an open-source clustered Container data volume manager. It provides management and orchestration of data volumes backed by a variety of storage backends.
  • emptyDir
  • flocker
  • A flocker volume allows a Flocker dataset to be mounted into a Pod
  • have your own Flocker installation running
  • A gcePersistentDisk volume mounts a Google Compute Engine (GCE) Persistent Disk into your Pod.
  • Using a PD on a Pod controlled by a ReplicationController will fail unless the PD is read-only or the replica count is 0 or 1
  • A glusterfs volume allows a Glusterfs (an open source networked filesystem) volume to be mounted into your Pod.
  • have your own GlusterFS installation running
  • A hostPath volume mounts a file or directory from the host node’s filesystem into your Pod.
  • a powerful escape hatch for some applications
  • access to Docker internals; use a hostPath of /var/lib/docker
  • allowing a Pod to specify whether a given hostPath should exist prior to the Pod running, whether it should be created, and what it should exist as
  • specify a type for a hostPath volume
  • the files or directories created on the underlying hosts are only writable by root.
  • hostPath: # directory location on host path: /data # this field is optional type: Directory
  • An iscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your Pod.
  • have your own iSCSI server running
  • A feature of iSCSI is that it can be mounted as read-only by multiple consumers simultaneously.
  • A local volume represents a mounted local storage device such as a disk, partition or directory.
  • Local volumes can only be used as a statically created PersistentVolume.
  • Compared to hostPath volumes, local volumes can be used in a durable and portable manner without manually scheduling Pods to nodes, as the system is aware of the volume’s node constraints by looking at the node affinity on the PersistentVolume.
  • If a node becomes unhealthy, then the local volume will also become inaccessible, and a Pod using it will not be able to run.
  • PersistentVolume spec using a local volume and nodeAffinity
  • PersistentVolume nodeAffinity is required when using local volumes. It enables the Kubernetes scheduler to correctly schedule Pods using local volumes to the correct node.
  • PersistentVolume volumeMode can now be set to “Block” (instead of the default value “Filesystem”) to expose the local volume as a raw block device.
  • When using local volumes, it is recommended to create a StorageClass with volumeBindingMode set to WaitForFirstConsumer
  • An nfs volume allows an existing NFS (Network File System) share to be mounted into your Pod.
  • NFS can be mounted by multiple writers simultaneously.
  • have your own NFS server running with the share exported
  • A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
  • PersistentVolumes are a way for users to “claim” durable storage (such as a GCE PersistentDisk or an iSCSI volume) without knowing the details of the particular cloud environment.
  • A projected volume maps several existing volume sources into the same directory.
  • All sources are required to be in the same namespace as the Pod. For more details, see the all-in-one volume design document.
  • Each projected volume source is listed in the spec under sources
  • A Container using a projected volume source as a subPath volume mount will not receive updates for those volume sources.
  • RBD volumes can only be mounted by a single consumer in read-write mode - no simultaneous writers allowed
  • A secret volume is used to pass sensitive information, such as passwords, to Pods
  • store secrets in the Kubernetes API and mount them as files for use by Pods
  • secret volumes are backed by tmpfs (a RAM-backed filesystem) so they are never written to non-volatile storage.
  • create a secret in the Kubernetes API before you can use it
  • A Container using a Secret as a subPath volume mount will not receive Secret updates.
  • StorageOS runs as a Container within your Kubernetes environment, making local or attached storage accessible from any node within the Kubernetes cluster.
  • Data can be replicated to protect against node failure. Thin provisioning and compression can improve utilization and reduce cost.
  • StorageOS provides block storage to Containers, accessible via a file system.
  • A vsphereVolume is used to mount a vSphere VMDK Volume into your Pod.
  • supports both VMFS and VSAN datastore.
  • create VMDK using one of the following methods before using with Pod.
  • share one volume for multiple uses in a single Pod.
  • The volumeMounts.subPath property can be used to specify a sub-path inside the referenced volume instead of its root.
  • volumeMounts: - name: workdir1 mountPath: /logs subPathExpr: $(POD_NAME)
  • env: - name: POD_NAME valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.name
  • Use the subPathExpr field to construct subPath directory names from Downward API environment variables
  • enable the VolumeSubpathEnvExpansion feature gate
  • The subPath and subPathExpr properties are mutually exclusive.
  • There is no limit on how much space an emptyDir or hostPath volume can consume, and no isolation between Containers or between Pods.
  • emptyDir and hostPath volumes will be able to request a certain amount of space using a resource specification, and to select the type of media to use, for clusters that have several media types.
  • the Container Storage Interface (CSI) and Flexvolume. They enable storage vendors to create custom storage plugins without adding them to the Kubernetes repository.
  • all volume plugins (like volume types listed above) were “in-tree” meaning they were built, linked, compiled, and shipped with the core Kubernetes binaries and extend the core Kubernetes API.
  • Container Storage Interface (CSI) defines a standard interface for container orchestration systems (like Kubernetes) to expose arbitrary storage systems to their container workloads.
  • Once a CSI compatible volume driver is deployed on a Kubernetes cluster, users may use the csi volume type to attach, mount, etc. the volumes exposed by the CSI driver.
  • The csi volume type does not support direct reference from Pod and may only be referenced in a Pod via a PersistentVolumeClaim object.
  • This feature requires CSIInlineVolume feature gate to be enabled:--feature-gates=CSIInlineVolume=true
  • In-tree plugins that support CSI Migration and have a corresponding CSI driver implemented are listed in the “Types of Volumes” section above.
  • Mount propagation allows for sharing volumes mounted by a Container to other Containers in the same Pod, or even to other Pods on the same node.
  • Mount propagation of a volume is controlled by mountPropagation field in Container.volumeMounts.
  • HostToContainer - This volume mount will receive all subsequent mounts that are mounted to this volume or any of its subdirectories.
  • Bidirectional - This volume mount behaves the same the HostToContainer mount. In addition, all volume mounts created by the Container will be propagated back to the host and to all Containers of all Pods that use the same volume.
  • Edit your Docker’s systemd service file. Set MountFlags as follows:MountFlags=shared
張 旭

Modules - Configuration Language - Terraform by HashiCorp - 0 views

  • provider blocks can appear in any module, it is recommended that they be placed only in the root module of a configuration
  • In all cases it is recommended to keep explicit provider configurations only in the root module and pass them (whether implicitly or explicitly) down to descendent modules
  • Provider configurations are used for all operations on associated resources, including destroying remote objects and refreshing state.
  • ...5 more annotations...
  • all resources created for a particular provider configuration must be destroyed before that provider configuration is removed, unless the related resources are re-configured to use a different provider configuration first.
  • a child module automatically inherits default (un-aliased) provider configurations from its parent.
  • recommended in the common case where only a single configuration is needed for each provider across the entire configuration.
  • the providers argument within a module block can be used to define explicitly which provider configs are made available to the child module.
  • Once the providers argument is used in a module block, it overrides all of the default inheritance behavior, so it is necessary to enumerate mappings for all of the required providers.
張 旭

bbatsov/rails-style-guide: A community-driven Ruby on Rails 4 style guide - 0 views

  • custom initialization code in config/initializers. The code in initializers executes on application startup
  • Keep initialization code for each gem in a separate file with the same name as the gem
  • Mark additional assets for precompilation
  • ...90 more annotations...
  • config/environments/production.rb
  • Create an additional staging environment that closely resembles the production one
  • Keep any additional configuration in YAML files under the config/ directory
  • Rails::Application.config_for(:yaml_file)
  • Use nested routes to express better the relationship between ActiveRecord models
  • nest routes more than 1 level deep then use the shallow: true option
  • namespaced routes to group related actions
  • Don't use match to define any routes unless there is need to map multiple request types among [:get, :post, :patch, :put, :delete] to a single action using :via option.
  • Keep the controllers skinny
  • all the business logic should naturally reside in the model
  • Share no more than two instance variables between a controller and a view.
  • using a template
  • Prefer render plain: over render text
  • Prefer corresponding symbols to numeric HTTP status codes
  • without abbreviations
  • Keep your models for business logic and data-persistence only
  • Avoid altering ActiveRecord defaults (table names, primary key, etc)
  • Group macro-style methods (has_many, validates, etc) in the beginning of the class definition
  • Prefer has_many :through to has_and_belongs_to_many
  • self[:attribute]
  • self[:attribute] = value
  • validates
  • Keep custom validators under app/validators
  • Consider extracting custom validators to a shared gem
  • preferable to make a class method instead which serves the same purpose of the named scope
  • returns an ActiveRecord::Relation object
  • .update_attributes
  • Override the to_param method of the model
  • Use the friendly_id gem. It allows creation of human-readable URLs by using some descriptive attribute of the model instead of its id
  • find_each to iterate over a collection of AR objects
  • .find_each
  • .find_each
  • Looping through a collection of records from the database (using the all method, for example) is very inefficient since it will try to instantiate all the objects at once
  • always call before_destroy callbacks that perform validation with prepend: true
  • Define the dependent option to the has_many and has_one associations
  • always use the exception raising bang! method or handle the method return value.
  • When persisting AR objects
  • Avoid string interpolation in queries
  • param will be properly escaped
  • Consider using named placeholders instead of positional placeholders
  • use of find over where when you need to retrieve a single record by id
  • use of find_by over where and find_by_attribute
  • use of where.not over SQL
  • use heredocs with squish
  • Keep the schema.rb (or structure.sql) under version control.
  • Use rake db:schema:load instead of rake db:migrate to initialize an empty database
  • Enforce default values in the migrations themselves instead of in the application layer
  • change_column_default
  • imposing data integrity from the Rails app is impossible
  • use the change method instead of up and down methods.
  • constructive migrations
  • use models in migrations, make sure you define them so that you don't end up with broken migrations in the future
  • Don't use non-reversible migration commands in the change method.
  • In this case, block will be used by create_table in rollback
  • Never call the model layer directly from a view
  • Never make complex formatting in the views, export the formatting to a method in the view helper or the model.
  • When the labels of an ActiveRecord model need to be translated, use the activerecord scope
  • Separate the texts used in the views from translations of ActiveRecord attributes
  • Place the locale files for the models in a folder locales/models
  • the texts used in the views in folder locales/views
  • config/application.rb config.i18n.load_path += Dir[Rails.root.join('config', 'locales', '**', '*.{rb,yml}')]
  • I18n.t
  • I18n.l
  • Use "lazy" lookup for the texts used in views.
  • Use the dot-separated keys in the controllers and models
  • Reserve app/assets for custom stylesheets, javascripts, or images
  • Third party code such as jQuery or bootstrap should be placed in vendor/assets
  • Provide both HTML and plain-text view templates
  • config.action_mailer.raise_delivery_errors = true
  • Use a local SMTP server like Mailcatcher in the development environment
  • Provide default settings for the host name
  • The _url methods include the host name and the _path methods don't
  • _url
  • Format the from and to addresses properly
  • default from:
  • sending html emails all styles should be inline
  • Sending emails while generating page response should be avoided. It causes delays in loading of the page and request can timeout if multiple email are sent.
  • .start_with?
  • .end_with?
  • &.
  • Config your timezone accordingly in application.rb
  • config.active_record.default_timezone = :local
  • it can be only :utc or :local
  • Don't use Time.parse
  • Time.zone.parse
  • Don't use Time.now
  • Time.zone.now
  • Put gems used only for development or testing in the appropriate group in the Gemfile
  • Add all OS X specific gems to a darwin group in the Gemfile, and all Linux specific gems to a linux group
  • Do not remove the Gemfile.lock from version control.
張 旭

plataformatec/simple_form - 0 views

  • The basic goal of Simple Form is to not touch your way of defining the layout
  • by default contains label, hints, errors and the input itself
  • Simple Form acts as a DSL and just maps your input type (retrieved from the column definition in the database) to a specific helper method.
  • ...68 more annotations...
  • can overwrite the default label by passing it to the input method
  • configure the html of any of them
  • disable labels, hints or error
  • add a hint, an error, or even a placeholder
  • add an inline label
  • pass any html attribute straight to the input, by using the :input_html option
  • use the :defaults option in simple_form_fo
  • Simple Form generates a wrapper div around your label and input by default, you can pass any html attribute to that wrapper as well using the :wrapper_html option,
  • By default all inputs are required
  • the required property of any input can be overwritten
  • Simple Form will look at the column type in the database and use an appropriate input for the column
  • lets you overwrite the default input type it creates
  • can also render boolean attributes using as: :select to show a dropdown.
  • give the :disabled option to Simple Form, and it'll automatically mark the wrapper as disabled with a CSS class
  • Simple Form accepts same options as their corresponding input type helper in Rails
  • Any extra option passed to these methods will be rendered as html option.
  • use label, hint, input_field, error and full_error helpers
  • to strip away all the div wrappers around the <input> field
  • is to use f.input_field
  • changing boolean_style from default value :nested to :inline
  • overriding the :collection option
  • Collections can be arrays or ranges, and when a :collection is given the :select input will be rendered by default
  • Other types of collection are :radio_buttons and :check_boxes
  • label_method
  • value_method
  • Both of these options also accept lambda/procs
  • define a to_label method on your model as Simple Form will search for and use :to_label as a :label_method first if it is found
  • create grouped collection selects, that will use the html optgroup tags
  • Grouped collection inputs accept the same :label_method and :value_method options
  • group_method
  • group_label_method
  • configured with a default value to be used on the site through the SimpleForm.country_priority and SimpleForm.time_zone_priority helpers.
  • association
  • association
  • render a :select input for choosing the :company, and another :select input with :multiple option for the :roles
  • all options available to :select, :radio_buttons and :check_boxes are also available to association
  • declare different labels and values
  • the association helper is currently only tested with Active Record
  • f.input
  • f.select
  • create a <button> element
  • simple_fields_for
  • Creates a collection of radio inputs with labels associated
  • Creates a collection of checkboxes with labels associated
  • collection_radio_buttons
  • collection_check_boxes
  • associations in your model
  • Role.all
  • the html element you will get for each attribute according to its database definition
  • redefine existing Simple Form inputs by creating a new class with the same name
  • Simple Form uses all power of I18n API to lookup labels, hints, prompts and placeholders
  • specify defaults for all models under the 'defaults' key
  • Simple Form will always look for a default attribute translation under the "defaults" key if no specific is found inside the model key
  • Simple Form will fallback to default human_attribute_name from Rails when no other translation is found for labels.
  • Simple Form will only do the lookup for options if you give a collection composed of symbols only.
  • "Add %{model}"
  • translations for labels, hints and placeholders for a namespaced model, e.g. Admin::User, should be placed under admin_user, not under admin/user
  • This difference exists because Simple Form relies on object_name provided by Rails' FormBuilder to determine the translation path for a given object instead of i18n_key from the object itself.
  • configure how your components will be rendered using the wrappers API
  • optional
  • unless_blank
  • By default, Simple Form will generate input field types and attributes that are supported in HTML5
  • The HTML5 extensions include the new field types such as email, number, search, url, tel, and the new attributes such as required, autofocus, maxlength, min, max, step.
  • If you want to have all other HTML 5 features, such as the new field types, you can disable only the browser validation
  • add novalidate to a specific form by setting the option on the form itself
  • the Simple Form configuration file
  • passing the html5 option
  • as: :date, html5: true
張 旭

Understanding the Nginx Configuration File Structure and Configuration Contexts | Digit... - 0 views

  • discussing the basic structure of an Nginx configuration file along with some guidelines on how to design your files
  • /etc/nginx/nginx.conf
  • In Nginx parlance, the areas that these brackets define are called "contexts" because they contain configuration details that are separated according to their area of concern
  • ...50 more annotations...
  • contexts can be layered within one another
  • if a directive is valid in multiple nested scopes, a declaration in a broader context will be passed on to any child contexts as default values.
  • The children contexts can override these values at will
  • Nginx will error out on reading a configuration file with directives that are declared in the wrong context.
  • The most general context is the "main" or "global" context
  • Any directive that exist entirely outside of these blocks is said to inhabit the "main" context
  • The main context represents the broadest environment for Nginx configuration.
  • The "events" context is contained within the "main" context. It is used to set global options that affect how Nginx handles connections at a general level.
  • Nginx uses an event-based connection processing model, so the directives defined within this context determine how worker processes should handle connections.
  • the connection processing method is automatically selected based on the most efficient choice that the platform has available
  • a worker will only take a single connection at a time
  • When configuring Nginx as a web server or reverse proxy, the "http" context will hold the majority of the configuration.
  • The http context is a sibling of the events context, so they should be listed side-by-side, rather than nested
  • fine-tune the TCP keep alive settings (keepalive_disable, keepalive_requests, and keepalive_timeout)
  • The "server" context is declared within the "http" context.
  • multiple declarations
  • each instance defines a specific virtual server to handle client requests
  • Each client request will be handled according to the configuration defined in a single server context, so Nginx must decide which server context is most appropriate based on details of the request.
  • listen: The ip address / port combination that this server block is designed to respond to.
  • server_name: This directive is the other component used to select a server block for processing.
  • "Host" header
  • configure files to try to respond to requests (try_files)
  • issue redirects and rewrites (return and rewrite)
  • set arbitrary variables (set)
  • Location contexts share many relational qualities with server contexts
  • multiple location contexts can be defined, each location is used to handle a certain type of client request, and each location is selected by virtue of matching the location definition against the client request through a selection algorithm
  • Location blocks live within server contexts and, unlike server blocks, can be nested inside one another.
  • While server contexts are selected based on the requested IP address/port combination and the host name in the "Host" header, location blocks further divide up the request handling within a server block by looking at the request URI
  • The request URI is the portion of the request that comes after the domain name or IP address/port combination.
  • New directives at this level allow you to reach locations outside of the document root (alias), mark the location as only internally accessible (internal), and proxy to other servers or locations (using http, fastcgi, scgi, and uwsgi proxying).
  • These can then be used to do A/B testing by providing different content to different hosts.
  • configures Perl handlers for the location they appear in
  • set the value of a variable depending on the value of another variable
  • used to map MIME types to the file extensions that should be associated with them.
  • this context defines a named pool of servers that Nginx can then proxy requests to
  • The upstream context should be placed within the http context, outside of any specific server contexts.
  • The upstream context can then be referenced by name within server or location blocks to pass requests of a certain type to the pool of servers that have been defined.
  • function as a high performance mail proxy server
  • The mail context is defined within the "main" or "global" context (outside of the http context).
  • Nginx has the ability to redirect authentication requests to an external authentication server
  • the if directive in Nginx will execute the instructions contained if a given test returns "true".
  • Since Nginx will test conditions of a request with many other purpose-made directives, if should not be used for most forms of conditional execution.
  • The limit_except context is used to restrict the use of certain HTTP methods within a location context.
  • The result of the above example is that any client can use the GET and HEAD verbs, but only clients coming from the 192.168.1.1/24 subnet are allowed to use other methods.
  • Many directives are valid in more than one context
  • it is usually best to declare directives in the highest context to which they are applicable, and overriding them in lower contexts as necessary.
  • Declaring at higher levels provides you with a sane default
  • Nginx already engages in a well-documented selection algorithm for things like selecting server blocks and location blocks.
  • instead of relying on rewrites to get a user supplied request into the format that you would like to work with, you should try to set up two blocks for the request, one of which represents the desired method, and the other that catches messy requests and redirects (and possibly rewrites) them to your correct block.
  • incorrect requests can get by with a redirect rather than a rewrite, which should execute with lower overhead.
‹ Previous 21 - 40 of 44 Next ›
Showing 20 items per page