Skip to main content

Home/ Larvata/ Group items tagged express

Rss Feed Group items tagged

張 旭

Understanding Nginx Server and Location Block Selection Algorithms | DigitalOcean - 0 views

  • A server block is a subset of Nginx’s configuration that defines a virtual server used to handle requests of a defined type. Administrators often configure multiple server blocks and decide which block should handle which connection based on the requested domain name, port, and IP address.
  • A location block lives within a server block and is used to define how Nginx should handle requests for different resources and URIs for the parent server. The URI space can be subdivided in whatever way the administrator likes using these blocks. It is an extremely flexible model.
  • Nginx logically divides the configurations meant to serve different content into blocks, which live in a hierarchical structure. Each time a client request is made, Nginx begins a process of determining which configuration blocks should be used to handle the request.
  • ...37 more annotations...
  • Nginx is one of the most popular web servers in the world. It can successfully handle high loads with many concurrent client connections, and can easily function as a web server, a mail server, or a reverse proxy server.
  • The main server block directives that Nginx is concerned with during this process are the listen directive, and the server_name directive.
  • The listen directive typically defines which IP address and port that the server block will respond to.
  • 0.0.0.0:8080 if Nginx is being run by a normal, non-root user
  • Nginx translates all “incomplete” listen directives by substituting missing values with their default values so that each block can be evaluated by its IP address and port.
  • In any case, the port must be matched exactly.
  • If there are multiple server blocks with the same level of specificity matching, Nginx then begins to evaluate the server_name directive of each server block.
  • Nginx will only evaluate the server_name directive when it needs to distinguish between server blocks that match to the same level of specificity in the listen directive.
  • Nginx checks the request’s “Host” header. This value holds the domain or IP address that the client was actually trying to reach.
  • Nginx will first try to find a server block with a server_name that matches the value in the “Host” header of the request exactly.
  • If no exact match is found, Nginx will then try to find a server block with a server_name that matches using a leading wildcard (indicated by a * at the beginning of the name in the config).
  • If no match is found using a leading wildcard, Nginx then looks for a server block with a server_name that matches using a trailing wildcard (indicated by a server name ending with a * in the config)
  • If no match is found using a trailing wildcard, Nginx then evaluates server blocks that define the server_name using regular expressions (indicated by a ~ before the name).
  • If no regular expression match is found, Nginx then selects the default server block for that IP address and port.
  • There can be only one default_server declaration per each IP address/port combination.
  • Location blocks live within server blocks (or other location blocks) and are used to decide how to process the request URI (the part of the request that comes after the domain name or IP address/port).
  • If no modifiers are present, the location is interpreted as a prefix match.
  • =: If an equal sign is used, this block will be considered a match if the request URI exactly matches the location given.
  • ~: If a tilde modifier is present, this location will be interpreted as a case-sensitive regular expression match.
  • ~*: If a tilde and asterisk modifier is used, the location block will be interpreted as a case-insensitive regular expression match.
  • ^~: If a carat and tilde modifier is present, and if this block is selected as the best non-regular expression match, regular expression matching will not take place.
  • Keep in mind that if this block is selected and the request is fulfilled using an index page, an internal redirect will take place to another location that will be the actual handler of the request
  • Keeping in mind the types of location declarations we described above, Nginx evaluates the possible location contexts by comparing the request URI to each of the locations.
  • Nginx begins by checking all prefix-based location matches (all location types not involving a regular expression).
  • First, Nginx looks for an exact match.
  • If no exact (with the = modifier) location block matches are found, Nginx then moves on to evaluating non-exact prefixes.
  • After the longest matching prefix location is determined and stored, Nginx moves on to evaluating the regular expression locations (both case sensitive and insensitive).
  • by default, Nginx will serve regular expression matches in preference to prefix matches.
  • regular expression matches within the longest prefix match will “jump the line” when Nginx evaluates regex locations.
  • The exceptions to the “only one location block” rule may have implications on how the request is actually served and may not align with the expectations you had when designing your location blocks.
  • The index directive always leads to an internal redirect if it is used to handle the request.
  • In the case above, if you really need the execution to stay in the first block, you will have to come up with a different method of satisfying the request to the directory.
  • one way of preventing an index from switching contexts, but it’s probably not useful for most configurations
  • the try_files directive. This directive tells Nginx to check for the existence of a named set of files or directories.
  • the rewrite directive. When using the last parameter with the rewrite directive, or when using no parameter at all, Nginx will search for a new matching location based on the results of the rewrite.
  • The error_page directive can lead to an internal redirect similar to that created by try_files.
  • when certain status codes are encountered.
張 旭

Template Designer Documentation - Jinja2 Documentation (2.10) - 0 views

  • A Jinja template doesn’t need to have a specific extension
  • A Jinja template is simply a text file
  • tags, which control the logic of the template
  • ...106 more annotations...
  • {% ... %} for Statements
  • {{ ... }} for Expressions to print to the template output
  • use a dot (.) to access attributes of a variable
  • the outer double-curly braces are not part of the variable, but the print statement.
  • If you access variables inside tags don’t put the braces around them.
  • If a variable or attribute does not exist, you will get back an undefined value.
  • the default behavior is to evaluate to an empty string if printed or iterated over, and to fail for every other operation.
  • if an object has an item and attribute with the same name. Additionally, the attr() filter only looks up attributes.
  • Variables can be modified by filters. Filters are separated from the variable by a pipe symbol (|) and may have optional arguments in parentheses.
  • Multiple filters can be chained
  • Tests can be used to test a variable against a common expression.
  • add is plus the name of the test after the variable.
  • to find out if a variable is defined, you can do name is defined, which will then return true or false depending on whether name is defined in the current template context.
  • strip whitespace in templates by hand. If you add a minus sign (-) to the start or end of a block (e.g. a For tag), a comment, or a variable expression, the whitespaces before or after that block will be removed
  • not add whitespace between the tag and the minus sign
  • mark a block raw
  • Template inheritance allows you to build a base “skeleton” template that contains all the common elements of your site and defines blocks that child templates can override.
  • The {% extends %} tag is the key here. It tells the template engine that this template “extends” another template.
  • access templates in subdirectories with a slash
  • can’t define multiple {% block %} tags with the same name in the same template
  • use the special self variable and call the block with that name
  • self.title()
  • super()
  • put the name of the block after the end tag for better readability
  • if the block is replaced by a child template, a variable would appear that was not defined in the block or passed to the context.
  • setting the block to “scoped” by adding the scoped modifier to a block declaration
  • If you have a variable that may include any of the following chars (>, <, &, or ") you SHOULD escape it unless the variable contains well-formed and trusted HTML.
  • Jinja2 functions (macros, super, self.BLOCKNAME) always return template data that is marked as safe.
  • With the default syntax, control structures appear inside {% ... %} blocks.
  • the dictsort filter
  • loop.cycle
  • Unlike in Python, it’s not possible to break or continue in a loop
  • use loops recursively
  • add the recursive modifier to the loop definition and call the loop variable with the new iterable where you want to recurse.
  • The loop variable always refers to the closest (innermost) loop.
  • whether the value changed at all,
  • use it to test if a variable is defined, not empty and not false
  • Macros are comparable with functions in regular programming languages.
  • If a macro name starts with an underscore, it’s not exported and can’t be imported.
  • pass a macro to another macro
  • caller()
  • a single trailing newline is stripped if present
  • other whitespace (spaces, tabs, newlines etc.) is returned unchanged
  • a block tag works in “both” directions. That is, a block tag doesn’t just provide a placeholder to fill - it also defines the content that fills the placeholder in the parent.
  • Python dicts are not ordered
  • caller(user)
  • call(user)
  • This is a simple dialog rendered by using a macro and a call block.
  • Filter sections allow you to apply regular Jinja2 filters on a block of template data.
  • Assignments at top level (outside of blocks, macros or loops) are exported from the template like top level macros and can be imported by other templates.
  • using namespace objects which allow propagating of changes across scopes
  • use block assignments to capture the contents of a block into a variable name.
  • The extends tag can be used to extend one template from another.
  • Blocks are used for inheritance and act as both placeholders and replacements at the same time.
  • The include statement is useful to include a template and return the rendered contents of that file into the current namespace
  • Included templates have access to the variables of the active context by default.
  • putting often used code into macros
  • imports are cached and imported templates don’t have access to the current template variables, just the globals by default.
  • Macros and variables starting with one or more underscores are private and cannot be imported.
  • By default, included templates are passed the current context and imported templates are not.
  • imports are often used just as a module that holds macros.
  • Integers and floating point numbers are created by just writing the number down
  • Everything between two brackets is a list.
  • Tuples are like lists that cannot be modified (“immutable”).
  • A dict in Python is a structure that combines keys and values.
  • // Divide two numbers and return the truncated integer result
  • The special constants true, false, and none are indeed lowercase
  • all Jinja identifiers are lowercase
  • (expr) group an expression.
  • The is and in operators support negation using an infix notation
  • in Perform a sequence / mapping containment test.
  • | Applies a filter.
  • ~ Converts all operands into strings and concatenates them.
  • use inline if expressions.
  • always an attribute is returned and items are not looked up.
  • default(value, default_value=u'', boolean=False)¶ If the value is undefined it will return the passed default value, otherwise the value of the variable
  • dictsort(value, case_sensitive=False, by='key', reverse=False)¶ Sort a dict and yield (key, value) pairs.
  • format(value, *args, **kwargs)¶ Apply python string formatting on an object
  • groupby(value, attribute)¶ Group a sequence of objects by a common attribute.
  • grouping by is stored in the grouper attribute and the list contains all the objects that have this grouper in common.
  • indent(s, width=4, first=False, blank=False, indentfirst=None)¶ Return a copy of the string with each line indented by 4 spaces. The first line and blank lines are not indented by default.
  • join(value, d=u'', attribute=None)¶ Return a string which is the concatenation of the strings in the sequence.
  • map()¶ Applies a filter on a sequence of objects or looks up an attribute.
  • pprint(value, verbose=False)¶ Pretty print a variable. Useful for debugging.
  • reject()¶ Filters a sequence of objects by applying a test to each object, and rejecting the objects with the test succeeding.
  • replace(s, old, new, count=None)¶ Return a copy of the value with all occurrences of a substring replaced with a new one.
  • round(value, precision=0, method='common')¶ Round the number to a given precision
  • even if rounded to 0 precision, a float is returned.
  • select()¶ Filters a sequence of objects by applying a test to each object, and only selecting the objects with the test succeeding.
  • sort(value, reverse=False, case_sensitive=False, attribute=None)¶ Sort an iterable. Per default it sorts ascending, if you pass it true as first argument it will reverse the sorting.
  • striptags(value)¶ Strip SGML/XML tags and replace adjacent whitespace by one space.
  • tojson(value, indent=None)¶ Dumps a structure to JSON so that it’s safe to use in <script> tags.
  • trim(value)¶ Strip leading and trailing whitespace.
  • unique(value, case_sensitive=False, attribute=None)¶ Returns a list of unique items from the the given iterable
  • urlize(value, trim_url_limit=None, nofollow=False, target=None, rel=None)¶ Converts URLs in plain text into clickable links.
  • defined(value)¶ Return true if the variable is defined
  • in(value, seq)¶ Check if value is in seq.
  • mapping(value)¶ Return true if the object is a mapping (dict etc.).
  • number(value)¶ Return true if the variable is a number.
  • sameas(value, other)¶ Check if an object points to the same memory address than another object
  • undefined(value)¶ Like defined() but the other way round.
  • A joiner is passed a string and will return that string every time it’s called, except the first time (in which case it returns an empty string).
  • namespace(...)¶ Creates a new container that allows attribute assignment using the {% set %} tag
  • The with statement makes it possible to create a new inner scope. Variables set within this scope are not visible outside of the scope.
  • activate and deactivate the autoescaping from within the templates
  • With both trim_blocks and lstrip_blocks enabled, you can put block tags on their own lines, and the entire block line will be removed when rendered, preserving the whitespace of the contents
張 旭

Syntax - Configuration Language | Terraform | HashiCorp Developer - 0 views

  • the native syntax of the Terraform language, which is a rich language designed to be relatively easy for humans to read and write.
  • Terraform's configuration language is based on a more general language called HCL, and HCL's documentation usually uses the word "attribute" instead of "argument."
  • A particular block type may have any number of required labels, or it may require none
  • ...34 more annotations...
  • After the block type keyword and any labels, the block body is delimited by the { and } characters
  • Identifiers can contain letters, digits, underscores (_), and hyphens (-). The first character of an identifier must not be a digit, to avoid ambiguity with literal numbers.
  • The # single-line comment style is the default comment style and should be used in most cases.
  • he idiomatic style is to use the Unix convention
  • Indent two spaces for each nesting level.
  • align their equals signs
  • Use empty lines to separate logical groups of arguments within a block.
  • Use one blank line to separate the arguments from the blocks.
  • "meta-arguments" (as defined by the Terraform language semantics)
  • Avoid separating multiple blocks of the same type with other blocks of a different type, unless the block types are defined by semantics to form a family.
  • Resource names must start with a letter or underscore, and may contain only letters, digits, underscores, and dashes.
  • Each resource is associated with a single resource type, which determines the kind of infrastructure object it manages and what arguments and other attributes the resource supports.
  • Each resource type is implemented by a provider, which is a plugin for Terraform that offers a collection of resource types.
  • By convention, resource type names start with their provider's preferred local name.
  • Most publicly available providers are distributed on the Terraform Registry, which also hosts their documentation.
  • The Terraform language defines several meta-arguments, which can be used with any resource type to change the behavior of resources.
  • use precondition and postcondition blocks to specify assumptions and guarantees about how the resource operates.
  • Some resource types provide a special timeouts nested block argument that allows you to customize how long certain operations are allowed to take before being considered to have failed.
  • Timeouts are handled entirely by the resource type implementation in the provider
  • Most resource types do not support the timeouts block at all.
  • A resource block declares that you want a particular infrastructure object to exist with the given settings.
  • Destroy resources that exist in the state but no longer exist in the configuration.
  • Destroy and re-create resources whose arguments have changed but which cannot be updated in-place due to remote API limitations.
  • Expressions within a Terraform module can access information about resources in the same module, and you can use that information to help configure other resources. Use the <RESOURCE TYPE>.<NAME>.<ATTRIBUTE> syntax to reference a resource attribute in an expression.
  • resources often provide read-only attributes with information obtained from the remote API; this often includes things that can't be known until the resource is created, like the resource's unique random ID.
  • data sources, which are a special type of resource used only for looking up information.
  • some dependencies cannot be recognized implicitly in configuration.
  • local-only resource types exist for generating private keys, issuing self-signed TLS certificates, and even generating random ids.
  • The behavior of local-only resources is the same as all other resources, but their result data exists only within the Terraform state.
  • The count meta-argument accepts a whole number, and creates that many instances of the resource or module.
  • count.index — The distinct index number (starting with 0) corresponding to this instance.
  • the count value must be known before Terraform performs any remote resource actions. This means count can't refer to any resource attributes that aren't known until after a configuration is applied
  • Within nested provisioner or connection blocks, the special self object refers to the current resource instance, not the resource block as a whole.
  • This was fragile, because the resource instances were still identified by their index instead of the string values in the list.
  •  
    "the native syntax of the Terraform language, which is a rich language designed to be relatively easy for humans to read and write. "
張 旭

Choose when to run jobs | GitLab - 0 views

  • Rules are evaluated in order until the first match.
  • no rules match, so the job is not added to any other pipeline.
  • define a set of rules to exclude jobs in a few cases, but run them in all other cases
  • ...32 more annotations...
  • use all rules keywords, like if, changes, and exists, in the same rule. The rule evaluates to true only when all included keywords evaluate to true.
  • use parentheses with && and || to build more complicated variable expressions.
  • Use workflow to specify which types of pipelines can run.
  • every push to an open merge request’s source branch causes duplicated pipelines.
  • avoid duplicate pipelines by changing the job rules to avoid either push (branch) pipelines or merge request pipelines.
  • do not mix only/except jobs with rules jobs in the same pipeline.
  • For behavior similar to the only/except keywords, you can check the value of the $CI_PIPELINE_SOURCE variable
  • commonly used variables for if clauses
  • rules:changes expressions to determine when to add jobs to a pipeline
  • Use !reference tags to reuse rules in different jobs.
  • Use except to define when a job does not run.
  • only or except used without refs is the same as only:refs / except/refs
  • If you change multiple files, but only one file ends in .md, the build job is still skipped.
  • If you use multiple keywords with only or except, the keywords are evaluated as a single conjoined expression.
  • only includes the job if all of the keys have at least one condition that matches.
  • except excludes the job if any of the keys have at least one condition that matches.
  • With only, individual keys are logically joined by an AND
  • With except, individual keys are logically joined by an OR
  • To specify a job as manual, add when: manual to the job in the .gitlab-ci.yml file.
  • Use protected environments to define a list of users authorized to run a manual job.
  • Use when: delayed to execute scripts after a waiting period, or if you want to avoid jobs immediately entering the pending state.
  • To split a large job into multiple smaller jobs that run in parallel, use the parallel keyword
  • run a trigger job multiple times in parallel in a single pipeline, but with different variable values for each instance of the job.
  • The @ symbol denotes the beginning of a ref’s repository path. To match a ref name that contains the @ character in a regular expression, you must use the hex character code match \x40.
  • Compare a variable to a string
  • Check if a variable is undefined
  • Check if a variable is empty
  • Check if a variable exists
  • Check if a variable is empty
  • Matches are found when using =~.
  • Matches are not found when using !~.
  • Join variable expressions together with && or ||
  •  
    "Rules are evaluated in order until the first match."
crazylion lee

Theano/Theano: Theano is a Python library that allows you to define, optimize, and eval... - 0 views

  •  
    "Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation. http://www.deeplearning.net/software/…"
張 旭

Basics - Træfik - 0 views

  • Modifier rules only modify the request. They do not have any impact on routing decisions being made.
  • A frontend consists of a set of rules that determine how incoming requests are forwarded from an entrypoint to a backend.
  • Entrypoints are the network entry points into Træfik
  • ...27 more annotations...
  • Modifiers and matchers
  • Matcher rules determine if a particular request should be forwarded to a backend
  • if any rule matches
  • if all rules match
  • In order to use regular expressions with Host and Path matchers, you must declare an arbitrarily named variable followed by the colon-separated regular expression, all enclosed in curly braces.
  • Use a *Prefix* matcher if your backend listens on a particular base path but also serves requests on sub-paths. For instance, PathPrefix: /products would match /products but also /products/shoes and /products/shirts. Since the path is forwarded as-is, your backend is expected to listen on /products
  • Use Path if your backend listens on the exact path only. For instance, Path: /products would match /products but not /products/shoes.
  • Modifier rules ALWAYS apply after the Matcher rules.
  • A backend is responsible to load-balance the traffic coming from one or more frontends to a set of http servers
  • wrr: Weighted Round Robin
  • drr: Dynamic Round Robin: increases weights on servers that perform better than others.
  • A circuit breaker can also be applied to a backend, preventing high loads on failing servers.
  • To proactively prevent backends from being overwhelmed with high load, a maximum connection limit can also be applied to each backend.
  • Sticky sessions are supported with both load balancers.
  • When sticky sessions are enabled, a cookie is set on the initial request.
  • The check is defined by a path appended to the backend URL and an interval (given in a format understood by time.ParseDuration) specifying how often the health check should be executed (the default being 30 seconds). Each backend must respond to the health check within 5 seconds.
  • The static configuration is the global configuration which is setting up connections to configuration backends and entrypoints.
  • We only need to enable watch option to make Træfik watch configuration backend changes and generate its configuration automatically.
  • Separate the regular expression and the replacement by a space.
  • a comma-separated key/value pair where both key and value must be literals.
  • namespacing of your backends happens on the basis of hosts in addition to paths
  • Modifiers will be applied in a pre-determined order regardless of their order in the rule configuration section.
  • customize priority
  • Custom headers can be configured through the frontends, to add headers to either requests or responses that match the frontend's rules.
  • Security related headers (HSTS headers, SSL redirection, Browser XSS filter, etc) can be added and configured per frontend in a similar manner to the custom headers above.
  • Servers are simply defined using a url. You can also apply a custom weight to each server (this will be used by load-balancing).
  • Maximum connections can be configured by specifying an integer value for maxconn.amount and maxconn.extractorfunc which is a strategy used to determine how to categorize requests in order to evaluate the maximum connections.
張 旭

Active Record Validations - Ruby on Rails Guides - 0 views

  • validates :name, presence: true
  • Validations are used to ensure that only valid data is saved into your database
  • Model-level validations are the best way to ensure that only valid data is saved into your database.
  • ...117 more annotations...
  • native database constraints
  • client-side validations
  • controller-level validations
  • Database constraints and/or stored procedures make the validation mechanisms database-dependent and can make testing and maintenance more difficult
  • Client-side validations can be useful, but are generally unreliable
  • combined with other techniques, client-side validation can be a convenient way to provide users with immediate feedback
  • it's a good idea to keep your controllers skinny
  • model-level validations are the most appropriate in most circumstances.
  • Active Record uses the new_record? instance method to determine whether an object is already in the database or not.
  • Creating and saving a new record will send an SQL INSERT operation to the database. Updating an existing record will send an SQL UPDATE operation instead. Validations are typically run before these commands are sent to the database
  • The bang versions (e.g. save!) raise an exception if the record is invalid.
  • save and update return false
  • create just returns the object
  • skip validations, and will save the object to the database regardless of its validity.
  • be used with caution
  • update_all
  • save also has the ability to skip validations if passed validate: false as argument.
  • save(validate: false)
  • valid? triggers your validations and returns true if no errors
  • After Active Record has performed validations, any errors found can be accessed through the errors.messages instance method
  • By definition, an object is valid if this collection is empty after running validations.
  • validations are not run when using new.
  • invalid? is simply the inverse of valid?.
  • To verify whether or not a particular attribute of an object is valid, you can use errors[:attribute]. I
  • only useful after validations have been run
  • Every time a validation fails, an error message is added to the object's errors collection,
  • All of them accept the :on and :message options, which define when the validation should be run and what message should be added to the errors collection if it fails, respectively.
  • validates that a checkbox on the user interface was checked when a form was submitted.
  • agree to your application's terms of service
  • 'acceptance' does not need to be recorded anywhere in your database (if you don't have a field for it, the helper will just create a virtual attribute).
  • It defaults to "1" and can be easily changed.
  • use this helper when your model has associations with other models and they also need to be validated
  • valid? will be called upon each one of the associated objects.
  • work with all of the association types
  • Don't use validates_associated on both ends of your associations.
    • 張 旭
       
      關聯式的物件驗證,在其中一方啟動就好了!
  • each associated object will contain its own errors collection
  • errors do not bubble up to the calling model
  • when you have two text fields that should receive exactly the same content
  • This validation creates a virtual attribute whose name is the name of the field that has to be confirmed with "_confirmation" appended.
  • To require confirmation, make sure to add a presence check for the confirmation attribute
  • this set can be any enumerable object.
  • The exclusion helper has an option :in that receives the set of values that will not be accepted for the validated attributes.
  • :in option has an alias called :within
  • validates the attributes' values by testing whether they match a given regular expression, which is specified using the :with option.
  • attribute does not match the regular expression by using the :without option.
  • validates that the attributes' values are included in a given set
  • :in option has an alias called :within
  • specify length constraints
  • :minimum
  • :maximum
  • :in (or :within)
  • :is - The attribute length must be equal to the given value.
  • :wrong_length, :too_long, and :too_short options and %{count} as a placeholder for the number corresponding to the length constraint being used.
  • split the value in a different way using the :tokenizer option:
    • 張 旭
       
      自己提供切割算字數的方式
  • validates that your attributes have only numeric values
  • By default, it will match an optional sign followed by an integral or floating point number.
  • set :only_integer to true.
  • allows a trailing newline character.
  • :greater_than
  • :greater_than_or_equal_to
  • :equal_to
  • :less_than
  • :less_than_or_equal_to
  • :odd - Specifies the value must be an odd number if set to true.
  • :even - Specifies the value must be an even number if set to true.
  • validates that the specified attributes are not empty
  • if the value is either nil or a blank string
  • validate associated records whose presence is required, you must specify the :inverse_of option for the association
  • inverse_of
  • an association is present, you'll need to test whether the associated object itself is present, and not the foreign key used to map the association
  • false.blank? is true
  • validate the presence of a boolean field
  • ensure the value will NOT be nil
  • validates that the specified attributes are absent
  • not either nil or a blank string
  • be sure that an association is absent
  • false.present? is false
  • validate the absence of a boolean field you should use validates :field_name, exclusion: { in: [true, false] }.
  • validates that the attribute's value is unique right before the object gets saved
  • a :scope option that you can use to specify other attributes that are used to limit the uniqueness check
  • a :case_sensitive option that you can use to define whether the uniqueness constraint will be case sensitive or not.
  • There is no default error message for validates_with.
  • To implement the validate method, you must have a record parameter defined, which is the record to be validated.
  • the validator will be initialized only once for the whole application life cycle, and not on each validation run, so be careful about using instance variables inside it.
  • passes the record to a separate class for validation
  • use a plain old Ruby object
  • validates attributes against a block
  • The block receives the record, the attribute's name and the attribute's value. You can do anything you like to check for valid data within the block
  • will let validation pass if the attribute's value is blank?, like nil or an empty string
  • the :message option lets you specify the message that will be added to the errors collection when validation fails
  • skips the validation when the value being validated is nil
  • specify when the validation should happen
  • raise ActiveModel::StrictValidationFailed when the object is invalid
  • You can do that by using the :if and :unless options, which can take a symbol, a string, a Proc or an Array.
  • use the :if option when you want to specify when the validation should happen
  • using eval and needs to contain valid Ruby code.
  • Using a Proc object gives you the ability to write an inline condition instead of a separate method
  • have multiple validations use one condition, it can be easily achieved using with_options.
  • implement a validate method which takes a record as an argument and performs the validation on it
  • validates_with method
  • implement a validate_each method which takes three arguments: record, attribute, and value
  • combine standard validations with your own custom validators.
  • :expiration_date_cannot_be_in_the_past,    :discount_cannot_be_greater_than_total_value
  • By default such validations will run every time you call valid?
  • errors[] is used when you want to check the error messages for a specific attribute.
  • Returns an instance of the class ActiveModel::Errors containing all errors.
  • lets you manually add messages that are related to particular attributes
  • using []= setter
  • errors[:base] is an array, you can simply add a string to it and it will be used as an error message.
  • use this method when you want to say that the object is invalid, no matter the values of its attributes.
  • clear all the messages in the errors collection
  • calling errors.clear upon an invalid object won't actually make it valid: the errors collection will now be empty, but the next time you call valid? or any method that tries to save this object to the database, the validations will run again.
  • the total number of error messages for the object.
  • .errors.full_messages.each
  • .field_with_errors
張 旭

ruby-grape/grape: An opinionated framework for creating REST-like APIs in Ruby. - 0 views

shared by 張 旭 on 17 Dec 16 - No Cached
  • Grape is a REST-like API framework for Ruby.
  • designed to run on Rack or complement existing web application frameworks such as Rails and Sinatra by providing a simple DSL to easily develop RESTful APIs
  • Grape APIs are Rack applications that are created by subclassing Grape::API
  • ...54 more annotations...
  • Rails expects a subdirectory that matches the name of the Ruby module and a file name that matches the name of the class
  • mount multiple API implementations inside another one
  • mount on a path, which is similar to using prefix inside the mounted API itself.
  • four strategies in which clients can reach your API's endpoints: :path, :header, :accept_version_header and :param
  • clients should pass the desired version as a request parameter, either in the URL query string or in the request body.
  • clients should pass the desired version in the HTTP Accept head
  • clients should pass the desired version in the UR
  • clients should pass the desired version in the HTTP Accept-Version header.
  • add a description to API methods and namespaces
  • Request parameters are available through the params hash object
  • Parameters are automatically populated from the request body on POST and PUT
  • route string parameters will have precedence.
  • Grape allows you to access only the parameters that have been declared by your params block
  • By default declared(params) includes parameters that have nil values
  • all valid types
  • type: File
  • JSON objects and arrays of objects are accepted equally
  • any class can be used as a type so long as an explicit coercion method is supplied
  • As a special case, variant-member-type collections may also be declared, by passing a Set or Array with more than one member to type
  • Parameters can be nested using group or by calling requires or optional with a block
  • relevant if another parameter is given
  • Parameters options can be grouped
  • allow_blank can be combined with both requires and optional
  • Parameters can be restricted to a specific set of values
  • Parameters can be restricted to match a specific regular expression
  • Never define mutually exclusive sets with any required params
  • Namespaces allow parameter definitions and apply to every method within the namespace
  • define a route parameter as a namespace using route_param
  • create custom validation that use request to validate the attribute
  • rescue a Grape::Exceptions::ValidationErrors and respond with a custom response or turn the response into well-formatted JSON for a JSON API that separates individual parameters and the corresponding error messages
  • custom validation messages
  • Request headers are available through the headers helper or from env in their original form
  • define requirements for your named route parameters using regular expressions on namespace or endpoint
  • route will match only if all requirements are met
  • mix in a module
  • define reusable params
  • using cookies method
  • a 201 for POST-Requests
  • 204 for DELETE-Requests
  • 200 status code for all other Requests
  • use status to query and set the actual HTTP Status Code
  • raising errors with error!
  • It is very crucial to define this endpoint at the very end of your API, as it literally accepts every request.
  • rescue_from will rescue the exceptions listed and all their subclasses.
  • Grape::API provides a logger method which by default will return an instance of the Logger class from Ruby's standard library.
  • Grape supports a range of ways to present your data
  • Grape has built-in Basic and Digest authentication (the given block is executed in the context of the current Endpoint).
  • Authentication applies to the current namespace and any children, but not parents.
  • Blocks can be executed before or after every API call, using before, after, before_validation and after_validation
  • Before and after callbacks execute in the following order
  • Grape by default anchors all request paths, which means that the request URL should match from start to end to match
  • The namespace method has a number of aliases, including: group, resource, resources, and segment. Use whichever reads the best for your API.
  • test a Grape API with RSpec by making HTTP requests and examining the response
  • POST JSON data and specify the correct content-type.
張 旭

Dependency Lock File (.terraform.lock.hcl) - Configuration Language | Terraform | Hashi... - 0 views

  • Version constraints within the configuration itself determine which versions of dependencies are potentially compatible, but after selecting a specific version of each dependency Terraform remembers the decisions it made in a dependency lock file
  • At present, the dependency lock file tracks only provider dependencies.
  • Terraform does not remember version selections for remote modules, and so Terraform will always select the newest available module version that meets the specified version constraints.
  • ...14 more annotations...
  • The lock file is always named .terraform.lock.hcl, and this name is intended to signify that it is a lock file for various items that Terraform caches in the .terraform
  • Terraform automatically creates or updates the dependency lock file each time you run the terraform init command.
  • You should include this file in your version control repository
  • If a particular provider has no existing recorded selection, Terraform will select the newest available version that matches the given version constraint, and then update the lock file to include that selection.
  • the "trust on first use" model
  • you can pre-populate checksums for a variety of different platforms in your lock file using the terraform providers lock command, which will then allow future calls to terraform init to verify that the packages available in your chosen mirror match the official packages from the provider's origin registry.
  • The h1: and zh: prefixes on these values represent different hashing schemes, each of which represents calculating a checksum using a different algorithm.
  • zh:: a mnemonic for "zip hash"
  • h1:: a mnemonic for "hash scheme 1", which is the current preferred hashing scheme.
  • To determine whether there still exists a dependency on a given provider, Terraform uses two sources of truth: the configuration itself, and the state.
  • Version constraints within the configuration itself determine which versions of dependencies are potentially compatible, but after selecting a specific version of each dependency Terraform remembers the decisions it made in a dependency lock file so that it can (by default) make the same decisions again in future.
  • At present, the dependency lock file tracks only provider dependencies.
  • Terraform will always select the newest available module version that meets the specified version constraints.
  • The lock file is always named .terraform.lock.hcl
  •  
    "the overriding effect is compounded, with later blocks taking precedence over earlier blocks."
張 旭

Handlebars.js: Minimal Templating on Steroids - 0 views

  • Handlebars templates look like regular HTML, with embedded handlebars expressions.
  • don't want Handlebars to escape a value, use the "triple-stash", {{{.
  • Handlebars will not escape a Handlebars.SafeString
  • ...13 more annotations...
  • block helpers are identified by a # preceeding the helper name and require a matching closing mustache, /, of the same name.
  • use Handlebars templates with more raw JSON objects.
  • Nested handlebars paths can also include ../ segments, which evaluate their paths against a parent context.
  • The exact value that ../ will resolve to varies based on the helper that is calling the block.
  • reference the same permalink value even though they are located within different blocks.
  • name conflict resolution between helpers and data fields via a this reference
  • comments will not be in the resulting output.
  • register a helper with the Handlebars.registerHelper method.
  • Helpers receive the current context as the this context of the function.
  • returns HTML that you do not want escaped, make sure to return a new Handlebars.SafeString
  • literal values passed to them either as parameter arguments or hash arguments
  • Handlebars partials allow for code reuse by creating shared templates
  • Handlebars.registerPartial
張 旭

A Guide to Testing Rails Applications - Ruby on Rails Guides - 0 views

  • Rails tests can also simulate browser requests and thus you can test your application's response without having to test it through your browser.
  • your tests will need a database to interact with as well.
  • By default, every Rails application has three environments: development, test, and production
  • ...25 more annotations...
  • models directory is meant to hold tests for your models
  • controllers directory is meant to hold tests for your controllers
  • integration directory is meant to hold tests that involve any number of controllers interacting
  • Fixtures are a way of organizing test data; they reside in the fixtures folder
  • The test_helper.rb file holds the default configuration for your tests
  • Fixtures allow you to populate your testing database with predefined data before your tests run
  • Fixtures are database independent written in YAML.
  • one file per model.
  • Each fixture is given a name followed by an indented list of colon-separated key/value pairs.
  • Keys which resemble YAML keywords such as 'yes' and 'no' are quoted so that the YAML Parser correctly interprets them.
  • define a reference node between two different fixtures.
  • ERB allows you to embed Ruby code within templates
  • The YAML fixture format is pre-processed with ERB when Rails loads fixtures.
  • Rails by default automatically loads all fixtures from the test/fixtures folder for your models and controllers test.
  • Fixtures are instances of Active Record.
  • access the object directly
  • test_helper.rb specifies the default configuration to run our tests. This is included with all the tests, so any methods added to this file are available to all your tests.
  • test with method names prefixed with test_.
  • An assertion is a line of code that evaluates an object (or expression) for expected results.
  • bin/rake db:test:prepare
  • Every test contains one or more assertions. Only when all the assertions are successful will the test pass.
  • rake test command
  • run a particular test method from the test case by running the test and providing the test method name.
  • The . (dot) above indicates a passing test. When a test fails you see an F; when a test throws an error you see an E in its place.
  • we first wrote a test which fails for a desired functionality, then we wrote some code which adds the functionality and finally we ensured that our test passes. This approach to software development is referred to as Test-Driven Development (TDD).
crazylion lee

crontab.guru - the cron schedule expression editor - 0 views

shared by crazylion lee on 12 Nov 16 - No Cached
  •  
    "By WDT.io - the reliable monitor for your cronjobs."
張 旭

Active Record Migrations - Ruby on Rails Guides - 0 views

    • 張 旭
       
       跟 belongs_to 與 has_many 設定對應的 Migrattion
    • 張 旭
       
      has_and_belongs_to_many 的對應?
  • add_column and remove_column
  • ...114 more annotations...
  • allowing your schema and changes to be database independent.
  • each migration as being a new 'version' of the database
  • each migration modifies it to add or remove tables, columns, or entries
  • Active Record will also update your db/schema.rb file to match the up-to-date structure of your database.
  • A primary key column called id will also be added implicitly, as it's the default primary key for all Active Record models
  • roll this migration back, it will remove the table
  • timestamps macro adds two columns, created_at and updated_at
  • On databases that support transactions with statements that change the schema, migrations are wrapped in a transaction
  • reversible
  • use up and down instead of change
  • Migrations are stored as files in the db/migrate directory, one for each migration class.
  • a UTC timestamp identifying
  • Rails uses this timestamp to determine which migration should be run and in what order
  • "AddXXXToYYY" or "RemoveXXXFromYYY"
  • use a Ruby DSL
  • column type as references
  • part_number:string:index
  • a migration to remove a column
  • "CreateXXX"
  • change_column_null
  • AddUserRefToProducts
  • :references
  • produce join tables if JoinTable is part of the name
  • CreateJoinTable
  • The model and scaffold generators will create migrations appropriate for adding a new model.
  • enclosed by curly braces and follow the field type
  • create_table
  • By default, create_table will create a primary key called id
  • add an index on the new column
  • when using MySQL, the default is ENGINE=InnoDB
  • create_join_table creates an HABTM (has and belongs to many) join table
  • To customize the name of the table, provide a :table_name option:
  • create_join_table also accepts a block
  • change_table, used for changing existing tables
  • remove
  • rename
  • add_column
  • change_column
  • remove_column
  • change_column_default
  • place an SQL fragment in the :options option.
  • limit
  • precision
  • scale
  • polymorphic
  • default
  • index
  • add_foreign_key
  • Active Record only supports single column foreign keys.
  • use the old style of migration using up and down methods instead of the change method.
  • .connection.execute
  • change_table is also reversible, as long as the block does not call change, change_default or remove.
  • remove_column is reversible if you supply the column type as the third argument
  • Complex migrations may require processing that Active Record doesn't know how to reverse
  • reversible
  • Using reversible will ensure that the instructions are executed in the right order too.
  • add_column add_foreign_key add_index add_reference add_timestamps change_column_default (must supply a :from and :to option) change_column_null create_join_table create_table disable_extension drop_join_table drop_table (must supply a block) enable_extension remove_column (must supply a type) remove_foreign_key (must supply a second table) remove_index remove_reference remove_timestamps rename_column rename_index rename_table
  • :column_options option
  • have the option :null set to false by default
  • By default, the name of the join table comes from the union of the first two arguments provided to create_join_table
  • in alphabetical order
  • change_column command is irreversible.
    • 張 旭
       
      關聯物在前,被關聯物在後。 A 關聯到 B
  • If the column names can not be derived from the table names, you can use the :column and :primary_key options.
  • figure out the column name
  • foreign key for a specific column
  • foreign key by name
    • 張 旭
       
      不懂 column 跟 name 的用法差異,基本上一樣。
  • Active Record knows how to reverse the migration automatically
    • 張 旭
       
      使用內建的 method,Rails 比較容易自動 rollback
    • 張 旭
       
      除了幾個特殊的 change_ 跟 remove_
  • should use reversible or write the up and down methods instead of using the change method
  • If your migration is irreversible, you should raise ActiveRecord::IrreversibleMigration from your down method.
  • DontUseConstraintForZipcodeValidationMigration
  • rails db:migrate
  • the db:migrate task also invokes the db:schema:dump task, which will update your db/schema.rb file to match the structure of your database.
  • specify a target version
  • all migrations up to and including 20080906120000
  • run the down method on all the migrations down to, but not including, 20080906120000
  • rails db:rollback
  • db:migrate:redo task is a shortcut for doing a rollback and then migrating back up again
    • 張 旭
       
      舊版的還是 rake!
  • STEP parameter
  • db:setup task will create the database, load the schema and initialize it with the seed data
  • db:reset task will drop the database and set it up again. This is functionally equivalent to rails db:drop db:setup.
  • run a specific migration up or down, the db:migrate:up and db:migrate:down
  • the RAILS_ENV environment variable
  • db:migrate VERBOSE=false will suppress all output.
  • If you have already run the migration, then you cannot just edit the migration and run the migration again: Rails thinks it has already run the migration and so will do nothing when you run rails db:migrate.
  • must rollback the migration (for example with bin/rails db:rollback), edit your migration and then run rails db:migrate to run the corrected version.
  • editing existing migrations is not a good idea.
  • should write a new migration that performs the changes you require
  • revert method can be helpful when writing a new migration to undo previous migrations in whole or in part
  • require_relative
  • revert
  • They are not designed to be edited, they just represent the current state of the database.
  • Schema Files for
  • Schema files are also useful if you want a quick look at what attributes an Active Record object has
  • annotate_models gem automatically adds and updates comments at the top of each model summarizing the schema if you desire that functionality.
  • database-independent
  • multiple databases
  • db/schema.rb cannot express database specific items such as triggers, stored procedures or check constraints
  • you can execute custom SQL statements, the schema dumper cannot reconstitute those statements from the database
  • db:structure:dump
    • 張 旭
       
      資料庫種類不相依的 schema 付出的代價就是有些特殊的資料庫特性無法描述出來,例如 trigger;如果有在 migration 寫 SQL 的,簡單說 schema dumper 這邊就要設定成 :sql 而不是預設的 :ruby
  • set in config/application.rb by the config.active_record.schema_format setting, which may be either :sql or :ruby.
  • check them into source control.
  • db/schema.rb contains the current version number of the database
  • Validations such as validates :foreign_key, uniqueness: true are one way in which models can enforce data integrity
  • The :dependent option on associations allows models to automatically destroy child objects when the parent is destroyed.
  • Migrations can also be used to add or modify data
  • Initial
  • To add initial data after a database is created, Rails has a built-in 'seeds' feature that makes the process quick and easy.
  • db/seeds.rb
  • rails db:seed
張 旭

Scalable architecture without magic (and how to build it if you're not Google) - DEV Co... - 0 views

  • Don’t mess up write-first and read-first databases.
  • keep them stateless.
  • you should know how to make a scalable setup on bare metal.
  • ...29 more annotations...
  • Different programming languages are for different tasks.
  • Go or C which are compiled to run on bare metal.
  • To run NodeJS on multiple cores, you have to use something like PM2, but since this you have to keep your code stateless.
  • Python have very rich and sugary syntax that’s great for working with data while keeping your code small and expressive.
  • SQL is almost always slower than NoSQL
  • databases are often read-first or write-first
  • write-first, just like Cassandra.
  • store all of your data to your databases and leave nothing at backend
  • Functional code is stateless by default
  • It’s better to go for stateless right from the very beginning.
  • deliver exactly the same responses for same requests.
  • Sessions? Store them at Redis and allow all of your servers to access it.
  • Only the first user will trigger a data query, and all others will be receiving exactly the same data straight from the RAM
  • never, never cache user input
  • Only the server output should be cached
  • Varnish is a great cache option that works with HTTP responses, so it may work with any backend.
  • a rate limiter – if there’s not enough time have passed since last request, the ongoing request will be denied.
  • different requests blasting every 10ms can bring your server down
  • Just set up entry relations and allow your database to calculate external keys for you
  • the query planner will always be faster than your backend.
  • Backend should have different responsibilities: hashing, building web pages from data and templates, managing sessions and so on.
  • For anything related to data management or data models, move it to your database as procedures or queries.
  • a distributed database.
  • your code has to be stateless
  • Move anything related to the data to the database.
  • For load-balancing a database, go for cluster.
  • DB is balancing requests, as well as your backend.
  • Users from different continents are separated with DNS.
  • Keep is scalable, keep is stateless.
  •  
    "Don't mess up write-first and read-first databases."
張 旭

bbatsov/rails-style-guide: A community-driven Ruby on Rails 4 style guide - 0 views

  • custom initialization code in config/initializers. The code in initializers executes on application startup
  • Keep initialization code for each gem in a separate file with the same name as the gem
  • Mark additional assets for precompilation
  • ...90 more annotations...
  • config/environments/production.rb
  • Create an additional staging environment that closely resembles the production one
  • Keep any additional configuration in YAML files under the config/ directory
  • Rails::Application.config_for(:yaml_file)
  • Use nested routes to express better the relationship between ActiveRecord models
  • nest routes more than 1 level deep then use the shallow: true option
  • namespaced routes to group related actions
  • Don't use match to define any routes unless there is need to map multiple request types among [:get, :post, :patch, :put, :delete] to a single action using :via option.
  • Keep the controllers skinny
  • all the business logic should naturally reside in the model
  • Share no more than two instance variables between a controller and a view.
  • using a template
  • Prefer render plain: over render text
  • Prefer corresponding symbols to numeric HTTP status codes
  • without abbreviations
  • Keep your models for business logic and data-persistence only
  • Avoid altering ActiveRecord defaults (table names, primary key, etc)
  • Group macro-style methods (has_many, validates, etc) in the beginning of the class definition
  • Prefer has_many :through to has_and_belongs_to_many
  • self[:attribute]
  • self[:attribute] = value
  • validates
  • Keep custom validators under app/validators
  • Consider extracting custom validators to a shared gem
  • preferable to make a class method instead which serves the same purpose of the named scope
  • returns an ActiveRecord::Relation object
  • .update_attributes
  • Override the to_param method of the model
  • Use the friendly_id gem. It allows creation of human-readable URLs by using some descriptive attribute of the model instead of its id
  • find_each to iterate over a collection of AR objects
  • .find_each
  • .find_each
  • Looping through a collection of records from the database (using the all method, for example) is very inefficient since it will try to instantiate all the objects at once
  • always call before_destroy callbacks that perform validation with prepend: true
  • Define the dependent option to the has_many and has_one associations
  • always use the exception raising bang! method or handle the method return value.
  • When persisting AR objects
  • Avoid string interpolation in queries
  • param will be properly escaped
  • Consider using named placeholders instead of positional placeholders
  • use of find over where when you need to retrieve a single record by id
  • use of find_by over where and find_by_attribute
  • use of where.not over SQL
  • use heredocs with squish
  • Keep the schema.rb (or structure.sql) under version control.
  • Use rake db:schema:load instead of rake db:migrate to initialize an empty database
  • Enforce default values in the migrations themselves instead of in the application layer
  • change_column_default
  • imposing data integrity from the Rails app is impossible
  • use the change method instead of up and down methods.
  • constructive migrations
  • use models in migrations, make sure you define them so that you don't end up with broken migrations in the future
  • Don't use non-reversible migration commands in the change method.
  • In this case, block will be used by create_table in rollback
  • Never call the model layer directly from a view
  • Never make complex formatting in the views, export the formatting to a method in the view helper or the model.
  • When the labels of an ActiveRecord model need to be translated, use the activerecord scope
  • Separate the texts used in the views from translations of ActiveRecord attributes
  • Place the locale files for the models in a folder locales/models
  • the texts used in the views in folder locales/views
  • config/application.rb config.i18n.load_path += Dir[Rails.root.join('config', 'locales', '**', '*.{rb,yml}')]
  • I18n.t
  • I18n.l
  • Use "lazy" lookup for the texts used in views.
  • Use the dot-separated keys in the controllers and models
  • Reserve app/assets for custom stylesheets, javascripts, or images
  • Third party code such as jQuery or bootstrap should be placed in vendor/assets
  • Provide both HTML and plain-text view templates
  • config.action_mailer.raise_delivery_errors = true
  • Use a local SMTP server like Mailcatcher in the development environment
  • Provide default settings for the host name
  • The _url methods include the host name and the _path methods don't
  • _url
  • Format the from and to addresses properly
  • default from:
  • sending html emails all styles should be inline
  • Sending emails while generating page response should be avoided. It causes delays in loading of the page and request can timeout if multiple email are sent.
  • .start_with?
  • .end_with?
  • &.
  • Config your timezone accordingly in application.rb
  • config.active_record.default_timezone = :local
  • it can be only :utc or :local
  • Don't use Time.parse
  • Time.zone.parse
  • Don't use Time.now
  • Time.zone.now
  • Put gems used only for development or testing in the appropriate group in the Gemfile
  • Add all OS X specific gems to a darwin group in the Gemfile, and all Linux specific gems to a linux group
  • Do not remove the Gemfile.lock from version control.
張 旭

File: README - Documentation by YARD 0.8.7.6 - 0 views

  • we can express concepts like a conversation
    • 張 旭
       
      描述 order 這個東西。 order 就是將登記在它上面的物品價格加總起來。
  • The describe method creates an ExampleGroup.
  • ...15 more annotations...
  • declare examples using the it method
  • an example group is a class in which the block passed to describe is evaluated
  • The blocks passed to it are evaluated in the context of an instance of that class
  • nested groups using the describe or context methods
  • can declare example groups using either describe or context
  • can declare examples within a group using any of it, specify, or example
  • Declare a shared example group using shared_examples, and then include it in any group using include_examples.
  • Nearly anything that can be declared within an example group can be declared within a shared example group.
  • shared_context and include_context.
  • When a class is passed to describe, you can access it from an example using the described_class method
  • rspec-core stores a metadata hash with every example and group
  • Example groups are defined by a describe or context block, which is eagerly evaluated when the spec file is loaded
  • Examples -- typically defined by an it block -- and any other blocks with per-example semantics -- such as a before(:example) hook -- are evaluated in the context of an instance of the example group class to which the example belongs.
  • Examples are not executed when the spec file is loaded
  • run any examples until all spec files have been loaded
crazylion lee

Server.js - server.js - 0 views

  •  
    "server.js for Node"
張 旭

Quick start - 0 views

  • Terragrunt will forward almost all commands, arguments, and options directly to Terraform, but based on the settings in your terragrunt.hcl file
  • the backend configuration does not support variables or expressions of any sort
  • the path_relative_to_include() built-in function,
  • ...9 more annotations...
  • The generate attribute is used to inform Terragrunt to generate the Terraform code for configuring the backend.
  • The find_in_parent_folders() helper will automatically search up the directory tree to find the root terragrunt.hcl and inherit the remote_state configuration from it.
  • Unlike the backend configurations, provider configurations support variables,
  • if you needed to modify the configuration to expose another parameter (e.g session_name), you would have to then go through each of your modules to make this change.
  • instructs Terragrunt to create the file provider.tf in the working directory (where Terragrunt calls terraform) before it calls any of the Terraform commands
  • large modules should be considered harmful.
  • it is a Bad Idea to define all of your environments (dev, stage, prod, etc), or even a large amount of infrastructure (servers, databases, load balancers, DNS, etc), in a single Terraform module.
  • Large modules are slow, insecure, hard to update, hard to code review, hard to test, and brittle (i.e., you have all your eggs in one basket).
  • Terragrunt allows you to define your Terraform code once and to promote a versioned, immutable “artifact” of that exact same code from environment to environment.
張 旭

Best practices for building Kubernetes Operators and stateful apps | Google Cloud Blog - 0 views

  • use the StatefulSet workload controller to maintain identity for each of the pods, and to use Persistent Volumes to persist data so it can survive a service restart.
  • a way to extend Kubernetes functionality with application specific logic using custom resources and custom controllers.
  • An Operator can automate various features of an application, but it should be specific to a single application
  • ...12 more annotations...
  • Kubebuilder is a comprehensive development kit for building and publishing Kubernetes APIs and Controllers using CRDs
  • Design declarative APIs for operators, not imperative APIs. This aligns well with Kubernetes APIs that are declarative in nature.
  • With declarative APIs, users only need to express their desired cluster state, while letting the operator perform all necessary steps to achieve it.
  • scaling, backup, restore, and monitoring. An operator should be made up of multiple controllers that specifically handle each of the those features.
  • the operator can have a main controller to spawn and manage application instances, a backup controller to handle backup operations, and a restore controller to handle restore operations.
  • each controller should correspond to a specific CRD so that the domain of each controller's responsibility is clear.
  • If you keep a log for every container, you will likely end up with unmanageable amount of logs.
  • integrate application-specific details to the log messages such as adding a prefix for the application name.
  • you may have to use external logging tools such as Google Stackdriver, Elasticsearch, Fluentd, or Kibana to perform the aggregations.
  • adding labels to metrics to facilitate aggregation and analysis by monitoring systems.
  • a more viable option is for application pods to expose a metrics HTTP endpoint for monitoring tools to scrape.
  • A good way to achieve this is to use open-source application-specific exporters for exposing Prometheus-style metrics.
張 旭

第 05 章 - 計算機概論 - 主機系統與 I/O 界面 - 0 views

  • 接受使用者輸入指令與資料,經由中央處理器的數學與邏輯單元運算處理後,以產生或儲存成有用的資訊
  • CPU 為一個具有特定功能的晶片, 裡頭含有微指令集,如果你想要讓主機進行什麼特異的功能,就得要參考這顆 CPU 是否有相關內建的微指令集才可以。
  • CPU 讀取的資料都是從主記憶體來的! 主記憶體內的資料則是從輸入單元所傳輸進來!而 CPU 處理完畢的資料也必須要先寫回主記憶體中,最後資料才從主記憶體傳輸到輸出單元。
  • ...49 more annotations...
  • 算數邏輯單元與控制單元。其中算數邏輯單元主要負責程式運算與邏輯判斷,控制單元則主要在協調各周邊元件與各單元間的工作。
  • 資料會先寫入到主記憶體,然後 CPU 才能開始應用
  • CPU 其實內部已經含有一些微指令,我們所使用的軟體都要經過 CPU 內部的微指令集來達成才行。
  • 世界上常見到的兩種主要 CPU 架構, 分別是:精簡指令集 (RISC) 與複雜指令集 (CISC) 系統。
  • 微指令集較為精簡,每個指令的執行時間都很短,完成的動作也很單純,指令的執行效能較佳; 但是若要做複雜的事情,就要由多個指令來完成。
  • CISC在微指令集的每個小指令可以執行一些較低階的硬體操作,指令數目多而且複雜, 每條指令的長度並不相同。因為指令執行較為複雜所以每條指令花費的時間較長, 但每條個別指令可以處理的工作較為豐富。
  • 最早的那顆Intel發展出來的CPU代號稱為8086
  • AMD依此架構修改新一代的CPU為64位元
  • CPU 位元指的是CPU一次資料讀取的最大量!64位元CPU代表CPU一次可以讀寫64bits這麼多的資料
  • 因為CPU讀取資料量有限制,因此能夠從記憶體中讀寫的資料也就有所限制
  • :(1)北橋:負責連結速度較快的CPU、主記憶體與顯示卡界面等元件;
  • (2)南橋:負責連接速度較慢的裝置介面, 包括硬碟、USB、網路卡等等。不過由於北橋最重要的就是 CPU 與主記憶體之間的橋接,因此目前的主流架構中, 大多將北橋記憶體控制器整合到 CPU 封裝當中
  • CPU 與可接受的晶片組是有搭配性的,尤其目前每種 CPU 的腳位都不一樣
  • 時脈越高,代表單位時間內可進行的工作越多
  • 大概都只看總頻寬或基準時脈
  • CPU 時脈越高的情況下,會產生很多諸如散熱、設計及與週邊元件溝通的問題。
  • 其他的程序還在等待 CPU ,但是 CPU 又在等待 I/O
  • Intel 在同一個運算核心底下安裝兩個暫存器來模擬出另一個核心,實際上是兩個暫存器 (可以想成是程式的執行器) 共用一個實體核心。 這就是超執行緒的簡易認知
  • 時脈的意思是每秒鐘能夠進行的工作次數,而每次工作能夠讀進的資料量就是位元數
  • 每個用戶端大多是短時間的大運算,所以通常不會有一隻程序一直佔用著系統資源。
  • CPU 的所有資料都是從記憶體讀寫來的,所以記憶體的容量與頻寬就相當的重要了
  • DRAM 根據技術的更新又分好幾代,而使用上較廣泛的有所謂的 SDRAM 與 DDR SDRAM 兩種。 這兩種記憶體的差別除了在於腳位與工作電壓上的不同之外,DDR 是所謂的雙倍資料傳送速度 (Double Data Rate)
  • 晶片組廠商就將兩個主記憶體彙整在一起,如果一支記憶體可達 64 位元,兩支記憶體就可以達到 128 位元了,這就是雙通道的設計理念。 在某些比較多核心的伺服器主機上面,甚至還使用了 3 通道到 4 通道的設計
  • CPU 內部的暫存器與少量記憶體被稱為第一、第二層快取 (L1, L2 cache),而放在核心間的快取記憶體就被稱為第三層快取記憶體 (L3 cache)
  • CPU 的暫存器是直接設計在 CPU 核心內部,可以用來幫助 CPU 的運算。
  • 在多核心 CPU 的核心之間,會有另一個共享的快取記憶體存在,讓所有的 CPU 核心可以共享某些資源。
  • 靜態隨機存取記憶體 (Static Random Access Memory, SRAM)
  • 各項參數, 是被記錄到主機板上頭的一個稱為 CMOS 的晶片上,這個晶片需要藉著額外的電源來發揮記錄功能, 這也是為什麼你的主機板上面會有一顆電池的緣故。
  • BIOS(Basic Input Output System)是一套程式,這套程式是寫死到主機板上面的一個記憶體晶片中, 這個記憶體晶片在沒有通電時也能夠將資料記錄下來,那就是唯讀記憶體(Read Only Memory, ROM)。
  • BIOS對於個人電腦來說是非常重要的, 因為他是系統在開機的時候首先會去讀取的一個小程式喔
  • 韌體(firmware)很多也是使用ROM來進行軟體的寫入的。 韌體像軟體一樣也是一個被電腦所執行的程式,然而他是對於硬體內部而言更加重要的部分。例如BIOS就是一個韌體, BIOS雖然對於我們日常操作電腦系統沒有什麼太大的關係,但是他卻控制著開機時各項硬體參數的取得!
  • 現在的 BIOS 通常是寫入類似快閃記憶體 (flash) 或 EEPROM
  • 顯示卡能夠傳輸的資料量當然也是越大越好!這時就得要考慮到傳輸的界面了!當前 (2018) 主流的傳輸界面為 PCI-E,這個 PCI-E 又有三種版本, version 1, 2, 3 ,這三個版本的速度並不相同
  • PCI-E (PCI-Express) 使用的是類似管線的概念來處理,在 PCI-E 第一版中,每條管線可以具有 250MBytes/s 的頻寬效能,管線越多(通常設計到 x16 管線)則總頻寬越高
  • 通常 CPU 製造商會根據 CPU 來設計搭配的南橋晶片,由於現在只有一個晶片 (北橋整合到 CPU 內了),所以目前只有一顆主機板晶片組。
  • 插槽上面的資料要傳輸到 CPU 就得要經過晶片組,然後透過 DMI 通道傳上去!所以,在某些情況下,系統的效能會被卡住在這條通道上喔!
  • 晶片組接的設備相當多喔!有 PCI-E 插槽、USB設備、網路設備、音效設備、硬碟設備等,這全部的裝置共用那一條 DMI 喔! 所以,整個系統效能的瓶頸通常不在 CPU 啦!通常就是在南橋接的設備上面!所以,當你有非常複雜的程式要運作的時候,讓這些程式越少通過南橋, 他的系統效能就會比較好一點
  • 物理組成
  • 讀寫主要是透過在機械手臂上的讀取頭(head)來達成
  • 由於磁碟盤是圓的,並且透過機器手臂去讀寫資料,磁碟盤要轉動才能夠讓機器手臂讀寫。
  • 磁碟的最小物理儲存單位,稱之為磁區 (sector),那同一個同心圓的磁區組合成的圓就是所謂的磁軌(track)。 由於磁碟裡面可能會有多個磁碟盤,因此在所有磁碟盤上面的同一個磁軌可以組合成所謂的磁柱 (cylinder)。
  • 通常資料的讀寫會由外圈開始往內寫
  • 目前主流的硬碟連接界面就是 SATA
  • 雖然 SATA III 界面理論傳輸可到達 600Mbytes/s,不過傳統硬碟由於物理設計的限制因素,通常存取速度效能大多在 150~200Mbytes/s 之間
  • 串列式 SCSI (Serial Attached SCSI, SAS)
  • 傳統硬碟有個很致命的問題,就是需要驅動馬達去轉動磁碟盤~這會造成很嚴重的磁碟讀取延遲
  • 快閃記憶體去製作成高容量的設備
  • 沒有讀寫頭與磁碟盤啊!都是記憶體!
  • 各個繪圖卡的運算晶片 (GPU) 設計的理念不同,加上驅動程式與軟體搭配的問題,並不是一張高效能繪圖卡就可以完勝其他的繪圖卡, 還得要注意相關的軟體才行。
1 - 20 of 25 Next ›
Showing 20 items per page