Skip to main content

Home/ Larvata/ Group items tagged examples

Rss Feed Group items tagged

張 旭

File: README - Documentation by YARD 0.8.7.6 - 0 views

  • we can express concepts like a conversation
    • 張 旭
       
      描述 order 這個東西。 order 就是將登記在它上面的物品價格加總起來。
  • The describe method creates an ExampleGroup.
  • ...15 more annotations...
  • declare examples using the it method
  • an example group is a class in which the block passed to describe is evaluated
  • The blocks passed to it are evaluated in the context of an instance of that class
  • nested groups using the describe or context methods
  • can declare example groups using either describe or context
  • can declare examples within a group using any of it, specify, or example
  • Declare a shared example group using shared_examples, and then include it in any group using include_examples.
  • Nearly anything that can be declared within an example group can be declared within a shared example group.
  • shared_context and include_context.
  • When a class is passed to describe, you can access it from an example using the described_class method
  • rspec-core stores a metadata hash with every example and group
  • Example groups are defined by a describe or context block, which is eagerly evaluated when the spec file is loaded
  • Examples -- typically defined by an it block -- and any other blocks with per-example semantics -- such as a before(:example) hook -- are evaluated in the context of an instance of the example group class to which the example belongs.
  • Examples are not executed when the spec file is loaded
  • run any examples until all spec files have been loaded
張 旭

FreeIPAv2:Dynamic updates with GSS-TSIG - FreeIPA - 0 views

  • This short tutorial will teach you how to setup your name server so that you can dynamically update the resource records with the help of FreeIPA.
  • tkey-gssapi-keytab
  • BIND version
    • 張 旭
       
      named -v
  • ...9 more annotations...
  • add the DNS service principal and acquire the keytab
  • kinit admin
  • All machines belonging to Kerberos realm EXAMPLE.COM are allowed to update own A record.
  • grant EXAMPLE.COM krb5-self * A;
  • Allow Kerberos principal SERVICE/ipaserver.example.com@EXAMPLE.COM to do any updates in whole zone.
  • Machine is allowed to update own PTR record in reverse zone.
  • kinit admin
  • with kinit. (This step is not required if the client was enrolled by ipa-client-install script or host keytab is already in place for other reasons.)
  • the "server dns.example.com" command tells nsupdate to update the specified DNS server
張 旭

Howto/DNS updates and zone transfers with TSIG - FreeIPA - 0 views

  • dnssec-keygen -a HMAC-SHA512 -b 512 -n HOST keyname
  • vim /etc/named.conf
  • keyvalue
  • ...2 more annotations...
  • ipa dnszone-mod example.com. --update-policy="grant keyname name example.com A;"
    • 張 旭
       
      先執行 kinit admin
  • ipa dnszone-mod example.com. --dynamic-update=1
    • 張 旭
       
      ipa dnszone-show --all example.com.
張 旭

Using Workflows to Schedule Jobs - CircleCI - 1 views

  • A workflow is a set of rules for defining a collection of jobs and their run order.
  • Schedule workflows for jobs that should only run periodically.
  • run multiple jobs in parallel
  • ...37 more annotations...
  • rerun just the failed job
  • Builds without workflows require a build job.
  • Refer the YAML Anchors/Aliases documentation for information about how to alias and reuse syntax to keep your .circleci/config.yml file small.
  • workflow orchestration with two parallel jobs
  • jobs run according to configured requirements, each job waiting to start until the required job finishes successfully
  • requires: key
  • fans-out to run a set of acceptance test jobs in parallel, and finally fans-in to run a common deploy job.
  • Holding a Workflow for a Manual Approval
  • Workflows can be configured to wait for manual approval of a job before continuing to the next job
  • add a job to the jobs list with the key type: approval
  • approval is a special job type that is only available to jobs under the workflow key
  • The name of the job to hold is arbitrary - it could be wait or pause, for example, as long as the job has a type: approval key in it.
  • schedule a workflow to run at a certain time for specific branches.
  • The triggers key is only added under your workflows key
  • using cron syntax to represent Coordinated Universal Time (UTC) for specified branches.
  • By default, a workflow is triggered on every git push
  • the commit workflow has no triggers key and will run on every git push
  • The nightly workflow has a triggers key and will run on the specified schedule
  • Cron step syntax (for example, */1, */20) is not supported.
  • use a context to share environment variables
  • use the same shared environment variables when initiated by a user who is part of the organization.
  • CircleCI does not run workflows for tags unless you explicitly specify tag filters.
  • CircleCI branch and tag filters support the Java variant of regex pattern matching.
  • Each workflow has an associated workspace which can be used to transfer files to downstream jobs as the workflow progresses.
  • The workspace is an additive-only store of data.
  • Jobs can persist data to the workspace
  • Downstream jobs can attach the workspace to their container filesystem.
  • Attaching the workspace downloads and unpacks each layer based on the ordering of the upstream jobs in the workflow graph.
  • Workflows that include jobs running on multiple branches may require data to be shared using workspaces
  • To persist data from a job and make it available to other jobs, configure the job to use the persist_to_workspace key.
  • Files and directories named in the paths: property of persist_to_workspace will be uploaded to the workflow’s temporary workspace relative to the directory specified with the root key.
  • Configure a job to get saved data by configuring the attach_workspace key.
  • persist_to_workspace
  • attach_workspace
  • To rerun only a workflow’s failed jobs, click the Workflows icon in the app and select a workflow to see the status of each job, then click the Rerun button and select Rerun from failed.
  • if you do not see your workflows triggering, a configuration error is preventing the workflow from starting.
  • check your Workflows page of the CircleCI app (not the Job page)
  •  
    "A workflow is a set of rules for defining a collection of jobs and their run order."
張 旭

Boosting your kubectl productivity ♦︎ Learnk8s - 0 views

  • kubectl is your cockpit to control Kubernetes.
  • kubectl is a client for the Kubernetes API
  • Kubernetes API is an HTTP REST API.
  • ...75 more annotations...
  • This API is the real Kubernetes user interface.
  • Kubernetes is fully controlled through this API
  • every Kubernetes operation is exposed as an API endpoint and can be executed by an HTTP request to this endpoint.
  • the main job of kubectl is to carry out HTTP requests to the Kubernetes API
  • Kubernetes maintains an internal state of resources, and all Kubernetes operations are CRUD operations on these resources.
  • Kubernetes is a fully resource-centred system
  • Kubernetes API reference is organised as a list of resource types with their associated operations.
  • This is how kubectl works for all commands that interact with the Kubernetes cluster.
  • kubectl simply makes HTTP requests to the appropriate Kubernetes API endpoints.
  • it's totally possible to control Kubernetes with a tool like curl by manually issuing HTTP requests to the Kubernetes API.
  • Kubernetes consists of a set of independent components that run as separate processes on the nodes of a cluster.
  • components on the master nodes
  • Storage backend: stores resource definitions (usually etcd is used)
  • API server: provides Kubernetes API and manages storage backend
  • Controller manager: ensures resource statuses match specifications
  • Scheduler: schedules Pods to worker nodes
  • component on the worker nodes
  • Kubelet: manages execution of containers on a worker node
  • triggers the ReplicaSet controller, which is a sub-process of the controller manager.
  • the scheduler, who watches for Pod definitions that are not yet scheduled to a worker node.
  • creating and updating resources in the storage backend on the master node.
  • The kubelet of the worker node your ReplicaSet Pods have been scheduled to instructs the configured container runtime (which may be Docker) to download the required container images and run the containers.
  • Kubernetes components (except the API server and the storage backend) work by watching for resource changes in the storage backend and manipulating resources in the storage backend.
  • However, these components do not access the storage backend directly, but only through the Kubernetes API.
    • 張 旭
       
      很精彩,相互之間都是使用 API call 溝通,良好的微服務行為。
  • double usage of the Kubernetes API for internal components as well as for external users is a fundamental design concept of Kubernetes.
  • All other Kubernetes components and users read, watch, and manipulate the state (i.e. resources) of Kubernetes through the Kubernetes API
  • The storage backend stores the state (i.e. resources) of Kubernetes.
  • command completion is a shell feature that works by the means of a completion script.
  • A completion script is a shell script that defines the completion behaviour for a specific command. Sourcing a completion script enables completion for the corresponding command.
  • kubectl completion zsh
  • /etc/bash_completion.d directory (create it, if it doesn't exist)
  • source <(kubectl completion bash)
  • source <(kubectl completion zsh)
  • autoload -Uz compinit compinit
  • the API reference, which contains the full specifications of all resources.
  • kubectl api-resources
  • displays the resource names in their plural form (e.g. deployments instead of deployment). It also displays the shortname (e.g. deploy) for those resources that have one. Don't worry about these differences. All of these name variants are equivalent for kubectl.
  • .spec
  • custom columns output format comes in. It lets you freely define the columns and the data to display in them. You can choose any field of a resource to be displayed as a separate column in the output
  • kubectl get pods -o custom-columns='NAME:metadata.name,NODE:spec.nodeName'
  • kubectl explain pod.spec.
  • kubectl explain pod.metadata.
  • browse the resource specifications and try it out with any fields you like!
  • JSONPath is a language to extract data from JSON documents (it is similar to XPath for XML).
  • with kubectl explain, only a subset of the JSONPath capabilities is supported
  • Many fields of Kubernetes resources are lists, and this operator allows you to select items of these lists. It is often used with a wildcard as [*] to select all items of the list.
  • kubectl get pods -o custom-columns='NAME:metadata.name,IMAGES:spec.containers[*].image'
  • a Pod may contain more than one container.
  • The availability zones for each node are obtained through the special failure-domain.beta.kubernetes.io/zone label.
  • kubectl get nodes -o yaml kubectl get nodes -o json
  • The default kubeconfig file is ~/.kube/config
  • with multiple clusters, then you have connection parameters for multiple clusters configured in your kubeconfig file.
  • Within a cluster, you can set up multiple namespaces (a namespace is kind of "virtual" clusters within a physical cluster)
  • overwrite the default kubeconfig file with the --kubeconfig option for every kubectl command.
  • Namespace: the namespace to use when connecting to the cluster
  • a one-to-one mapping between clusters and contexts.
  • When kubectl reads a kubeconfig file, it always uses the information from the current context.
  • just change the current context in the kubeconfig file
  • to switch to another namespace in the same cluster, you can change the value of the namespace element of the current context
  • kubectl also provides the --cluster, --user, --namespace, and --context options that allow you to overwrite individual elements and the current context itself, regardless of what is set in the kubeconfig file.
  • for switching between clusters and namespaces is kubectx.
  • kubectl config get-contexts
  • just have to download the shell scripts named kubectl-ctx and kubectl-ns to any directory in your PATH and make them executable (for example, with chmod +x)
  • kubectl proxy
  • kubectl get roles
  • kubectl get pod
  • Kubectl plugins are distributed as simple executable files with a name of the form kubectl-x. The prefix kubectl- is mandatory,
  • To install a plugin, you just have to copy the kubectl-x file to any directory in your PATH and make it executable (for example, with chmod +x)
  • krew itself is a kubectl plugin
  • check out the kubectl-plugins GitHub topic
  • The executable can be of any type, a Bash script, a compiled Go program, a Python script, it really doesn't matter. The only requirement is that it can be directly executed by the operating system.
  • kubectl plugins can be written in any programming or scripting language.
  • you can write more sophisticated plugins with real programming languages, for example, using a Kubernetes client library. If you use Go, you can also use the cli-runtime library, which exists specifically for writing kubectl plugins.
  • a kubeconfig file consists of a set of contexts
  • changing the current context means changing the cluster, if you have only a single context per cluster.
crazylion lee

mxgmn/WaveFunctionCollapse: Bitmap & tilemap generation from a single example with the ... - 0 views

  •  
    "Bitmap & tilemap generation from a single example with the help of ideas from quantum mechanics."
張 旭

Understanding Nginx HTTP Proxying, Load Balancing, Buffering, and Caching | DigitalOcean - 0 views

  • allow Nginx to pass requests off to backend http servers for further processing
  • Nginx is often set up as a reverse proxy solution to help scale out infrastructure or to pass requests to other servers that are not designed to handle large client loads
  • explore buffering and caching to improve the performance of proxying operations for clients
  • ...48 more annotations...
  • Nginx is built to handle many concurrent connections at the same time.
  • provides you with flexibility in easily adding backend servers or taking them down as needed for maintenance
  • Proxying in Nginx is accomplished by manipulating a request aimed at the Nginx server and passing it to other servers for the actual processing
  • The servers that Nginx proxies requests to are known as upstream servers.
  • Nginx can proxy requests to servers that communicate using the http(s), FastCGI, SCGI, and uwsgi, or memcached protocols through separate sets of directives for each type of proxy
  • When a request matches a location with a proxy_pass directive inside, the request is forwarded to the URL given by the directive
  • For example, when a request for /match/here/please is handled by this block, the request URI will be sent to the example.com server as http://example.com/match/here/please
  • The request coming from Nginx on behalf of a client will look different than a request coming directly from a client
  • Nginx gets rid of any empty headers
  • Nginx, by default, will consider any header that contains underscores as invalid. It will remove these from the proxied request
    • 張 旭
       
      這裡要注意一下,header 欄位名稱有設定底線的,要設定 Nginx 讓它可以通過。
  • The "Host" header is re-written to the value defined by the $proxy_host variable.
  • The upstream should not expect this connection to be persistent
  • Headers with empty values are completely removed from the passed request.
  • if your backend application will be processing non-standard headers, you must make sure that they do not have underscores
  • by default, this will be set to the value of $proxy_host, a variable that will contain the domain name or IP address and port taken directly from the proxy_pass definition
  • This is selected by default as it is the only address Nginx can be sure the upstream server responds to
  • (as it is pulled directly from the connection info)
  • $http_host: Sets the "Host" header to the "Host" header from the client request.
  • The headers sent by the client are always available in Nginx as variables. The variables will start with an $http_ prefix, followed by the header name in lowercase, with any dashes replaced by underscores.
  • preference to: the host name from the request line itself
  • set the "Host" header to the $host variable. It is the most flexible and will usually provide the proxied servers with a "Host" header filled in as accurately as possible
  • sets the "Host" header to the $host variable, which should contain information about the original host being requested
  • This variable takes the value of the original X-Forwarded-For header retrieved from the client and adds the Nginx server's IP address to the end.
  • The upstream directive must be set in the http context of your Nginx configuration.
  • http context
  • Once defined, this name will be available for use within proxy passes as if it were a regular domain name
  • By default, this is just a simple round-robin selection process (each request will be routed to a different host in turn)
  • Specifies that new connections should always be given to the backend that has the least number of active connections.
  • distributes requests to different servers based on the client's IP address.
  • mainly used with memcached proxying
  • As for the hash method, you must provide the key to hash against
  • Server Weight
  • Nginx's buffering and caching capabilities
  • Without buffers, data is sent from the proxied server and immediately begins to be transmitted to the client.
  • With buffers, the Nginx proxy will temporarily store the backend's response and then feed this data to the client
  • Nginx defaults to a buffering design
  • can be set in the http, server, or location contexts.
  • the sizing directives are configured per request, so increasing them beyond your need can affect your performance
  • When buffering is "off" only the buffer defined by the proxy_buffer_size directive will be used
  • A high availability (HA) setup is an infrastructure without a single point of failure, and your load balancers are a part of this configuration.
  • multiple load balancers (one active and one or more passive) behind a static IP address that can be remapped from one server to another.
  • Nginx also provides a way to cache content from backend servers
  • The proxy_cache_path directive must be set in the http context.
  • proxy_cache backcache;
    • 張 旭
       
      這裡的 backcache 是前文設定的 backcache 變數,看起來每個 location 都可以有自己的 cache 目錄。
  • The proxy_cache_bypass directive is set to the $http_cache_control variable. This will contain an indicator as to whether the client is explicitly requesting a fresh, non-cached version of the resource
  • any user-related data should not be cached
  • For private content, you should set the Cache-Control header to "no-cache", "no-store", or "private" depending on the nature of the data
crazylion lee

Security/Server Side TLS - MozillaWiki - 0 views

  •  
    The goal of this document is to help operational teams with the configuration of TLS on servers. All Mozilla sites and deployment should follow the recommendations below. The Operations Security (OpSec) team maintains this document as a reference guide to navigate the TLS landscape. It contains information on TLS protocols, known issues and vulnerabilities, configuration examples and testing tools. Changes are reviewed and merged by the OpSec team, and broadcasted to the various Operational teams.
張 旭

Secrets Management with Terraform - 0 views

  • Terraform is an Infrastructure as Code (IaC) tool that allows you to write declarative code to manage your infrastructure.
  • Keeping Secrets Out of .tf Files
  • .tf files contain the declarative code used to create, manage, and destroy infrastructure.
  • ...17 more annotations...
  • .tf files can accept values from input variables.
  • variable definitions can have default values assigned to them.
  • values are stored in separate files with the .tfvars extension.
  • looks through the working directory for a file named terraform.tfvars, or for files with the .auto.tfvars extension.
  • add the terraform.tfvars file to your .gitignore file and keep it out of version control.
  • include an example terraform.tfvars.example in your Git repository with all of the variable names recorded (but none of the values entered).
  • terraform apply -var-file=myvars.tfvars
  • Terraform allows you to keep input variable values in environment variables.
  • the prefix TF_VAR_
  • If Terraform does not find a default value for a defined variable; or a value from a .tfvars file, environment variable, or CLI flag; it will prompt you for a value before running an action
  • state file contains a JSON object that holds your managed infrastructure’s current state
  • state is a snapshot of the various attributes of your infrastructure at the time it was last modified
  • sensitive information used to generate your Terraform state can be stored as plain text in the terraform.tfstate file.
  • Avoid checking your terraform.tfstate file into your version control repository.
  • Some backends, like Consul, also allow for state locking. If one user is applying a state, another user will be unable to make any changes.
  • Terraform backends allow the user to securely store their state in a remote location, such as a key/value store like Consul, or an S3 compatible bucket storage like Minio.
  • at minimum the repository should be private.
張 旭

Persisting Data in Workflows: When to Use Caching, Artifacts, and Workspaces - CircleCI - 0 views

  • Repeatability is also important
  • When a CI process isn’t repeatable you’ll find yourself wasting time re-running jobs to get them to go green.
  • Workspaces persist data between jobs in a single Workflow.
  • ...9 more annotations...
  • Caching persists data between the same job in different Workflow builds.
  • Artifacts persist data after a Workflow has finished
  • When a Workspace is declared in a job, one or more files or directories can be added. Each addition creates a new layer in the Workspace filesystem. Downstreams jobs can then use this Workspace for its own needs or add more layers on top.
  • Unlike caching, Workspaces are not shared between runs as they no longer exists once a Workflow is complete.
  • Caching lets you reuse the data from expensive fetch operations from previous jobs.
  • A prime example is package dependency managers such as Yarn, Bundler, or Pip.
  • Caches are global within a project, a cache saved on one branch will be used by others so they should only be used for data that is OK to share across Branches
  • Artifacts are used for longer-term storage of the outputs of your build process.
  • If your project needs to be packaged in some form or fashion, say an Android app where the .apk file is uploaded to Google Play, that’s a great example of an artifact.
  •  
    "CircleCI 2.0 provides a number of different ways to move data into and out of jobs, persist data, and with the introduction of Workspaces, move data between jobs"
張 旭

Kubernetes Volumes Guide - Examples for NFS and Persistent Volume - 0 views

  • Persistent volumes exist beyond containers, pods, and nodes.
  • Volumes also let you share data between containers in the same pod.
  • data in that volume will be destroyed when the pod is restarted.
  • ...9 more annotations...
  • Persistent volumes are long-term storage in your Kubernetes cluster.
  • A pod uses a persistent volume claim to to get read and write access to the persistent volume.
  • NFS stands for Network File System – it's a shared filesystem that can be accessed over the network.
  • The NFS must already exist – Kubernetes doesn't run the NFS, pods in just access it.
  • what's already stored in the NFS is not deleted when a pod is destroyed. Data is persistent.
  • an NFS can be accessed from multiple pods at the same time. An NFS can be used to share data between pods!
  • volumes: - name: nfs-volume nfs: # URL for the NFS server server: 10.108.211.244 # Change this! path: /
  • volumeMounts: - name: nfs-volume mountPath: /var/nfs
  • Just add the volume to each pod, and add a volume mount to use the NFS volume from each container.
  •  
    "Persistent volumes exist beyond containers, pods, and nodes. "
張 旭

Ruby on Rails 實戰聖經 | 自動化測試 - 0 views

  • 最小的測試粒度叫做Unit Test單元測試,會對個別的類別和方法測試結果如預期。再大一點的粒度稱作Integration Test整合測試,測試多個元件之間的互動正確。最大的粒度則是Acceptance Test驗收測試,從用戶觀點來測試整個軟體。
  • 單元測試,通常會由開發者自行負責測試,因為只有你自己清楚每個類別和方法的內部結構是怎麼設計的。
  • 哪來的時間做自動化測試呢?這個想法是相當短視和業餘的想法
  • ...18 more annotations...
  • 這其實是一種投資,如果是簡單的程式,也許你手動執行一次就寫對了,但是如果是複雜的程式,往往第一次不會寫對,你會浪費很多時間在檢查到底你寫的程式的正確性,而寫測試就可以大大的節省這些時間。更不用說你明天,下個禮拜或下個月需要再確認其他程式有沒有副作用影響的時候,你有一組測試程式可以大大節省手動檢查的時間。
  • 幾乎每種語言都有一套叫做xUnit測試框架的測試工具
  • 標準流程是 1. (Setup) 設定測試資料 2. (Exercise) 執行要測試的方法 3. (Verify) 檢查結果是否正確 4. (Teardown) 清理還原資料
  • RSpec是一套改良版的xUnit測試框架,非常風行於Rails社群
  • 個別的單元測試應該是獨立不會互相影響的
  • 一個it區塊,就是一個單元測試,裡面的expect方法會進行驗證。
  • RSpec裡,我們又把一個小單元測試叫做example
  • BDD(Behavior-driven development)測試框架,相較於TDD用test思維,測試程式的結果。BDD強調的是用spec思維,描述程式應該有什麼行為。
  • describe和context幫助你組織分類,都是可以任意套疊的。
  • 每個it就是一小段測試,在裡面我們會用expect(…).to來設定期望
  • let可以用來簡化上述的before用法,並且支援lazy evaluation和memoized,也就是有需要才初始,並且不同單元測試之間,只會初始化一次,可以增加測試執行效率
  • let!則會在測試一開始就先初始一次,而不是lazy evaluation。
  • 先列出來預計要寫的測試,或是暫時不要跑的測試
  • specify和example都是it方法的同義字。
  • 進階一點你可以自己寫Matcher
  • RSpec分成數種不同測試,分別是Model測試、Controller測試、View測試、Helper測試、Route和Request測試
  • Rails內建有Fixture功能可以建立假資料,方法是為每個Model使用一份YAML資料。
  • 記得確認每個測試案例之間的測試資料需要清除
張 旭

Deploying Rails Apps, Part 6: Writing Capistrano Tasks - Vladi Gleba - 0 views

  • we can write our own tasks to help us automate various things.
  • organizing all of the tasks here under a namespace
  • upload a file from our local computer.
  • ...27 more annotations...
  • learn about is SSHKit and the various methods it provides
  • SSHKit was actually developed and released with Capistrano 3, and it’s basically a lower-level tool that provides methods for connecting and interacting with remote servers
  • on(): specifies the server to run on
  • within(): specifies the directory path to run in
  • with(): specifies the environment variables to run with
  • run on the application server
  • within the path specified
  • with certain environment variables set
  • execute(): the workhorse that runs the commands on your server
  • upload(): uploads a file from your local computer to your remote server
  • capture(): executes a command and returns its output as a string
    • 張 旭
       
      capture 是跑在遠端伺服器上
  • upload() has the bang symbol (!) because that’s how it’s defined in SSHKit, and it’s just a convention letting us know that the method will block until it finishes.
  • But in order to ensure rake runs with the proper environment variables set, we have to use rake as a symbol and pass db:seed as a string
  • This format will also be necessary whenever you’re running any other Rails-specific commands that rely on certain environment variables being set
  • I recommend you take a look at SSHKit’s example page to learn more
  • make sure we pushed all our local changes to the remote master branch
  • run this task before Capistrano runs its own deploy task
  • actually creates three separate tasks
  • I created a namespace called deploy to contain these tasks since that’s what they’re related to.
  • we’re using the callbacks inside a namespace to make sure Capistrano knows which tasks the callbacks are referencing.
  • custom recipe (a Capistrano term meaning a series of tasks)
  • /shared: holds files and directories that persist throughout deploys
  • When you run cap production deploy, you’re actually calling a Capistrano task called deploy, which then sequentially invokes other tasks
  • your favorite browser (I hope it’s not Internet Explorer)
  • Deployment is hard and takes a while to sink in.
  • the most important thing is to not get discouraged
  • I didn’t want other people going through the same thing
張 旭

Logstash Alternatives: Pros & Cons of 5 Log Shippers [2019] - Sematext - 0 views

  • In this case, Elasticsearch. And because Elasticsearch can be down or struggling, or the network can be down, the shipper would ideally be able to buffer and retry
  • Logstash is typically used for collecting, parsing, and storing logs for future use as part of log management.
  • Logstash’s biggest con or “Achille’s heel” has always been performance and resource consumption (the default heap size is 1GB).
  • ...37 more annotations...
  • This can be a problem for high traffic deployments, when Logstash servers would need to be comparable with the Elasticsearch ones.
  • Filebeat was made to be that lightweight log shipper that pushes to Logstash or Elasticsearch.
  • differences between Logstash and Filebeat are that Logstash has more functionality, while Filebeat takes less resources.
  • Filebeat is just a tiny binary with no dependencies.
  • For example, how aggressive it should be in searching for new files to tail and when to close file handles when a file didn’t get changes for a while.
  • For example, the apache module will point Filebeat to default access.log and error.log paths
  • Filebeat’s scope is very limited,
  • Initially it could only send logs to Logstash and Elasticsearch, but now it can send to Kafka and Redis, and in 5.x it also gains filtering capabilities.
  • Filebeat can parse JSON
  • you can push directly from Filebeat to Elasticsearch, and have Elasticsearch do both parsing and storing.
  • You shouldn’t need a buffer when tailing files because, just as Logstash, Filebeat remembers where it left off
  • For larger deployments, you’d typically use Kafka as a queue instead, because Filebeat can talk to Kafka as well
  • The default syslog daemon on most Linux distros, rsyslog can do so much more than just picking logs from the syslog socket and writing to /var/log/messages.
  • It can tail files, parse them, buffer (on disk and in memory) and ship to a number of destinations, including Elasticsearch.
  • rsyslog is the fastest shipper
  • Its grammar-based parsing module (mmnormalize) works at constant speed no matter the number of rules (we tested this claim).
  • use it as a simple router/shipper, any decent machine will be limited by network bandwidth
  • It’s also one of the lightest parsers you can find, depending on the configured memory buffers.
  • rsyslog requires more work to get the configuration right
  • the main difference between Logstash and rsyslog is that Logstash is easier to use while rsyslog lighter.
  • rsyslog fits well in scenarios where you either need something very light yet capable (an appliance, a small VM, collecting syslog from within a Docker container).
  • rsyslog also works well when you need that ultimate performance.
  • syslog-ng as an alternative to rsyslog (though historically it was actually the other way around).
  • a modular syslog daemon, that can do much more than just syslog
  • Unlike rsyslog, it features a clear, consistent configuration format and has nice documentation.
  • Similarly to rsyslog, you’d probably want to deploy syslog-ng on boxes where resources are tight, yet you do want to perform potentially complex processing.
  • syslog-ng has an easier, more polished feel than rsyslog, but likely not that ultimate performance
  • Fluentd was built on the idea of logging in JSON wherever possible (which is a practice we totally agree with) so that log shippers down the line don’t have to guess which substring is which field of which type.
  • Fluentd plugins are in Ruby and very easy to write.
  • structured data through Fluentd, it’s not made to have the flexibility of other shippers on this list (Filebeat excluded).
  • Fluent Bit, which is to Fluentd similar to how Filebeat is for Logstash.
  • Fluentd is a good fit when you have diverse or exotic sources and destinations for your logs, because of the number of plugins.
  • Splunk isn’t a log shipper, it’s a commercial logging solution
  • Graylog is another complete logging solution, an open-source alternative to Splunk.
  • everything goes through graylog-server, from authentication to queries.
  • Graylog is nice because you have a complete logging solution, but it’s going to be harder to customize than an ELK stack.
  • it depends
張 旭

Ingress - Kubernetes - 0 views

  • An API object that manages external access to the services in a cluster, typically HTTP.
  • load balancing
  • SSL termination
  • ...62 more annotations...
  • name-based virtual hosting
  • Edge routerA router that enforces the firewall policy for your cluster.
  • Cluster networkA set of links, logical or physical, that facilitate communication within a cluster according to the Kubernetes networking model.
  • A Kubernetes ServiceA way to expose an application running on a set of Pods as a network service. that identifies a set of Pods using labelTags objects with identifying attributes that are meaningful and relevant to users. selectors.
  • Services are assumed to have virtual IPs only routable within the cluster network.
  • Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the cluster.
  • Traffic routing is controlled by rules defined on the Ingress resource.
  • An Ingress can be configured to give Services externally-reachable URLs, load balance traffic, terminate SSL / TLS, and offer name based virtual hosting.
  • Exposing services other than HTTP and HTTPS to the internet typically uses a service of type Service.Type=NodePort or Service.Type=LoadBalancer.
  • You must have an ingress controller to satisfy an Ingress. Only creating an Ingress resource has no effect.
  • As with all other Kubernetes resources, an Ingress needs apiVersion, kind, and metadata fields
  • Ingress frequently uses annotations to configure some options depending on the Ingress controller,
  • Ingress resource only supports rules for directing HTTP traffic.
  • An optional host.
  • A list of paths
  • A backend is a combination of Service and port names
  • has an associated backend
  • Both the host and path must match the content of an incoming request before the load balancer directs traffic to the referenced Service.
  • HTTP (and HTTPS) requests to the Ingress that matches the host and path of the rule are sent to the listed backend.
  • A default backend is often configured in an Ingress controller to service any requests that do not match a path in the spec.
  • An Ingress with no rules sends all traffic to a single default backend.
  • Ingress controllers and load balancers may take a minute or two to allocate an IP address.
  • A fanout configuration routes traffic from a single IP address to more than one Service, based on the HTTP URI being requested.
  • nginx.ingress.kubernetes.io/rewrite-target: /
  • describe ingress
  • get ingress
  • Name-based virtual hosts support routing HTTP traffic to multiple host names at the same IP address.
  • route requests based on the Host header.
  • an Ingress resource without any hosts defined in the rules, then any web traffic to the IP address of your Ingress controller can be matched without a name based virtual host being required.
  • secure an Ingress by specifying a SecretStores sensitive information, such as passwords, OAuth tokens, and ssh keys. that contains a TLS private key and certificate.
  • Currently the Ingress only supports a single TLS port, 443, and assumes TLS termination.
  • An Ingress controller is bootstrapped with some load balancing policy settings that it applies to all Ingress, such as the load balancing algorithm, backend weight scheme, and others.
  • persistent sessions, dynamic weights) are not yet exposed through the Ingress. You can instead get these features through the load balancer used for a Service.
  • review the controller specific documentation to see how they handle health checks
  • edit ingress
  • After you save your changes, kubectl updates the resource in the API server, which tells the Ingress controller to reconfigure the load balancer.
  • kubectl replace -f on a modified Ingress YAML file.
  • Node: A worker machine in Kubernetes, part of a cluster.
  • in most common Kubernetes deployments, nodes in the cluster are not part of the public internet.
  • Edge router: A router that enforces the firewall policy for your cluster.
  • a gateway managed by a cloud provider or a physical piece of hardware.
  • Cluster network: A set of links, logical or physical, that facilitate communication within a cluster according to the Kubernetes networking model.
  • Service: A Kubernetes Service that identifies a set of Pods using label selectors.
  • An Ingress may be configured to give Services externally-reachable URLs, load balance traffic, terminate SSL / TLS, and offer name-based virtual hosting.
  • An Ingress does not expose arbitrary ports or protocols.
  • You must have an Ingress controller to satisfy an Ingress. Only creating an Ingress resource has no effect.
  • The name of an Ingress object must be a valid DNS subdomain name
  • The Ingress spec has all the information needed to configure a load balancer or proxy server.
  • Ingress resource only supports rules for directing HTTP(S) traffic.
  • An Ingress with no rules sends all traffic to a single default backend and .spec.defaultBackend is the backend that should handle requests in that case.
  • If defaultBackend is not set, the handling of requests that do not match any of the rules will be up to the ingress controller
  • A common usage for a Resource backend is to ingress data to an object storage backend with static assets.
  • Exact: Matches the URL path exactly and with case sensitivity.
  • Prefix: Matches based on a URL path prefix split by /. Matching is case sensitive and done on a path element by element basis.
  • multiple paths within an Ingress will match a request. In those cases precedence will be given first to the longest matching path.
  • Hosts can be precise matches (for example “foo.bar.com”) or a wildcard (for example “*.foo.com”).
  • No match, wildcard only covers a single DNS label
  • Each Ingress should specify a class, a reference to an IngressClass resource that contains additional configuration including the name of the controller that should implement the class.
  • secure an Ingress by specifying a Secret that contains a TLS private key and certificate.
  • The Ingress resource only supports a single TLS port, 443, and assumes TLS termination at the ingress point (traffic to the Service and its Pods is in plaintext).
  • TLS will not work on the default rule because the certificates would have to be issued for all the possible sub-domains.
  • hosts in the tls section need to explicitly match the host in the rules section.
張 旭

NGINX Ingress Controller - Documentation - 0 views

  • NodePort, as the name says, means that a port on a node is configured to route incoming requests to a certain service.
  • LoadBalancer is a service, which is typically implemented by the cloud provider as an external service (with additional cost).
  • Load balancer provides a single IP address to access your services, which can run on multiple nodes.
  • ...5 more annotations...
  • ngress controller helps to consolidate routing rules of multiple applications into one entity.
  • Ingress controller is exposed to an external network with the help of NodePort or LoadBalancer.
  • cloud load balancers are not necessary. Load balancer can also be implemented with MetalLB, which can be deployed in the same Kubernetes cluster.
  • to expose the Ingress controller to an external network is to use NodePort.
  • Installing NGINX using NodePort is the most simple example for Ingress Controller as we can avoid the load balancer dependency. NodePort is used for exposing the NGINX Ingress to the external network.
張 旭

Java microservices architecture by example - 0 views

  • A microservices architecture is a particular case of a service-oriented architecture (SOA)
  • What sets microservices apart is the extent to which these modules are interconnected.
  • Every server comprises just one certain business process and never consists of several smaller servers.
  • ...12 more annotations...
  • Microservices also bring a set of additional benefits, such as easier scaling, the possibility to use multiple programming languages and technologies, and others.
  • Java is a frequent choice for building a microservices architecture as it is a mature language tested over decades and has a multitude of microservices-favorable frameworks, such as legendary Spring, Jersey, Play, and others.
  • A monolithic architecture keeps it all simple. An app has just one server and one database.
  • All the connections between units are inside-code calls.
  • split our application into microservices and got a set of units completely independent for deployment and maintenance.
  • Each of microservices responsible for a certain business function communicates either via sync HTTP/REST or async AMQP protocols.
  • ensure seamless communication between newly created distributed components.
  • The gateway became an entry point for all clients’ requests.
  • We also set the Zuul 2 framework for our gateway service so that the application could leverage the benefits of non-blocking HTTP calls.
  • we've implemented the Eureka server as our server discovery that keeps a list of utilized user profile and order servers to help them discover each other.
  • We also have a message broker (RabbitMQ) as an intermediary between the notification server and the rest of the servers to allow async messaging in-between.
  • microservices can definitely help when it comes to creating complex applications that deal with huge loads and need continuous improvement and scaling.
張 旭

Active Record Associations - Ruby on Rails Guides - 0 views

  • With Active Record associations, we can streamline these - and other - operations by declaratively telling Rails that there is a connection between the two models.
  • belongs_to has_one has_many has_many :through has_one :through has_and_belongs_to_many
  • an association is a connection between two Active Record models
  • ...195 more annotations...
  • Associations are implemented using macro-style calls, so that you can declaratively add features to your models
  • A belongs_to association sets up a one-to-one connection with another model, such that each instance of the declaring model "belongs to" one instance of the other model.
  • belongs_to associations must use the singular term.
  • belongs_to
  • A has_one association also sets up a one-to-one connection with another model, but with somewhat different semantics (and consequences).
  • This association indicates that each instance of a model contains or possesses one instance of another model
  • belongs_to
  • A has_many association indicates a one-to-many connection with another model.
  • This association indicates that each instance of the model has zero or more instances of another model.
  • belongs_to
  • A has_many :through association is often used to set up a many-to-many connection with another model
  • This association indicates that the declaring model can be matched with zero or more instances of another model by proceeding through a third model.
  • through:
  • through:
  • The collection of join models can be managed via the API
  • new join models are created for newly associated objects, and if some are gone their rows are deleted.
  • The has_many :through association is also useful for setting up "shortcuts" through nested has_many associations
  • A has_one :through association sets up a one-to-one connection with another model. This association indicates that the declaring model can be matched with one instance of another model by proceeding through a third model.
  • A has_and_belongs_to_many association creates a direct many-to-many connection with another model, with no intervening model.
  • id: false
  • The has_one relationship says that one of something is yours
  • using t.references :supplier instead.
  • declare a many-to-many relationship is to use has_many :through. This makes the association indirectly, through a join model
  • set up a has_many :through relationship if you need to work with the relationship model as an independent entity
  • set up a has_and_belongs_to_many relationship (though you'll need to remember to create the joining table in the database).
  • use has_many :through if you need validations, callbacks, or extra attributes on the join model
  • With polymorphic associations, a model can belong to more than one other model, on a single association.
  • belongs_to :imageable, polymorphic: true
  • a polymorphic belongs_to declaration as setting up an interface that any other model can use.
    • 張 旭
       
      _id 記錄的是不同類型的外連鍵 id;_type 記錄的是不同類型的表格名稱。
  • In designing a data model, you will sometimes find a model that should have a relation to itself
  • add a references column to the model itself
  • Controlling caching Avoiding name collisions Updating the schema Controlling association scope Bi-directional associations
  • All of the association methods are built around caching, which keeps the result of the most recent query available for further operations.
  • it is a bad idea to give an association a name that is already used for an instance method of ActiveRecord::Base. The association method would override the base method and break things.
  • You are responsible for maintaining your database schema to match your associations.
  • belongs_to associations you need to create foreign keys
  • has_and_belongs_to_many associations you need to create the appropriate join table
  • If you create an association some time after you build the underlying model, you need to remember to create an add_column migration to provide the necessary foreign key.
  • Active Record creates the name by using the lexical order of the class names
  • So a join between customer and order models will give the default join table name of "customers_orders" because "c" outranks "o" in lexical ordering.
  • For example, one would expect the tables "paper_boxes" and "papers" to generate a join table name of "papers_paper_boxes" because of the length of the name "paper_boxes", but it in fact generates a join table name of "paper_boxes_papers" (because the underscore '' is lexicographically _less than 's' in common encodings).
  • id: false
  • pass id: false to create_table because that table does not represent a model
  • By default, associations look for objects only within the current module's scope.
  • will work fine, because both the Supplier and the Account class are defined within the same scope.
  • To associate a model with a model in a different namespace, you must specify the complete class name in your association declaration:
  • class_name
  • class_name
  • Active Record provides the :inverse_of option
    • 張 旭
       
      意思是說第一次比較兩者的 first_name 是相同的;但透過 c 實體修改 first_name 之後,再次比較就不相同了,因為兩個是記憶體裡面兩個不同的物件。
  • preventing inconsistencies and making your application more efficient
  • Every association will attempt to automatically find the inverse association and set the :inverse_of option heuristically (based on the association name)
  • In database terms, this association says that this class contains the foreign key.
  • In all of these methods, association is replaced with the symbol passed as the first argument to belongs_to.
  • (force_reload = false)
  • The association method returns the associated object, if any. If no associated object is found, it returns nil.
  • the cached version will be returned.
  • The association= method assigns an associated object to this object.
  • Behind the scenes, this means extracting the primary key from the associate object and setting this object's foreign key to the same value.
  • The build_association method returns a new object of the associated type
  • but the associated object will not yet be saved.
  • The create_association method returns a new object of the associated type
  • once it passes all of the validations specified on the associated model, the associated object will be saved
  • raises ActiveRecord::RecordInvalid if the record is invalid.
  • dependent
  • counter_cache
  • :autosave :class_name :counter_cache :dependent :foreign_key :inverse_of :polymorphic :touch :validate
  • finding the number of belonging objects more efficient.
  • Although the :counter_cache option is specified on the model that includes the belongs_to declaration, the actual column must be added to the associated model.
  • add a column named orders_count to the Customer model.
  • :destroy, when the object is destroyed, destroy will be called on its associated objects.
  • deleted directly from the database without calling their destroy method.
  • Rails will not create foreign key columns for you
  • The :inverse_of option specifies the name of the has_many or has_one association that is the inverse of this association
  • set the :touch option to :true, then the updated_at or updated_on timestamp on the associated object will be set to the current time whenever this object is saved or destroyed
  • specify a particular timestamp attribute to update
  • If you set the :validate option to true, then associated objects will be validated whenever you save this object
  • By default, this is false: associated objects will not be validated when this object is saved.
  • where includes readonly select
  • make your code somewhat more efficient
  • no need to use includes for immediate associations
  • will be read-only when retrieved via the association
  • The select method lets you override the SQL SELECT clause that is used to retrieve data about the associated object
  • using the association.nil?
  • Assigning an object to a belongs_to association does not automatically save the object. It does not save the associated object either.
  • In database terms, this association says that the other class contains the foreign key.
  • the cached version will be returned.
  • :as :autosave :class_name :dependent :foreign_key :inverse_of :primary_key :source :source_type :through :validate
  • Setting the :as option indicates that this is a polymorphic association
  • :nullify causes the foreign key to be set to NULL. Callbacks are not executed.
  • It's necessary not to set or leave :nullify option for those associations that have NOT NULL database constraints.
  • The :source_type option specifies the source association type for a has_one :through association that proceeds through a polymorphic association.
  • The :source option specifies the source association name for a has_one :through association.
  • The :through option specifies a join model through which to perform the query
  • more efficient by including representatives in the association from suppliers to accounts
  • When you assign an object to a has_one association, that object is automatically saved (in order to update its foreign key).
  • If either of these saves fails due to validation errors, then the assignment statement returns false and the assignment itself is cancelled.
  • If the parent object (the one declaring the has_one association) is unsaved (that is, new_record? returns true) then the child objects are not saved.
  • If you want to assign an object to a has_one association without saving the object, use the association.build method
  • collection(force_reload = false) collection<<(object, ...) collection.delete(object, ...) collection.destroy(object, ...) collection=(objects) collection_singular_ids collection_singular_ids=(ids) collection.clear collection.empty? collection.size collection.find(...) collection.where(...) collection.exists?(...) collection.build(attributes = {}, ...) collection.create(attributes = {}) collection.create!(attributes = {})
  • In all of these methods, collection is replaced with the symbol passed as the first argument to has_many, and collection_singular is replaced with the singularized version of that symbol.
  • The collection<< method adds one or more objects to the collection by setting their foreign keys to the primary key of the calling model
  • The collection.delete method removes one or more objects from the collection by setting their foreign keys to NULL.
  • objects will be destroyed if they're associated with dependent: :destroy, and deleted if they're associated with dependent: :delete_all
  • The collection.destroy method removes one or more objects from the collection by running destroy on each object.
  • The collection_singular_ids method returns an array of the ids of the objects in the collection.
  • The collection_singular_ids= method makes the collection contain only the objects identified by the supplied primary key values, by adding and deleting as appropriate
  • The default strategy for has_many :through associations is delete_all, and for has_many associations is to set the foreign keys to NULL.
  • The collection.clear method removes all objects from the collection according to the strategy specified by the dependent option
  • uses the same syntax and options as ActiveRecord::Base.find
  • The collection.where method finds objects within the collection based on the conditions supplied but the objects are loaded lazily meaning that the database is queried only when the object(s) are accessed.
  • The collection.build method returns one or more new objects of the associated type. These objects will be instantiated from the passed attributes, and the link through their foreign key will be created, but the associated objects will not yet be saved.
  • The collection.create method returns a new object of the associated type. This object will be instantiated from the passed attributes, the link through its foreign key will be created, and, once it passes all of the validations specified on the associated model, the associated object will be saved.
  • :as :autosave :class_name :dependent :foreign_key :inverse_of :primary_key :source :source_type :through :validate
  • :delete_all causes all the associated objects to be deleted directly from the database (so callbacks will not execute)
  • :nullify causes the foreign keys to be set to NULL. Callbacks are not executed.
  • where includes readonly select
  • :conditions :through :polymorphic :foreign_key
  • By convention, Rails assumes that the column used to hold the primary key of the association is id. You can override this and explicitly specify the primary key with the :primary_key option.
  • The :source option specifies the source association name for a has_many :through association.
  • You only need to use this option if the name of the source association cannot be automatically inferred from the association name.
  • The :source_type option specifies the source association type for a has_many :through association that proceeds through a polymorphic association.
  • The :through option specifies a join model through which to perform the query.
  • has_many :through associations provide a way to implement many-to-many relationships,
  • By default, this is true: associated objects will be validated when this object is saved.
  • where extending group includes limit offset order readonly select uniq
  • If you use a hash-style where option, then record creation via this association will be automatically scoped using the hash
  • The extending method specifies a named module to extend the association proxy.
  • Association extensions
  • The group method supplies an attribute name to group the result set by, using a GROUP BY clause in the finder SQL.
  • has_many :line_items, -> { group 'orders.id' },                        through: :orders
  • more efficient by including line items in the association from customers to orders
  • The limit method lets you restrict the total number of objects that will be fetched through an association.
  • The offset method lets you specify the starting offset for fetching objects via an association
  • The order method dictates the order in which associated objects will be received (in the syntax used by an SQL ORDER BY clause).
  • Use the distinct method to keep the collection free of duplicates.
  • mostly useful together with the :through option
  • -> { distinct }
  • .all.inspect
  • If you want to make sure that, upon insertion, all of the records in the persisted association are distinct (so that you can be sure that when you inspect the association that you will never find duplicate records), you should add a unique index on the table itself
  • unique: true
  • Do not attempt to use include? to enforce distinctness in an association.
  • multiple users could be attempting this at the same time
  • checking for uniqueness using something like include? is subject to race conditions
  • When you assign an object to a has_many association, that object is automatically saved (in order to update its foreign key).
  • If any of these saves fails due to validation errors, then the assignment statement returns false and the assignment itself is cancelled.
  • If the parent object (the one declaring the has_many association) is unsaved (that is, new_record? returns true) then the child objects are not saved when they are added
  • All unsaved members of the association will automatically be saved when the parent is saved.
  • assign an object to a has_many association without saving the object, use the collection.build method
  • collection(force_reload = false) collection<<(object, ...) collection.delete(object, ...) collection.destroy(object, ...) collection=(objects) collection_singular_ids collection_singular_ids=(ids) collection.clear collection.empty? collection.size collection.find(...) collection.where(...) collection.exists?(...) collection.build(attributes = {}) collection.create(attributes = {}) collection.create!(attributes = {})
  • If the join table for a has_and_belongs_to_many association has additional columns beyond the two foreign keys, these columns will be added as attributes to records retrieved via that association.
  • Records returned with additional attributes will always be read-only
  • If you require this sort of complex behavior on the table that joins two models in a many-to-many relationship, you should use a has_many :through association instead of has_and_belongs_to_many.
  • aliased as collection.concat and collection.push.
  • The collection.delete method removes one or more objects from the collection by deleting records in the join table
  • not destroy the objects
  • The collection.destroy method removes one or more objects from the collection by running destroy on each record in the join table, including running callbacks.
  • not destroy the objects.
  • The collection.clear method removes every object from the collection by deleting the rows from the joining table.
  • not destroy the associated objects.
  • The collection.find method finds objects within the collection. It uses the same syntax and options as ActiveRecord::Base.find.
  • The collection.where method finds objects within the collection based on the conditions supplied but the objects are loaded lazily meaning that the database is queried only when the object(s) are accessed.
  • The collection.exists? method checks whether an object meeting the supplied conditions exists in the collection.
  • The collection.build method returns a new object of the associated type.
  • the associated object will not yet be saved.
  • the associated object will be saved.
  • The collection.create method returns a new object of the associated type.
  • it passes all of the validations specified on the associated model
  • :association_foreign_key :autosave :class_name :foreign_key :join_table :validate
  • The :foreign_key and :association_foreign_key options are useful when setting up a many-to-many self-join.
  • Rails assumes that the column in the join table used to hold the foreign key pointing to the other model is the name of that model with the suffix _id added.
  • If you set the :autosave option to true, Rails will save any loaded members and destroy members that are marked for destruction whenever you save the parent object.
  • By convention, Rails assumes that the column in the join table used to hold the foreign key pointing to this model is the name of this model with the suffix _id added.
  • By default, this is true: associated objects will be validated when this object is saved.
  • where extending group includes limit offset order readonly select uniq
  • set conditions via a hash
  • In this case, using @parts.assemblies.create or @parts.assemblies.build will create orders where the factory column has the value "Seattle"
  • If you use a hash-style where, then record creation via this association will be automatically scoped using the hash
  • using a GROUP BY clause in the finder SQL.
  • Use the uniq method to remove duplicates from the collection.
  • assign an object to a has_and_belongs_to_many association, that object is automatically saved (in order to update the join table).
  • If any of these saves fails due to validation errors, then the assignment statement returns false and the assignment itself is cancelled.
  • If the parent object (the one declaring the has_and_belongs_to_many association) is unsaved (that is, new_record? returns true) then the child objects are not saved when they are added.
  • If you want to assign an object to a has_and_belongs_to_many association without saving the object, use the collection.build method.
  • Normal callbacks hook into the life cycle of Active Record objects, allowing you to work with those objects at various points
  • define association callbacks by adding options to the association declaration
  • Rails passes the object being added or removed to the callback.
  • stack callbacks on a single event by passing them as an array
  • If a before_add callback throws an exception, the object does not get added to the collection.
  • if a before_remove callback throws an exception, the object does not get removed from the collection
  • extend these objects through anonymous modules, adding new finders, creators, or other methods.
  • order_number
  • use a named extension module
  • proxy_association.owner returns the object that the association is a part of.
1 - 20 of 62 Next › Last »
Showing 20 items per page