Skip to main content

Home/ Larvata/ Group items tagged composer

Rss Feed Group items tagged

張 旭

Configuration - docker-sync 0.5.10 documentation - 0 views

  • Be sure to use a sync-name which is unique, since it will be a container name.
    • 張 旭
       
      慣例是 docker-sync 的 container name 後綴都是 -sync
  • split your docker-compose configuration for production and development (as usual)
  • ...9 more annotations...
  • production stack (docker-compose.yml) does not need any changes and would look like this (and is portable, no docker-sync adjustments).
  • docker-compose-dev.yml ( it needs to be called that way, look like this ) will override
    • 張 旭
       
      開發版的 docker-compose-dev.yml 僅會覆寫 production docker-compose.yml 的 volumes 設定,也就接上 docker-sync.yml 的 volumes,其它都維持不變
  • nocopy # nocopy is important
  • nocopy # nocopy is important
  • docker-compose -f docker-compose.yml -f docker-compose-dev.yml up
  • add the external volume and the mount here
  • In case the folder we mount to has been declared as a VOLUME during image build, its content will be merged with the name volume we mount from the host
    • 張 旭
       
      如果在 Dockerfile 裡面有宣告一個 volume,那麼在 docker build 的時候這個 volume mount point 會被記錄起來,在 container 跑起來的時候,會將 host (server) 上的同名的 volume 內容合併進來 (取代)。也就是說 container 跑起來的時候,會去接上已經存在的既有的 host (server) 上的 volume。
  • enforce the content from our host on the initial wiring
  • set your environment variables by creating a .env file at the root of your project
  •  
    "Be sure to use a sync-name which is unique, since it will be a container name."
張 旭

Docker ARG, ENV and .env - a Complete Guide · vsupalov.com - 1 views

  • understand and use Docker build-time variables, environment variables and docker-compose templating the right way.
  • ARG is only available during the build of a Docker image (RUN etc), not after the image is created and containers are started from it (ENTRYPOINT, CMD).
  • ENV values are available to containers, but also RUN-style commands during the Docker build starting with the line where they are introduced.
  • ...20 more annotations...
  • set an environment variable in an intermediate container using bash (RUN export VARI=5 && …) it will not persist in the next command.
  • An env_file, is a convenient way to pass many environment variables to a single command in one batch.
  • not be confused with a .env file
  • the dot in front of env - .env, not an “env_file”.
  • If you have a file named .env in your project, it’s only used to put values into the docker-compose.yml file which is in the same folder. Those are used with Docker Compose and Docker Stack.
  • Just type docker-compose config. This way you’ll see how the docker-compose.yml file content looks after the substitution step has been performed without running anything else.
  • ARG are also known as build-time variables. They are only available from the moment they are ‘announced’ in the Dockerfile with an ARG instruction up to the moment when the image is built.
  • Running containers can’t access values of ARG variables.
  • ENV variables are also available during the build, as soon as you introduce them with an ENV instruction. However, unlike ARG, they are also accessible by containers started from the final image.
  • ENV values can be overridden when starting a container,
  • If you don’t provide a value to expected ARG variables which don’t have a default, you’ll get an error message.
  • args block
  • You can use ARG to set the default values of ENV vars.
  • dynamic on-build env values
  • 2. Pass environment variable values from your host
  • 1. Provide values one by one
  • 3. Take values from a file (env_file)
  • for each RUN statement, a new container is launched from an intermediate image.
  • An image is saved by the end of the command, but environment variables do not persist that way.
  • The precedence is, from stronger to less-strong: stuff the containerized application sets, values from single environment entries, values from the env_file(s) and finally Dockerfile defaults.
crazylion lee

Getting Started | d3.compose - 0 views

  •  
    "Compose complex, data-driven visualizations from reusable charts and components with d3."
crazylion lee

hirak/prestissimo: composer parallel install plugin - 0 views

  •  
    "composer parallel install plugin"
crazylion lee

Suggesting Carbon with Composer - Date and Time the Right Way - 0 views

  •  
    "Carbon is a small library for date and time manipulation in PHP. It relies on and extends the core DateTime class, adding helpful methods for a significantly saner experience."
張 旭

Optimizing Gitlab pipelines - Basics (1) | PrinsFrank.nl - 0 views

  • When you use specific docker image, make sure you have the Dependency Proxy enabled so the image doesn’t have to be downloaded again for every job.
  • stages are used to group items that can run at the same time.
  • Instead of waiting for all jobs to finish, you can mark jobs as interruptible which signals a job to cancel when a new pipeline starts for the same branch
  • ...8 more annotations...
  • mark all jobs as interruptible as it doesn’t make sense to wait for builds and tests based on old information.
  • Deployment jobs are the main exception as they should probably finish.
  • only running it when specific files have changed
  • To prevent the ‘vendor’ and ‘node_modules’ folder from being regenerated in every job, we can configure a build job for composer and npm assets.
  • To share assets between multiple stages, Gitlab has caches and artifacts. For dependencies we should use caches.
  • The pull-push policy is the default, but specified here for clarity.
  • All consecutive runs for the build step with the same ‘composer.lock’ file don’t update the cache.
  • composer prevents this by caching packages in a global package cache,
張 旭

How to write excellent Dockerfiles - 0 views

  • minimize image size, build time and number of layers.
  • maximize build cache usage
  • Container should do one thing
    • 張 旭
       
      這個有待商榷,在 baseimage 的 blog 介紹中有詳細的討論。
  • ...25 more annotations...
  • Use COPY and RUN commands in proper order
  • Merge multiple RUN commands into one
  • alpine versions should be enough
  • Use exec inside entrypoint script
  • Prefer COPY over ADD
  • Specify default environment variables, ports and volumes inside Dockerfile
  • problems with zombie processes
  • prepare separate Docker image for each component, and use Docker Compose to easily start multiple containers at the same time
  • Layers are cached and reused
  • Layers are immutable
  • They both makes you cry
  • rely on our base image updates
  • make a cleanup
  • alpine is a very tiny linux distribution, just about 4 MB in size.
  • Your disk will love you :)
  • WORKDIR command changes default directory, where we run our RUN / CMD / ENTRYPOINT commands.
  • CMD is a default command run after creating container without other command specified.
  • put your command inside array
  • entrypoint adds complexity
  • Entrypoint is a script, that will be run instead of command, and receive command as arguments
  • Without it, we would not be able to stop our application grecefully (SIGTERM is swallowed by bash script).
  • Use "exec" inside entrypoint script
  • ADD has some logic for downloading remote files and extracting archives.
  • stick with COPY.
  • ADD
    • 張 旭
       
      不是說要用 COPY 嗎?
張 旭

A Complete Beginner's Guide to Django - Part 1 - 0 views

  • are Python functions that receive an HttpRequest object and returns an HttpResponse object. Receive a request as a parameter and returns a response as a result.
  • is a Web application that does something. An app usually is composed of a set of models (database tables), views, templates, tests.
  • One project can be composed of multiple apps, or a single app.
  • ...1 more annotation...
  • this is the file where we handle the request/response cycle of our Web application.
crazylion lee

NATRON - 0 views

  •  
    "Free and open-source compositing software, available for MacOS X, Windows and Linux."
crazylion lee

Grafana - Graphite and InfluxDB Dashboard and graph composer - 0 views

shared by crazylion lee on 28 Aug 15 - No Cached
  •  
    "An open source, feature rich metrics dashboard and graph editor for Graphite, InfluxDB & OpenTSDB."
張 旭

Developing with Docker - 1 views

  • Before moving our production infrastructure over however, we decided that we wanted to start developing with them locally first. We could shake out any issues with our applications before risking the production environment.
  • using Chef and Vagrant to provision local VMs
  • Engineers at IFTTT currently all use Apple computers
  • ...7 more annotations...
  • /bin/true
    • 張 旭
       
      如果使用 docker create 就不用跑這個, 不過目前 docker-compose 沒有支援 volume-only 的 container
  • it will install gems onto the data volume from the bundler-cache container.
  • dev rm bundler-cache
    • 張 旭
       
      要完全刪除干淨,後面的指令可能是: docker rm -v bundler-cache
  • if you accidentally delete bundler-cache, you then have to install all your gems over again.
  • Containerization and Docker are powerful tools in your infrastructure toolbox.
  • highly recommend starting off in your developer environment first
  • the onboarding time for new developers go from a couple days or more to a matter of hours.
張 旭

Orbs, Jobs, Steps, and Workflows - CircleCI - 0 views

  • Orbs are packages of config that you either import by name or configure inline to simplify your config, share, and reuse config within and across projects.
  • Jobs are a collection of Steps.
  • All of the steps in the job are executed in a single unit which consumes a CircleCI container from your plan while it’s running.
  • ...11 more annotations...
  • Workspaces persist data between jobs in a single Workflow.
  • Caching persists data between the same job in different Workflow builds.
  • Artifacts persist data after a Workflow has finished.
  • run using the machine executor which enables reuse of recently used machine executor runs,
  • docker executor which can compose Docker containers to run your tests and any services they require
  • macos executor
  • Steps are a collection of executable commands which are run during a job
  • In addition to the run: key, keys for save_cache:, restore_cache:, deploy:, store_artifacts:, store_test_results: and add_ssh_keys are nested under Steps.
  • checkout: key is required to checkout your code
  • run: enables addition of arbitrary, multi-line shell command scripting
  • orchestrating job runs with parallel, sequential, and manual approval workflows.
張 旭

How to Test Rails Models with RSpec - Semaphore - 0 views

  • Behaviour-driven Development (BDD) as a software development process is composed of multiple subtechniques.
  • Models can sometimes be full-blown objects with rich behaviour.
  • An alternative is to use the shoulda gem.
  • ...3 more annotations...
  • reflect_on_association
  • add the business logic
  • Covering Edge Cases
張 旭

Volumes - Kubernetes - 0 views

  • On-disk files in a Container are ephemeral,
  • when a Container crashes, kubelet will restart it, but the files will be lost - the Container starts with a clean state
  • In Docker, a volume is simply a directory on disk or in another Container.
  • ...105 more annotations...
  • A Kubernetes volume, on the other hand, has an explicit lifetime - the same as the Pod that encloses it.
  • a volume outlives any Containers that run within the Pod, and data is preserved across Container restarts.
    • 張 旭
       
      Kubernetes Volume 是跟著 Pod 的生命週期在走
  • Kubernetes supports many types of volumes, and a Pod can use any number of them simultaneously.
  • To use a volume, a Pod specifies what volumes to provide for the Pod (the .spec.volumes field) and where to mount those into Containers (the .spec.containers.volumeMounts field).
  • A process in a container sees a filesystem view composed from their Docker image and volumes.
  • Volumes can not mount onto other volumes or have hard links to other volumes.
  • Each Container in the Pod must independently specify where to mount each volume
  • localnfs
  • cephfs
  • awsElasticBlockStore
  • glusterfs
  • vsphereVolume
  • An awsElasticBlockStore volume mounts an Amazon Web Services (AWS) EBS Volume into your Pod.
  • the contents of an EBS volume are preserved and the volume is merely unmounted.
  • an EBS volume can be pre-populated with data, and that data can be “handed off” between Pods.
  • create an EBS volume using aws ec2 create-volume
  • the nodes on which Pods are running must be AWS EC2 instances
  • EBS only supports a single EC2 instance mounting a volume
  • check that the size and EBS volume type are suitable for your use!
  • A cephfs volume allows an existing CephFS volume to be mounted into your Pod.
  • the contents of a cephfs volume are preserved and the volume is merely unmounted.
    • 張 旭
       
      相當於自己的 AWS EBS
  • CephFS can be mounted by multiple writers simultaneously.
  • have your own Ceph server running with the share exported
  • configMap
  • The configMap resource provides a way to inject configuration data into Pods
  • When referencing a configMap object, you can simply provide its name in the volume to reference it
  • volumeMounts: - name: config-vol mountPath: /etc/config volumes: - name: config-vol configMap: name: log-config items: - key: log_level path: log_level
  • create a ConfigMap before you can use it.
  • A Container using a ConfigMap as a subPath volume mount will not receive ConfigMap updates.
  • An emptyDir volume is first created when a Pod is assigned to a Node, and exists as long as that Pod is running on that node.
  • When a Pod is removed from a node for any reason, the data in the emptyDir is deleted forever.
  • By default, emptyDir volumes are stored on whatever medium is backing the node - that might be disk or SSD or network storage, depending on your environment.
  • you can set the emptyDir.medium field to "Memory" to tell Kubernetes to mount a tmpfs (RAM-backed filesystem)
  • volumeMounts: - mountPath: /cache name: cache-volume volumes: - name: cache-volume emptyDir: {}
  • An fc volume allows an existing fibre channel volume to be mounted in a Pod.
  • configure FC SAN Zoning to allocate and mask those LUNs (volumes) to the target WWNs beforehand so that Kubernetes hosts can access them.
  • Flocker is an open-source clustered Container data volume manager. It provides management and orchestration of data volumes backed by a variety of storage backends.
  • emptyDir
  • flocker
  • A flocker volume allows a Flocker dataset to be mounted into a Pod
  • have your own Flocker installation running
  • A gcePersistentDisk volume mounts a Google Compute Engine (GCE) Persistent Disk into your Pod.
  • Using a PD on a Pod controlled by a ReplicationController will fail unless the PD is read-only or the replica count is 0 or 1
  • A glusterfs volume allows a Glusterfs (an open source networked filesystem) volume to be mounted into your Pod.
  • have your own GlusterFS installation running
  • A hostPath volume mounts a file or directory from the host node’s filesystem into your Pod.
  • a powerful escape hatch for some applications
  • access to Docker internals; use a hostPath of /var/lib/docker
  • allowing a Pod to specify whether a given hostPath should exist prior to the Pod running, whether it should be created, and what it should exist as
  • specify a type for a hostPath volume
  • the files or directories created on the underlying hosts are only writable by root.
  • hostPath: # directory location on host path: /data # this field is optional type: Directory
  • An iscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your Pod.
  • have your own iSCSI server running
  • A feature of iSCSI is that it can be mounted as read-only by multiple consumers simultaneously.
  • A local volume represents a mounted local storage device such as a disk, partition or directory.
  • Local volumes can only be used as a statically created PersistentVolume.
  • Compared to hostPath volumes, local volumes can be used in a durable and portable manner without manually scheduling Pods to nodes, as the system is aware of the volume’s node constraints by looking at the node affinity on the PersistentVolume.
  • If a node becomes unhealthy, then the local volume will also become inaccessible, and a Pod using it will not be able to run.
  • PersistentVolume spec using a local volume and nodeAffinity
  • PersistentVolume nodeAffinity is required when using local volumes. It enables the Kubernetes scheduler to correctly schedule Pods using local volumes to the correct node.
  • PersistentVolume volumeMode can now be set to “Block” (instead of the default value “Filesystem”) to expose the local volume as a raw block device.
  • When using local volumes, it is recommended to create a StorageClass with volumeBindingMode set to WaitForFirstConsumer
  • An nfs volume allows an existing NFS (Network File System) share to be mounted into your Pod.
  • NFS can be mounted by multiple writers simultaneously.
  • have your own NFS server running with the share exported
  • A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
  • PersistentVolumes are a way for users to “claim” durable storage (such as a GCE PersistentDisk or an iSCSI volume) without knowing the details of the particular cloud environment.
  • A projected volume maps several existing volume sources into the same directory.
  • All sources are required to be in the same namespace as the Pod. For more details, see the all-in-one volume design document.
  • Each projected volume source is listed in the spec under sources
  • A Container using a projected volume source as a subPath volume mount will not receive updates for those volume sources.
  • RBD volumes can only be mounted by a single consumer in read-write mode - no simultaneous writers allowed
  • A secret volume is used to pass sensitive information, such as passwords, to Pods
  • store secrets in the Kubernetes API and mount them as files for use by Pods
  • secret volumes are backed by tmpfs (a RAM-backed filesystem) so they are never written to non-volatile storage.
  • create a secret in the Kubernetes API before you can use it
  • A Container using a Secret as a subPath volume mount will not receive Secret updates.
  • StorageOS runs as a Container within your Kubernetes environment, making local or attached storage accessible from any node within the Kubernetes cluster.
  • Data can be replicated to protect against node failure. Thin provisioning and compression can improve utilization and reduce cost.
  • StorageOS provides block storage to Containers, accessible via a file system.
  • A vsphereVolume is used to mount a vSphere VMDK Volume into your Pod.
  • supports both VMFS and VSAN datastore.
  • create VMDK using one of the following methods before using with Pod.
  • share one volume for multiple uses in a single Pod.
  • The volumeMounts.subPath property can be used to specify a sub-path inside the referenced volume instead of its root.
  • volumeMounts: - name: workdir1 mountPath: /logs subPathExpr: $(POD_NAME)
  • env: - name: POD_NAME valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.name
  • Use the subPathExpr field to construct subPath directory names from Downward API environment variables
  • enable the VolumeSubpathEnvExpansion feature gate
  • The subPath and subPathExpr properties are mutually exclusive.
  • There is no limit on how much space an emptyDir or hostPath volume can consume, and no isolation between Containers or between Pods.
  • emptyDir and hostPath volumes will be able to request a certain amount of space using a resource specification, and to select the type of media to use, for clusters that have several media types.
  • the Container Storage Interface (CSI) and Flexvolume. They enable storage vendors to create custom storage plugins without adding them to the Kubernetes repository.
  • all volume plugins (like volume types listed above) were “in-tree” meaning they were built, linked, compiled, and shipped with the core Kubernetes binaries and extend the core Kubernetes API.
  • Container Storage Interface (CSI) defines a standard interface for container orchestration systems (like Kubernetes) to expose arbitrary storage systems to their container workloads.
  • Once a CSI compatible volume driver is deployed on a Kubernetes cluster, users may use the csi volume type to attach, mount, etc. the volumes exposed by the CSI driver.
  • The csi volume type does not support direct reference from Pod and may only be referenced in a Pod via a PersistentVolumeClaim object.
  • This feature requires CSIInlineVolume feature gate to be enabled:--feature-gates=CSIInlineVolume=true
  • In-tree plugins that support CSI Migration and have a corresponding CSI driver implemented are listed in the “Types of Volumes” section above.
  • Mount propagation allows for sharing volumes mounted by a Container to other Containers in the same Pod, or even to other Pods on the same node.
  • Mount propagation of a volume is controlled by mountPropagation field in Container.volumeMounts.
  • HostToContainer - This volume mount will receive all subsequent mounts that are mounted to this volume or any of its subdirectories.
  • Bidirectional - This volume mount behaves the same the HostToContainer mount. In addition, all volume mounts created by the Container will be propagated back to the host and to all Containers of all Pods that use the same volume.
  • Edit your Docker’s systemd service file. Set MountFlags as follows:MountFlags=shared
張 旭

Pods - Kubernetes - 0 views

  • Pods are the smallest deployable units of computing
  • A Pod (as in a pod of whales or pea pod) is a group of one or more containersA lightweight and portable executable image that contains software and all of its dependencies. (such as Docker containers), with shared storage/network, and a specification for how to run the containers.
  • A Pod’s contents are always co-located and co-scheduled, and run in a shared context.
  • ...32 more annotations...
  • A Pod models an application-specific “logical host”
  • application containers which are relatively tightly coupled
  • being executed on the same physical or virtual machine would mean being executed on the same logical host.
  • The shared context of a Pod is a set of Linux namespaces, cgroups, and potentially other facets of isolation
  • Containers within a Pod share an IP address and port space, and can find each other via localhost
  • Containers in different Pods have distinct IP addresses and can not communicate by IPC without special configuration. These containers usually communicate with each other via Pod IP addresses.
  • Applications within a Pod also have access to shared volumesA directory containing data, accessible to the containers in a pod. , which are defined as part of a Pod and are made available to be mounted into each application’s filesystem.
  • a Pod is modelled as a group of Docker containers with shared namespaces and shared filesystem volumes
    • 張 旭
       
      類似 docker-compose 裡面宣告的同一坨?
  • Pods are considered to be relatively ephemeral (rather than durable) entities.
  • Pods are created, assigned a unique ID (UID), and scheduled to nodes where they remain until termination (according to restart policy) or deletion.
  • it can be replaced by an identical Pod
  • When something is said to have the same lifetime as a Pod, such as a volume, that means that it exists as long as that Pod (with that UID) exists.
  • uses a persistent volume for shared storage between the containers
  • Pods serve as unit of deployment, horizontal scaling, and replication
  • The applications in a Pod all use the same network namespace (same IP and port space), and can thus “find” each other and communicate using localhost
  • flat shared networking space
  • Containers within the Pod see the system hostname as being the same as the configured name for the Pod.
  • Volumes enable data to survive container restarts and to be shared among the applications within the Pod.
  • Individual Pods are not intended to run multiple instances of the same application
  • The individual containers may be versioned, rebuilt and redeployed independently.
  • Pods aren’t intended to be treated as durable entities.
  • Controllers like StatefulSet can also provide support to stateful Pods.
  • When a user requests deletion of a Pod, the system records the intended grace period before the Pod is allowed to be forcefully killed, and a TERM signal is sent to the main process in each container.
  • Once the grace period has expired, the KILL signal is sent to those processes, and the Pod is then deleted from the API server.
  • grace period
  • Pod is removed from endpoints list for service, and are no longer considered part of the set of running Pods for replication controllers.
  • When the grace period expires, any processes still running in the Pod are killed with SIGKILL.
  • By default, all deletes are graceful within 30 seconds.
  • You must specify an additional flag --force along with --grace-period=0 in order to perform force deletions.
  • Force deletion of a Pod is defined as deletion of a Pod from the cluster state and etcd immediately.
  • StatefulSet Pods
  • Processes within the container get almost the same privileges that are available to processes outside a container.
張 旭

Helm | - 0 views

  • A chart is a collection of files that describe a related set of Kubernetes resources.
  • A single chart might be used to deploy something simple, like a memcached pod, or something complex, like a full web app stack with HTTP servers, databases, caches, and so on.
  • Charts are created as files laid out in a particular directory tree, then they can be packaged into versioned archives to be deployed.
  • ...170 more annotations...
  • A chart is organized as a collection of files inside of a directory.
  • values.yaml # The default configuration values for this chart
  • charts/ # A directory containing any charts upon which this chart depends.
  • templates/ # A directory of templates that, when combined with values, # will generate valid Kubernetes manifest files.
  • version: A SemVer 2 version (required)
  • apiVersion: The chart API version, always "v1" (required)
  • Every chart must have a version number. A version must follow the SemVer 2 standard.
  • non-SemVer names are explicitly disallowed by the system.
  • When generating a package, the helm package command will use the version that it finds in the Chart.yaml as a token in the package name.
  • the appVersion field is not related to the version field. It is a way of specifying the version of the application.
  • appVersion: The version of the app that this contains (optional). This needn't be SemVer.
  • If the latest version of a chart in the repository is marked as deprecated, then the chart as a whole is considered to be deprecated.
  • deprecated: Whether this chart is deprecated (optional, boolean)
  • one chart may depend on any number of other charts.
  • dependencies can be dynamically linked through the requirements.yaml file or brought in to the charts/ directory and managed manually.
  • the preferred method of declaring dependencies is by using a requirements.yaml file inside of your chart.
  • A requirements.yaml file is a simple file for listing your dependencies.
  • The repository field is the full URL to the chart repository.
  • you must also use helm repo add to add that repo locally.
  • helm dependency update and it will use your dependency file to download all the specified charts into your charts/ directory for you.
  • When helm dependency update retrieves charts, it will store them as chart archives in the charts/ directory.
  • Managing charts with requirements.yaml is a good way to easily keep charts updated, and also share requirements information throughout a team.
  • All charts are loaded by default.
  • The condition field holds one or more YAML paths (delimited by commas). If this path exists in the top parent’s values and resolves to a boolean value, the chart will be enabled or disabled based on that boolean value.
  • The tags field is a YAML list of labels to associate with this chart.
  • all charts with tags can be enabled or disabled by specifying the tag and a boolean value.
  • The --set parameter can be used as usual to alter tag and condition values.
  • Conditions (when set in values) always override tags.
  • The first condition path that exists wins and subsequent ones for that chart are ignored.
  • The keys containing the values to be imported can be specified in the parent chart’s requirements.yaml file using a YAML list. Each item in the list is a key which is imported from the child chart’s exports field.
  • specifying the key data in our import list, Helm looks in the exports field of the child chart for data key and imports its contents.
  • the parent key data is not contained in the parent’s final values. If you need to specify the parent key, use the ‘child-parent’ format.
  • To access values that are not contained in the exports key of the child chart’s values, you will need to specify the source key of the values to be imported (child) and the destination path in the parent chart’s values (parent).
  • To drop a dependency into your charts/ directory, use the helm fetch command
  • A dependency can be either a chart archive (foo-1.2.3.tgz) or an unpacked chart directory.
  • name cannot start with _ or .. Such files are ignored by the chart loader.
  • a single release is created with all the objects for the chart and its dependencies.
  • Helm Chart templates are written in the Go template language, with the addition of 50 or so add-on template functions from the Sprig library and a few other specialized functions
  • When Helm renders the charts, it will pass every file in that directory through the template engine.
  • Chart developers may supply a file called values.yaml inside of a chart. This file can contain default values.
  • Chart users may supply a YAML file that contains values. This can be provided on the command line with helm install.
  • When a user supplies custom values, these values will override the values in the chart’s values.yaml file.
  • Template files follow the standard conventions for writing Go templates
  • {{default "minio" .Values.storage}}
  • Values that are supplied via a values.yaml file (or via the --set flag) are accessible from the .Values object in a template.
  • pre-defined, are available to every template, and cannot be overridden
  • the names are case sensitive
  • Release.Name: The name of the release (not the chart)
  • Release.IsUpgrade: This is set to true if the current operation is an upgrade or rollback.
  • Release.Revision: The revision number. It begins at 1, and increments with each helm upgrade
  • Chart: The contents of the Chart.yaml
  • Files: A map-like object containing all non-special files in the chart.
  • Files can be accessed using {{index .Files "file.name"}} or using the {{.Files.Get name}} or {{.Files.GetString name}} functions.
  • .helmignore
  • access the contents of the file as []byte using {{.Files.GetBytes}}
  • Any unknown Chart.yaml fields will be dropped
  • Chart.yaml cannot be used to pass arbitrarily structured data into the template.
  • A values file is formatted in YAML.
  • A chart may include a default values.yaml file
  • be merged into the default values file.
  • The default values file included inside of a chart must be named values.yaml
  • accessible inside of templates using the .Values object
  • Values files can declare values for the top-level chart, as well as for any of the charts that are included in that chart’s charts/ directory.
  • Charts at a higher level have access to all of the variables defined beneath.
  • lower level charts cannot access things in parent charts
  • Values are namespaced, but namespaces are pruned.
  • the scope of the values has been reduced and the namespace prefix removed
  • Helm supports special “global” value.
  • a way of sharing one top-level variable with all subcharts, which is useful for things like setting metadata properties like labels.
  • If a subchart declares a global variable, that global will be passed downward (to the subchart’s subcharts), but not upward to the parent chart.
  • global variables of parent charts take precedence over the global variables from subcharts.
  • helm lint
  • A chart repository is an HTTP server that houses one or more packaged charts
  • Any HTTP server that can serve YAML files and tar files and can answer GET requests can be used as a repository server.
  • Helm does not provide tools for uploading charts to remote repository servers.
  • the only way to add a chart to $HELM_HOME/starters is to manually copy it there.
  • Helm provides a hook mechanism to allow chart developers to intervene at certain points in a release’s life cycle.
  • Execute a Job to back up a database before installing a new chart, and then execute a second job after the upgrade in order to restore data.
  • Hooks are declared as an annotation in the metadata section of a manifest
  • Hooks work like regular templates, but they have special annotations
  • pre-install
  • post-install: Executes after all resources are loaded into Kubernetes
  • pre-delete
  • post-delete: Executes on a deletion request after all of the release’s resources have been deleted.
  • pre-upgrade
  • post-upgrade
  • pre-rollback
  • post-rollback: Executes on a rollback request after all resources have been modified.
  • crd-install
  • test-success: Executes when running helm test and expects the pod to return successfully (return code == 0).
  • test-failure: Executes when running helm test and expects the pod to fail (return code != 0).
  • Hooks allow you, the chart developer, an opportunity to perform operations at strategic points in a release lifecycle
  • Tiller then loads the hook with the lowest weight first (negative to positive)
  • Tiller returns the release name (and other data) to the client
  • If the resources is a Job kind, Tiller will wait until the job successfully runs to completion.
  • if the job fails, the release will fail. This is a blocking operation, so the Helm client will pause while the Job is run.
  • If they have hook weights (see below), they are executed in weighted order. Otherwise, ordering is not guaranteed.
  • good practice to add a hook weight, and set it to 0 if weight is not important.
  • The resources that a hook creates are not tracked or managed as part of the release.
  • leave the hook resource alone.
  • To destroy such resources, you need to either write code to perform this operation in a pre-delete or post-delete hook or add "helm.sh/hook-delete-policy" annotation to the hook template file.
  • Hooks are just Kubernetes manifest files with special annotations in the metadata section
  • One resource can implement multiple hooks
  • no limit to the number of different resources that may implement a given hook.
  • When subcharts declare hooks, those are also evaluated. There is no way for a top-level chart to disable the hooks declared by subcharts.
  • Hook weights can be positive or negative numbers but must be represented as strings.
  • sort those hooks in ascending order.
  • Hook deletion policies
  • "before-hook-creation" specifies Tiller should delete the previous hook before the new hook is launched.
  • By default Tiller will wait for 60 seconds for a deleted hook to no longer exist in the API server before timing out.
  • Custom Resource Definitions (CRDs) are a special kind in Kubernetes.
  • The crd-install hook is executed very early during an installation, before the rest of the manifests are verified.
  • A common reason why the hook resource might already exist is that it was not deleted following use on a previous install/upgrade.
  • Helm uses Go templates for templating your resource files.
  • two special template functions: include and required
  • include function allows you to bring in another template, and then pass the results to other template functions.
  • The required function allows you to declare a particular values entry as required for template rendering.
  • If the value is empty, the template rendering will fail with a user submitted error message.
  • When you are working with string data, you are always safer quoting the strings than leaving them as bare words
  • Quote Strings, Don’t Quote Integers
  • when working with integers do not quote the values
  • env variables values which are expected to be string
  • to include a template, and then perform an operation on that template’s output, Helm has a special include function
  • The above includes a template called toYaml, passes it $value, and then passes the output of that template to the nindent function.
  • Go provides a way for setting template options to control behavior when a map is indexed with a key that’s not present in the map
  • The required function gives developers the ability to declare a value entry as required for template rendering.
  • The tpl function allows developers to evaluate strings as templates inside a template.
  • Rendering a external configuration file
  • (.Files.Get "conf/app.conf")
  • Image pull secrets are essentially a combination of registry, username, and password.
  • Automatically Roll Deployments When ConfigMaps or Secrets change
  • configmaps or secrets are injected as configuration files in containers
  • a restart may be required should those be updated with a subsequent helm upgrade
  • The sha256sum function can be used to ensure a deployment’s annotation section is updated if another file changes
  • checksum/config: {{ include (print $.Template.BasePath "/configmap.yaml") . | sha256sum }}
  • helm upgrade --recreate-pods
  • "helm.sh/resource-policy": keep
  • resources that should not be deleted when Helm runs a helm delete
  • this resource becomes orphaned. Helm will no longer manage it in any way.
  • create some reusable parts in your chart
  • In the templates/ directory, any file that begins with an underscore(_) is not expected to output a Kubernetes manifest file.
  • by convention, helper templates and partials are placed in a _helpers.tpl file.
  • The current best practice for composing a complex application from discrete parts is to create a top-level umbrella chart that exposes the global configurations, and then use the charts/ subdirectory to embed each of the components.
  • SAP’s Converged charts: These charts install SAP Converged Cloud a full OpenStack IaaS on Kubernetes. All of the charts are collected together in one GitHub repository, except for a few submodules.
  • Deis’s Workflow: This chart exposes the entire Deis PaaS system with one chart. But it’s different from the SAP chart in that this umbrella chart is built from each component, and each component is tracked in a different Git repository.
  • YAML is a superset of JSON
  • any valid JSON structure ought to be valid in YAML.
  • As a best practice, templates should follow a YAML-like syntax unless the JSON syntax substantially reduces the risk of a formatting issue.
  • There are functions in Helm that allow you to generate random data, cryptographic keys, and so on.
  • a chart repository is a location where packaged charts can be stored and shared.
  • A chart repository is an HTTP server that houses an index.yaml file and optionally some packaged charts.
  • Because a chart repository can be any HTTP server that can serve YAML and tar files and can answer GET requests, you have a plethora of options when it comes down to hosting your own chart repository.
  • It is not required that a chart package be located on the same server as the index.yaml file.
  • A valid chart repository must have an index file. The index file contains information about each chart in the chart repository.
  • The Helm project provides an open-source Helm repository server called ChartMuseum that you can host yourself.
  • $ helm repo index fantastic-charts --url https://fantastic-charts.storage.googleapis.com
  • A repository will not be added if it does not contain a valid index.yaml
  • add the repository to their helm client via the helm repo add [NAME] [URL] command with any name they would like to use to reference the repository.
  • Helm has provenance tools which help chart users verify the integrity and origin of a package.
  • Integrity is established by comparing a chart to a provenance record
  • The provenance file contains a chart’s YAML file plus several pieces of verification information
  • Chart repositories serve as a centralized collection of Helm charts.
  • Chart repositories must make it possible to serve provenance files over HTTP via a specific request, and must make them available at the same URI path as the chart.
  • We don’t want to be “the certificate authority” for all chart signers. Instead, we strongly favor a decentralized model, which is part of the reason we chose OpenPGP as our foundational technology.
  • The Keybase platform provides a public centralized repository for trust information.
  • A chart contains a number of Kubernetes resources and components that work together.
  • A test in a helm chart lives under the templates/ directory and is a pod definition that specifies a container with a given command to run.
  • The pod definition must contain one of the helm test hook annotations: helm.sh/hook: test-success or helm.sh/hook: test-failure
  • helm test
  • nest your test suite under a tests/ directory like <chart-name>/templates/tests/
張 旭

plataformatec/simple_form - 0 views

  • The basic goal of Simple Form is to not touch your way of defining the layout
  • by default contains label, hints, errors and the input itself
  • Simple Form acts as a DSL and just maps your input type (retrieved from the column definition in the database) to a specific helper method.
  • ...68 more annotations...
  • can overwrite the default label by passing it to the input method
  • configure the html of any of them
  • disable labels, hints or error
  • add a hint, an error, or even a placeholder
  • add an inline label
  • pass any html attribute straight to the input, by using the :input_html option
  • use the :defaults option in simple_form_fo
  • Simple Form generates a wrapper div around your label and input by default, you can pass any html attribute to that wrapper as well using the :wrapper_html option,
  • By default all inputs are required
  • the required property of any input can be overwritten
  • Simple Form will look at the column type in the database and use an appropriate input for the column
  • lets you overwrite the default input type it creates
  • can also render boolean attributes using as: :select to show a dropdown.
  • give the :disabled option to Simple Form, and it'll automatically mark the wrapper as disabled with a CSS class
  • Simple Form accepts same options as their corresponding input type helper in Rails
  • Any extra option passed to these methods will be rendered as html option.
  • use label, hint, input_field, error and full_error helpers
  • to strip away all the div wrappers around the <input> field
  • is to use f.input_field
  • changing boolean_style from default value :nested to :inline
  • overriding the :collection option
  • Collections can be arrays or ranges, and when a :collection is given the :select input will be rendered by default
  • Other types of collection are :radio_buttons and :check_boxes
  • label_method
  • value_method
  • Both of these options also accept lambda/procs
  • define a to_label method on your model as Simple Form will search for and use :to_label as a :label_method first if it is found
  • create grouped collection selects, that will use the html optgroup tags
  • Grouped collection inputs accept the same :label_method and :value_method options
  • group_method
  • group_label_method
  • configured with a default value to be used on the site through the SimpleForm.country_priority and SimpleForm.time_zone_priority helpers.
  • association
  • association
  • render a :select input for choosing the :company, and another :select input with :multiple option for the :roles
  • all options available to :select, :radio_buttons and :check_boxes are also available to association
  • declare different labels and values
  • the association helper is currently only tested with Active Record
  • f.input
  • f.select
  • create a <button> element
  • simple_fields_for
  • Creates a collection of radio inputs with labels associated
  • Creates a collection of checkboxes with labels associated
  • collection_radio_buttons
  • collection_check_boxes
  • associations in your model
  • Role.all
  • the html element you will get for each attribute according to its database definition
  • redefine existing Simple Form inputs by creating a new class with the same name
  • Simple Form uses all power of I18n API to lookup labels, hints, prompts and placeholders
  • specify defaults for all models under the 'defaults' key
  • Simple Form will always look for a default attribute translation under the "defaults" key if no specific is found inside the model key
  • Simple Form will fallback to default human_attribute_name from Rails when no other translation is found for labels.
  • Simple Form will only do the lookup for options if you give a collection composed of symbols only.
  • "Add %{model}"
  • translations for labels, hints and placeholders for a namespaced model, e.g. Admin::User, should be placed under admin_user, not under admin/user
  • This difference exists because Simple Form relies on object_name provided by Rails' FormBuilder to determine the translation path for a given object instead of i18n_key from the object itself.
  • configure how your components will be rendered using the wrappers API
  • optional
  • unless_blank
  • By default, Simple Form will generate input field types and attributes that are supported in HTML5
  • The HTML5 extensions include the new field types such as email, number, search, url, tel, and the new attributes such as required, autofocus, maxlength, min, max, step.
  • If you want to have all other HTML 5 features, such as the new field types, you can disable only the browser validation
  • add novalidate to a specific form by setting the option on the form itself
  • the Simple Form configuration file
  • passing the html5 option
  • as: :date, html5: true
張 旭

Introduction to MongoDB - MongoDB Manual - 0 views

  • MongoDB is a document database designed for ease of development and scaling
  • MongoDB offers both a Community and an Enterprise version
  • A record in MongoDB is a document, which is a data structure composed of field and value pairs.
  • ...12 more annotations...
  • MongoDB documents are similar to JSON objects.
  • The values of fields may include other documents, arrays, and arrays of documents.
  • reduce need for expensive joins
  • MongoDB stores documents in collections.
  • Collections are analogous to tables in relational databases.
  • Read-only Views
  • Indexes support faster queries and can include keys from embedded documents and arrays.
  • MongoDB's replication facility, called replica set
  • A replica set is a group of MongoDB servers that maintain the same data set, providing redundancy and increasing data availability.
  • Sharding distributes data across a cluster of machines.
  • MongoDB supports creating zones of data based on the shard key.
  • MongoDB provides pluggable storage engine API
張 旭

LXC vs Docker: Why Docker is Better | UpGuard - 0 views

  • LXC (LinuX Containers) is a OS-level virtualization technology that allows creation and running of multiple isolated Linux virtual environments (VE) on a single control host.
  • Docker, previously called dotCloud, was started as a side project and only open-sourced in 2013. It is really an extension of LXC’s capabilities.
  • run processes in isolation.
  • ...35 more annotations...
  • Docker is developed in the Go language and utilizes LXC, cgroups, and the Linux kernel itself. Since it’s based on LXC, a Docker container does not include a separate operating system; instead it relies on the operating system’s own functionality as provided by the underlying infrastructure.
  • Docker acts as a portable container engine, packaging the application and all its dependencies in a virtual container that can run on any Linux server.
  • a VE there is no preloaded emulation manager software as in a VM.
  • In a VE, the application (or OS) is spawned in a container and runs with no added overhead, except for a usually minuscule VE initialization process.
  • LXC will boast bare metal performance characteristics because it only packages the needed applications.
  • the OS is also just another application that can be packaged too.
  • a VM, which packages the entire OS and machine setup, including hard drive, virtual processors and network interfaces. The resulting bloated mass usually takes a long time to boot and consumes a lot of CPU and RAM.
  • don’t offer some other neat features of VM’s such as IaaS setups and live migration.
  • LXC as supercharged chroot on Linux. It allows you to not only isolate applications, but even the entire OS.
  • Libvirt, which allows the use of containers through the LXC driver by connecting to 'lxc:///'.
  • 'LXC', is not compatible with libvirt, but is more flexible with more userspace tools.
  • Portable deployment across machines
  • Versioning: Docker includes git-like capabilities for tracking successive versions of a container
  • Component reuse: Docker allows building or stacking of already created packages.
  • Shared libraries: There is already a public registry (http://index.docker.io/ ) where thousands have already uploaded the useful containers they have created.
  • Docker taking the devops world by storm since its launch back in 2013.
  • LXC, while older, has not been as popular with developers as Docker has proven to be
  • LXC having a focus on sys admins that’s similar to what solutions like the Solaris operating system, with its Solaris Zones, Linux OpenVZ, and FreeBSD, with its BSD Jails virtualization system
  • it started out being built on top of LXC, Docker later moved beyond LXC containers to its own execution environment called libcontainer.
  • Unlike LXC, which launches an operating system init for each container, Docker provides one OS environment, supplied by the Docker Engine
  • LXC tooling sticks close to what system administrators running bare metal servers are used to
  • The LXC command line provides essential commands that cover routine management tasks, including the creation, launch, and deletion of LXC containers.
  • Docker containers aim to be even lighter weight in order to support the fast, highly scalable, deployment of applications with microservice architecture.
  • With backing from Canonical, LXC and LXD have an ecosystem tightly bound to the rest of the open source Linux community.
  • Docker Swarm
  • Docker Trusted Registry
  • Docker Compose
  • Docker Machine
  • Kubernetes facilitates the deployment of containers in your data center by representing a cluster of servers as a single system.
  • Swarm is Docker’s clustering, scheduling and orchestration tool for managing a cluster of Docker hosts. 
  • rkt is a security minded container engine that uses KVM for VM-based isolation and packs other enhanced security features. 
  • Apache Mesos can run different kinds of distributed jobs, including containers. 
  • Elastic Container Service is Amazon’s service for running and orchestrating containerized applications on AWS
  • LXC offers the advantages of a VE on Linux, mainly the ability to isolate your own private workloads from one another. It is a cheaper and faster solution to implement than a VM, but doing so requires a bit of extra learning and expertise.
  • Docker is a significant improvement of LXC’s capabilities.
1 - 20 of 24 Next ›
Showing 20 items per page