Skip to main content

Home/ Java Development/ Group items tagged Annotations

Rss Feed Group items tagged

Hendy Irawan

JAnnocessor is a new open-source framework for powerful, flexible, yet easy processing ... - 0 views

  •  
    "JAnnocessor is a new open-source framework for powerful, flexible, yet easy processing of annotated Java code. Its main purpose is compile-time, annotation-driven source code generation in a declarative and customizable fashion. JAnnocessor is built on top of Java APT, encapsulating the Java source code model in a rich and convenient high-level domain model that serves as a good target for expressive matching and transformation. Finally, a template engine is used for customizable template-based source code generation. Having simplicity and productivity in mind, JAnnocessor has many useful features that make it enjoyable: smart imports organization, logging delegation, graphical UI for real-time debug, hot swap of processors and templates, as well as out-of-the-box common annotations, processors and templates."
anonymous

1. Working with Spring Data Repositories - 0 views

  • Typically, your repository interface will extend Repository, CrudRepository or PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces, you can also annotate your repository interface with @RepositoryDefinition
  • It allows quick query definition by method names but also custom-tuning of these queries by introducing declared queries as needed.
  • CREATE_IF_NOT_FOUND (default)CREATE_IF_NOT_FOUND combines CREATE and USE_DECLARED_QUERY.
  • ...21 more annotations...
  • the first By acts as delimiter to indicate the start of the actual criteria
  • The mechanism strips the prefixes find…By, read…By, and get…By from the method and starts parsing the rest of it
  • you can define conditions on entity properties and concatenate them with And and Or
  • The introducing clause can contain further expressions such as a Distinct to set a distinct flag
  • List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname); // Enables the distinct flag for the query List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String firstname); List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String firstname); // Enabling ignoring case for an individual property List<Person> findByLastnameIgnoreCase(String lastname); // Enabling ignoring case for all suitable properties List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String firstname); // Enabling static ORDER BY for a query List<Person> findByLastnameOrderByFirstnameAsc(String lastname); List<Person> findByLastnameOrderByFirstnameDesc(String lastname);
  • You can combine property expressions with AND and OR. You also get support for operators such as Between, LessThan, GreaterThan, Like for the property expressions
  • AllIgnoreCase
  • IgnoreCase
  • The resolution algorithm starts with interpreting the entire part (AddressZipCode) as the property and checks the domain class for a property with that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits up the source at the camel case parts from the right side into a head and a tail and tries to find the corresponding property, in our example, AddressZip and Code.
  • he infrastructure will recognize certain specific types like Pageable and Sort to apply pagination and sorting to your queries dynamically
  • Pageable
  • Sort sort
  • The first method allows you to pass an org.springframework.data.domain.Pageable instance to the query method to dynamically add paging to your statically defined query. Sorting options are handled through the Pageable instance too
  • <repositories base-package="com.acme.repositories" />
  • Spring is instructed to scan com.acme.repositories and all its subpackages for interfaces extending Repository or one of its subinterfaces. For each interface found, the infrastructure registers the persistence technology-specific FactoryBean to create the appropriate proxies that handle invocations of the query methods. Each bean is registered under a bean name that is derived from the interface name, so an interface of UserRepository would be registered under userRepository
  • This postfix defaults to Impl.Example 1.12. Configuration example<repositories base-package="com.acme.repository" /> <repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />The first configuration example will try to look up a class com.acme.repository.UserRepositoryImpl to act as custom repository implementation, where the second example will try to lookup com.acme.repository.UserRepositoryFoo
  • To exclude an interface that extends Repository from being instantiated as a repository instance, you can either annotate it with @NoRepositoryBean or move it outside of the configured base-package.
  • ]In general, the integration support is enabled by using the @EnableSpringDataWebSupport annotation in your JavaConfig configuration class.
  • @Configuration @EnableWebMvc @EnableSpringDataWebSupport class WebConfiguration { }
  • In case you need multiple Pageables or Sorts to be resolved from the request (for multiple tables, for example) you can use Spring's @Qualifier annotation to distinguish one from another
  • Spring HATEOAS ships with a representation model class PagedResources that allows enrichting the content of a Page instance with the necessary Page metadata as well as links to let the clients easily navigate the pages.
Hendy Irawan

Creating JEE6 Vaadin Applications - Wiki - vaadin.com - 0 views

  •  
    Special thanks to Piero Sartini who came up with this alternative. It is basically the same as the previous alternative, but it uses the new JEE6 Context and Dependency Injection (CDI) and session scoped beans instead of EJBs. This alternative should have better performance than using EJBs. Instead of annotating the Vaadin application as a stateful session bean, it should be annotated using the @SessionScoped annotation, like so:
Paul Sydney Orozco

Tutorial On Spring with Hibernate and Java Persistence API - 0 views

  •  
    Sample of using Hibernate Annotations by reducing XML configuration files thus making it simpler to define required metadata directly into our Java code. When using annotations, we no longer need the additional mapping file (*.hbm.xml). The metadata for the ORM is specified in the individual classes.
Paul Sydney Orozco

How to Use @Required Annotation in Spring - 0 views

  •  
    An Example explaining on how @Required annotation from Spring Framework works. Provides sample on how to use @Required and expected exception if beans are not properly configured like BeanInitializationException or Property is required for bean.
Paul Sydney Orozco

What's new in Spring 3.0.5 which is now Released - 0 views

  •  
    Spring 3.0.5 is now released and comes with the fixes of more than 80 minor issues and provided some enhancements and improvements to the Spring Expression Language (SpEL), annotation support, and embedded databases.
anonymous

Getting Started with RequestFactory - Google Web Toolkit - Google Code - 0 views

  • Entity Proxies
    • anonymous
       
      Proxy type (on the Client) vs Entity type (on the server)
  • proxy types
  • entity types
  • ...147 more annotations...
  • methods that return service stubs
  • one RequestFactory interface for your application
  • employeeRequest();
  • @Service(Employee.class)
  • extends RequestContext
  • extends RequestFactory
  • service stub
  • RequestFactory service stubs
  • must extend RequestContext
  • The methods in a service stub do not return entities directly
  • return subclasses of com.google.gwt.requestfactory.shared.Request.
  • This allows the methods on the interface to be invoked asynchronously with
  • Request.fire()
  • fire(    new Receiver()
  • onSuccess
  • callers pass an AsyncCallback that implements onSuccess()
  • takes a Receiver which must implement onSuccess()
  • Receiver is an abstract class having a default implementation of onFailure()
  • you can extend Receiver and override onFailure()
  • onViolation()
  • any constraint violations on the server
  • The Request type returned from each method
  • parameterized with the return type of the service method.
  • Methods that have no return value should return type Request<Void>
  • BigDecimal, BigInteger, Boolean, Byte, Enum, Character, Date, Double, Float, Integer, Long, Short, String, Void
  • subclass of EntityProxy
  • List<T> or Set<T>
  • primitive types are not supported
  • methods that operate on an entity itself
  • like persist() and remove()
  • return objects of type InstanceRequest rather than Reques
  • Server Implementations
  • methods defined in an
  • entity's service interface
  • implemented in the class named
  • @Service annotation
  • in these examples, is the entity class
  • service implementations do not directly implement the RequestContext interface
  • server-side implementations use the domain entity types
  • @Entity
  • EntityManager
  • createQuery
  • getResultList();
  • entityManager()
  • createEntityManager()
  • em.persist(this);
  • em.remove(attached
  • em.close();
  • defined in the service's
  • RequestContext interface
  • even though the implementation does not formally implement the interface in Java
  • name and argument list for each method
  • same on client and server
  • Client side methods
  • return Request<T>
  • only T on the server
  • EntityProxy types become the domain entity type on the server
  • Methods that return a Request object in the client interface are implemented as static methods on the entity
  • Methods that operate on a single instance of an entity, like persist() and remove(),
  • eturn an
  • InstanceRequest
  • in the client interface
  • Instance methods do not pass the instance directly, but rather via the
  • using()
  • instance methods must be implemented as non-static methods in the entity type
  • Four special methods are required on all entities
  • as they are used by the RequestFactory servlet:
  • constructor
  • findEntity
  • An entity's getId()
  • is typically auto-generated by the persistence engine (JDO, JPA, Objectify, etc.)
  • "find by ID" method has a special naming convention
  • find()
  • "find" plus the type's simple name
  • On the server
  • getVersion() method is used by RequestFactory to infer if an entity has changed
  • backing store (JDO, JPA, etc.) is responsible for updating the version each time the object is persisted,
  • RequestFactoryServlet sends an UPDATE
  • if an entity changes as
  • Second, the client maintains a version cache of recently seen entities
  • Whenever it sees an entity whose version has changed, it fires
  • UPDATE events on the event bus
  • so that listeners can update the view
  • GWT.create
  • and initialize it with your application's EventBus
  • GWT.create
  • requestFactory.initialize
  • create a new entity on the client
  • EmployeeRequest request
  • EmployeeProxy newEmployee
  • All client-side code should use the EmployeeProxy
  • not the Employee entity itself
  • unlike GWT-RPC, where the same concrete type is used on both client and server
  • RequestFactory
  • designed to be used with an ORM layer like JDO or JPA
  • on the server
  • to build data-oriented (CRUD) apps with an ORM-like interface
  • on the client
  • easy to implement a data access layer
  • structure your server-side code in a data-centric way
  • GWT-RPC, which is service-oriented
  • On the client side, RequestFactory keeps track of objects that have been modified and sends only changes
  • lightweight network payloads
  • solid foundation for automatic batching and caching of requests in the future
  • RequestFactoryServlet
  • RequestFactory uses its own servlet
  • own protocol
  • not designed for general purpose services like GWT-RPC
  • implements its
  • It is designed specifically for implementing a persistence layer on both client and server.
  • In persistence frameworks like JDO and JPA, entities are annotated with
  • client-side representation of an entity
  • known as a
  • DTO (Data Transfer Object)
  • hook used to indicate that an object can be managed by RequestFactory
  • RequestFactory
  • EntityProxy interface
  • automatically populates bean-style properties between entities on the server and the corresponding EntityProxy on the client,
  • send only changes ("deltas") to the server
  • extends EntityProxy
  • interface
  • @ProxyFor
  • reference the server-side entity being represented
  • It is not necessary to represent every property and method from the server-side entity in the EntityProxy
  • EntityProxyId returned by this method is used throughout RequestFactory-related classes
  • while getId() is shown in this example, most client code will want to refer to
  • EntityProxy.stableId() i
  • to represent any type
  • is not required to expose an ID and version
  • often used to represent embedded object types within entities
  • @Embedded
  • Address
  • Address type
  • POJO with no persistence annotations
  • Address is represented as a ValueProxy
  • extends ValueProxy
  • interface
  • extends EntityProxy
  • interface
  • AddressProxy
  • AddressProxy
  • ValueProxy can be used to pass any type to and from the server
  • RequestFactory
  • interface between your client and server code
  • RequestContext interface
  • The server-side service
  • must implement each method
DJHell .

Portale und Portlets (4) || IT-Republik - JAXenter - Artikel - 0 views

  •  
    In den letzten Teilen der Serie wurden bereits viele Neuerungen des JSR-286 vorgestellt und an konkreten Beispielen demonstriert. In diesem Teil wird der Schwerpunkt darauf gelegt, wie die entstandene Ausgabe gecached werden kann, um auch das Thema Performance nicht aus den Augen zu verlieren. Ein Überblick über die Annotation-Unterstützung des JSR-286 rundet die Einführung neuer Features ab.
Hendy Irawan

Articles | OcpSoft - JSF2 | SEO | Bookmarking | Java | Best Practices | Agile - 0 views

  •  
    "The PrettyFaces team is currently working on an alternative way to configure URL mappings. PrettyFaces will soon allow to use annotations instead of the classic XML configuration file to declare mappings. We encourage everyone interested in PrettyFaces to take a look at this new way of configuration and share his or her opinion with us."
Hendy Irawan

Equinox Aspects - 0 views

  •  
    Aspect-oriented computing is continuing to increase in popularity. The modularity inherent in OSGi and Eclipse offers unique opportunities for managing and applying aspects by supplying them in bundles and directing their application to particular sets of bundles. This incubator work area is dedicated to delivering an integration of aspects and OSGi. The goal is to allow developers to use the Equinox together with AspectJ by combining the benefits of both worlds. Using a load-time weaving extension you are able to add AspectJ aspects to your bundle-based system just by putting them into general OSGi bundles. It does not matter if the pointcuts you defined inside the aspects contain join points that are defined by classes within the same bundle or any other bundle in your installation. The load-time weaving extension will take care that your aspects are woven with the appropriate classes at load-time. To illustrate this lets assume the following situation: You would like to write an aspect that traces something within the JDT plug-ins of Eclipse. Without some kind of load-time aspect weaving you would somehow need to recompile those JDT plug-ins using AJDT (for example) together with your aspect. By using the load-time aspect weaving extension all you need is to implement your aspect and add that bundle to your system. The load-time aspect weaving extension takes care of weaving your aspect with the JDT code as it is loaded. And it doesn't matter if a new JDT is installed by the user later on. The next time your application is started the load-time aspect weaving will take care of weaving your aspect into these bundles as well, if necessary. With this technology is becomes possible to modularize crosscutting concerns across different plug-ins while keeping the idea of separate compilation for bundles. Goals Provide Runtime Modularity and Versioning for Crosscutting Concerns: Aspects are used to implement crosscutting concerns. However such concerns usually compr
anonymous

untitled - 0 views

  • initWidget(uiBinder.createAndBindUi(this));
    • anonymous
       
      To inizialize the "menber variable" whith the widget object described in the XML view despription
  • uiBinder.createAndBindUi(this)
  • GWT compiler won't actually visit this URL to fetch the file, because a copy of it is baked into the compiler
  • ...15 more annotations...
  • @UiField have default visibility
  • UIObject
  • DivElement
  • If your factory method needs arguments, those will be required as attributes.
  • Every widget that is declared in a template is created by a call to GWT.create().
  • @UiConstructor annotation.
  • you can mark your own widgets with
  • CricketScores has no default (zero args) constructor
  • you can define a @UiFactory method on the UiBinder's owner
  • annotate a constructor of CricketScores with @UiConstructor.
  •   @UiFactory
  • public class UserDashboard extends Composite {  interface MyUiBinder extends UiBinder<Widget, UserDashboard> {}  private static MyUiBinder uiBinder = GWT.create(MyUiBinder.class);  public UserDashboard() {    initWidget(uiBinder.createAndBindUi(this));  }}
  • use several different XML templates for the same view
  • public interface Display
  • methods can be called to fill in attribute values
Hendy Irawan

Apache CXF -- Index - 0 views

  •  
    Apache CXF is an open source services framework. CXF helps you build and develop services using frontend programming APIs, like JAX-WS and JAX-RS. These services can speak a variety of protocols such as SOAP, XML/HTTP, RESTful HTTP, or CORBA and work over a variety of transports such as HTTP, JMS or JBI. CXF includes a broad feature set, but it is primarily focused on the following areas: Web Services Standards Support: CXF supports a variety of web service standards including SOAP, the WS-I Basic Profile, WSDL, WS-Addressing, WS-Policy, WS-ReliableMessaging, WS-Security, WS-SecurityPolicy, WS-SecureConverstation, and WS-Trust (partial). Frontends: CXF supports a variety of "frontend" programming models. CXF implements the JAX-WS APIs (TCK compliant). CXF JAX-WS support includes some extensions to the standard that make it significantly easier to use, compared to the reference implementation: It will automatically generate code for request and response bean classes, and does not require a WSDL for simple cases. It also includes a "simple frontend" which allows creation of clients and endpoints without annotations. CXF supports both contract first development with WSDL and code first development starting from Java. For REST, CXF also supports a JAX-RS (TCK compliant) frontend. Ease of use: CXF is designed to be intuitive and easy to use. There are simple APIs to quickly build code-first services, Maven plug-ins to make tooling integration easy, JAX-WS API support, Spring 2.x XML support to make configuration a snap, and much more. Binary and Legacy Protocol Support: CXF has been designed to provide a pluggable architecture that supports not only XML but also non-XML type bindings, such as JSON and CORBA, in combination with any type of transport. To get started using CXF, check out the downloads, the user's guide, or the mailing lists to get more information!
Hendy Irawan

Texo - Eclipsepedia - 0 views

  •  
    "Texo provides JPA annotations, model and template driven development technology powered by EMF for web application (WAR) development projects. Texo uses components currently present in the Eclipse Modeling Framework (EMF) and Eclipse Modeling Framework Technology (EMFT) projects. Texo is a proposed open source component in the Eclipse Modeling Framework Technology (EMFT) project. "
Hendy Irawan

Apache Felix - Apache Felix iPOJO - 0 views

  •  
    iPOJO is a service component runtime aiming to simplify OSGi application development. It natively supports ALL the dynamism of OSGi. Based on the concept of POJO, application logic is developed easily. Non-functional properties are just injected in the component at runtime. iPOJO strength points are : components are developed as POJO, nothing else is required ! the component model is extensible, so feel free to adapt it to your needs the standard component model manages service providing and service dependencies, and so can require any other OSGi services iPOJO manages the component instance lifecycle and the environment dynamics as it has never been possible iPOJO provides a powerful composition system to create highly dynamic applications iPOJO supports annotations, XML or Java-based API to define the component
Hendy Irawan

jmockit - A capable and elegant developer mock testing toolkit for Java - Google Projec... - 0 views

  •  
    "JMockit allows developers to write unit/integration tests without the testability issues typically found with other mocking APIs. Tests can easily be written that will mock final classes, static methods, constructors, and so on. There are no limitations. The JMockit mocking API is simple, consistent, and minimal. There are no special methods or annotations that need to be used in test code, apart from those that really make sense. In general, the use of JMockit APIs for mocking leads to test code that is better structured and more readable. "
Paul Sydney Orozco

How to Add CRUD Capability On Spring MVC using Hibernate JPA - 0 views

  •  
    A step by step tutorial on adding CRUD (Create,Read,Update,Delete) capability on Spring MVC using Hibernate JPA.
anonymous

Large scale application development and MVP - Part II - Google Web Toolkit - Google Code - 0 views

  • itself
    • anonymous
       
      The View Implementation
  • @UiHandler("
  • presenter.onAddButtonClicked();
  • ...91 more annotations...
  • onAddButtonClicked
  • eventBus.fireEvent(new AddContactEvent());
  • presenter needs to know more about the view
  • view needs to know more about the data model
  • data types are typically homogeneous within column borders
  • ColumnDefinition abstract class
  • houses the any type-specific code (this is the third party mentioned above)
  • ColumnDefinition
  • ColumnDefinition(s) would be created outside of the presenter
  • we can reuse its logic regardless of what view we've attached ourself to
  • update our views such that we can set their ColumnDefinition(s).
  • setColumnDefinitions
  • this.columnDefinitions = columnDefinitions;
  • so that we can pass in
  • a mocked ContactsView instance when testing our ContactsPresenter
  • in our AppController, when we create the ContactsView,
  • new ContactsViewColumnDefinitions().getColumnDefinitions();
  • we can initialize it with the necessary ColumnDefinition(s).
  • contactsView.setColumnDefiniions(
    • anonymous
       
      Initialize ContactsView with the necessary ColumnDefinition(s)
  • With our ColumnDefinition(s) we can pass the model untouched.
  • As mentioned above we were previously dumbing down the model into a list of Strings
  • current solution
  • List<String> data
  • display.setData(data);
  • how that data type is rendered.
  • use generics
  • third party that abstracts
  • knowledge of a cell's data type
  • stringing together a list of these classes
  • providing the necessary render()
  • and isClickable()/isSelectable() override
  • ContactsViewColumnDefinitions<ContactDetails>
  • columnDefinitions =      new ArrayList<ColumnDefinition<ContactDetails>>()
  • ColumnDefinition<T>
  • ContactsPresenter
  • ContactsViewImpl
  • ColumnDefinition<T> columnDefinition = columnDefinitions.get(j);
  • the presenter can pass the model untouched
  • the view has no rendering code
  • that we would otherwise need to test. And the fun doesn't stop there.
  • presenter.onItemClicked(
  • presenter.onItemSelected
  • ClickEvent
  • cell.getCellIndex()
  • columnDefinition.isClickable()
  • SelectEvent
  • columnDefinition.isSelectable()
  • return shouldFireClickEvent;
  • return shouldFireSelectEvent;
  • respond to user interaction in different ways based upon the cell type that was clicked
  • use them for rendering purposes
  • defining how to interpret user interactions
  • we're going to remove any application state from the ContactsView
  • replace the view's getSelectedRows() with a SelectionModel
  • The SelectionModel is nothing more than a wrapper around a list of model objects.
  • ContactsPresenter holds on to an instance of this class
  • onItemSelected
  • Having the ColumnDefinition create a new widget for each cell is too heavy
  • Replace our FlexTable implementation with an HTML widget
  • calling setHTML()
  • Reduce the event overhead by sinking events on the HTML widget
  • rather than the individual cells
  • update our ContactsView.ui.xml file to use a
  • HTML widget rather than a FlexTable widget.
  • <g:HTML ui:field="contactsTable">
  • Inefficiencies related to inserting new elements via DOM manipulation Overhead associated with sinking events per Widget
  • for each item ask our column definitions to render accordingly
  • each column definition
  • render itself into the StringBuilder
  • rather than passing back a full-on widget
  • calling setHTML on a HTML widget
  • rather than calling setWidget on a FlexTable.
  • This will decrease your load time, especially as your tables start to grow.
  • we're reducing the overhead of sinking events on per-cell widgets
  • instead sinking on a single container
  • ClickEvents are still wired up via our UiHandler annotations
  • get the Element that was clicked on
  • and walk the DOM until we find a parent TableCellElement
  • we can determine the row
  • shouldFirdClickEvent() and shouldFireSelectEvent()
  • to take as a parameter a TableCellElement rather than a HTMLTable.Cell.
  • faster startup times via Code Splitting.
  • runAsync() points
  • split portion of your code is purely segmented
  • not referenced by other parts of the app
  • it will be downloaded and executed at the point that it needs to run
  • Do we really want to download all of that code before the user even logs in?
  • Not really.
  • simply grab the login code, and leave the rest for when we actually need it
  • wrap the code that creates the ContactsView and ContactsPresenter in a runAsync() call
  • as optimizations such as this one become easier and easier to implement.
1 - 19 of 19
Showing 20 items per page