Skip to main content

Home/ GAVNet Collaborative Curation/ Group items tagged efficient

Rss Feed Group items tagged

Steve Bosserman

The Digital Freedom Pass: Emancipation from digital slavery | VOX, CEPR Policy Portal - 0 views

  • Digital identity management is currently undertaken by central identity providers, with users providing their data free to digital networks that own their digital identities. If users leave their digital networks, they must leave all their digital possessions, including their digital identities, behind. This system is analogous to slavery. It is neither efficient nor equitable. Users have no assurance that the value of the free data they provide bears any relation to the value of the free services they receive. The digital networks have overwhelming market power relative to their users. This column argues for reform in the form of a Digital Freedom Pass, – the digital equivalent of a wallet containing verified pieces of an individual’s digital identity. The person can then choose which identification to share, with whom, and when, allowing emancipation from our current digital slavery. 
Steve Bosserman

Which Industries Are Investing in Artificial Intelligence? - 0 views

  • The term artificial intelligence typically refers to automation of tasks by software that previously required human levels of intelligence to perform. While machine learning is sometimes used interchangeably with AI, machine learning is just one sub-category of artificial intelligence whereby a device learns from its access to a stream of data.When we talk about AI spending, we’re typically talking about investment that companies are making in building AI capabilities. While this may change in the future, McKinsey estimates that the vast majority of spending is done internally or as an investment, and very little of it is done purchasing artificial intelligence applications from other businesses.
  • 62% of AI spending in 2016 was for machine learning, twice as much as the second largest category computer vision. It’s worth noting that these categories are all types of “narrow” (or “weak”) forms of AI that use data to learn about and accomplish a specific narrowly defined task. Excluded from this report is “general” (or “strong”) artificial intelligence which is more akin to trying to create a thinking human brain.
  • The McKinsey survey mostly fits well as evidence supporting Cross’s framework that large profitable industries are the most fertile grounds of AI adoption. Not surprisingly, Technology is the industry with highest AI adoption and financial services also makes the top three as Cross would predict.Notably, automotive and assembly is the industry with the second highest rate of AI adoption in the McKinsey survey. This may be somewhat surprising as automotive isn’t necessarily an industry with the reputation for high margins. However, the use cases of AI for developing self-driving cars and cost savings using machine learning to improve manufacturing and procurement efficiencies are two potential drivers of this industry’s adoption.
  • ...2 more annotations...
  • AI jobs are much more likely to be unfilled after 60 days compared to the typical job on Indeed, which is only unfilled a quarter of the time. As the demand for AI talent continues to grow faster than the supply, there is no indication this hiring cycle will become quicker anytime soon.
  • One thing we know for certain is that it is very expensive to attract AI talent, given that starting salaries for entry-level talent exceed $300,000. A good bet is that the companies that invest in AI are the ones with healthy enough profit margins that they can afford it.
Steve Bosserman

Will AI replace Humans? - FutureSin - Medium - 0 views

  • According to the World Economic Forum’s Future of Jobs report, some jobs will be wiped out, others will be in high demand, but all in all, around 5 million jobs will be lost. The real question is then, how many jobs will be made redundant in the 2020s? Many futurists including Google’s Chief Futurist believe this will necessitate a universal human stipend that could become globally ubiquitous as early as the 2030s.
  • AI will optimize many of our systems, but also create new jobs. We don’t know the rate at which it will do this. Research firm Gartner further confirms the hypothesis of AI creating more jobs than it replaces, by predicting that in 2020, AI will create 2.3 million new jobs while eliminating 1.8 million traditional jobs.
  • In an era where it’s being shown we can’t even regulate algorithms, how will we be able to regulate AI and robots that will progressively have a better capacity to self-learn, self-engineer, self-code and self-replicate? This first wave of robots are simply robots capable of performing repetitive tasks, but as human beings become less intelligent trapped in digital immersion, the rate at which robots learn how to learn will exponentially increase.How do humans stay relevant when Big Data enables AI to comb through contextual data as would a supercomputer? Data will no longer be the purvey of human beings, neither medical diagnosis and many other things. To say that AI “augments” human in this respect, is extremely naive and hopelessly optimistic. In many respects, AI completely replaces the need for human beings. This is what I term the automation economy.
  • ...3 more annotations...
  • If China, Russia and the U.S. are in a race for AI supremacy, the kind of manifestations of AI will be so significant, they could alter the entire future of human civilization.
  • THE EXPONENTIAL THREATFrom drones, to nanobots to 3D-printing, automation could lead to unparalleled changes to how we live and work. In spite of the increase in global GDP, most people’s quality of living is not likely to see the benefit as it will increasingly be funneled into the pockets of the 1%. Capitalism then, favors the development of an AI that’s fundamentally exploitative to the common global citizen.Just as we exchanged our personal data for convenience and the illusion of social connection online, we will barter convenience for a world a global police state where social credit systems and AI decide how much of a “human stipend” (basic income) we receive. Our poverty or the social privilege we are born into, may have a more obscure relationship to a global system where AI monitors every aspect of our lives.Eventually AI will itself be the CEOs, inventors, master engineers and creator of more efficient robots. That’s when we will know that AI has indeed replaced human beings. What will Google’s DeepMind be able to do with the full use of next-gen quantum computing and supercomputers?
  • Artificial Intelligence Will Replace HumansTo argue that AI and robots and 3D-printing and any other significant technology won’t impact and replace many human jobs, is incredibly irresponsible.That’s not to say humans won’t adapt, and even thrive in more creative, social and meaningful work!That AI replacing repetitive tasks is a good thing, can hardly be denied. But will it benefit all globally citizens equally? Will ethics, common sense and collective pragmatism and social inclusion prevail over profiteers?Will younger value systems such as decentralization and sustainable living thrive with the advances of artificial intelligence?Will human beings be able to find sufficient meaning in a life where many of them won’t have a designated occupation to fill their time?These are the question that futurists like me ponder, and you should too.
Steve Bosserman

I am a data factory (and so are you) - 0 views

  • Data is no less a form of common property than oil or soil or copper. We make data together, and we make it meaningful together, but its value is currently captured by the companies that own it. We find ourselves in the position of a colonized country, our resources extracted to fill faraway pockets. Wealth that belongs to the many — wealth that could help feed, educate, house and heal people — is used to enrich the few. The solution is to take up the template of resource nationalism, and nationalize our data reserves.
  • Emphasising time well spent means creating a Facebook that prioritises data-rich personal interactions that Facebook can use to make a more engaging platform. Rather than spending a lot of time doing things that Facebook doesn’t find valuable – such as watching viral videos – you can spend a bit less time, but spend it doing things that Facebook does find valuable. In other words, “time well spent” means Facebook can monetise more efficiently. It can prioritise the intensity of data extraction over its extensiveness. This is a wise business move, disguised as a concession to critics. Shifting to this model not only sidesteps concerns about tech addiction – it also acknowledges certain basic limits to Facebook’s current growth model. There are only so many hours in the day. Facebook can’t keep prioritising total time spent – it has to extract more value from less time.
  • But let’s assume that our vast data collective is secure, well managed, and put to purely democratic ends. The shift of data ownership from the private to the public sector may well succeed in reducing the economic power of Silicon Valley, but what it would also do is reinforce and indeed institutionalize Silicon Valley’s computationalist ideology, with its foundational, Taylorist belief that, at a personal and collective level, humanity can and should be optimized through better programming. The ethos and incentives of constant surveillance would become even more deeply embedded in our lives, as we take on the roles of both the watched and the watcher. Consumer, track thyself! And, even with such a shift in ownership, we’d still confront the fraught issues of design, manipulation, and agency.
« First ‹ Previous 41 - 60 of 70 Next ›
Showing 20 items per page