Skip to main content

Home/ Groups/ ErgodicPNT
arithwsun arithwsun

FROM HARMONIC ANALYSIS TO ARITHMETIC - 0 views

arithwsun arithwsun

Exposing Roth's Theorem in the Primes - 0 views

arithwsun arithwsun

sol18.pdf (application/pdf 对象) - 0 views

arithwsun arithwsun

[0707.1983] Hidden Life of Riemann's Zeta Function 1. Arrow, Bow, and Targets - 0 views

  • The Riemann Hypothesis is reformulated as statements about eigenvalues of some matrices entries of which are defined via Taylor coefficient of the zeta function. These eigenvalues demonstrate interesting visual patterns allowing one to state a number of conjectures.
arithwsun arithwsun

aa8325.pdf (application/pdf 对象) - 0 views

arithwsun arithwsun

A paper on the ArXiV « Gowers's Weblog - 0 views

  • The paper itself is called “Hypergraph regularity and the multidimensional Szemerédi theorem.” At the bottom level, the basic idea of the paper is due to Ruzsa, Szemerédi and Rödl. Ruzsa and Szemerédi started the ball rolling with a short and very clever argument that showed that Szemerédi’s famous theorem on arithmetic progressions, in the case of progressions of length 3, could be deduced from Szemerédi’s almost as famous regularity lemma, a remarkable result that allows any graph to be partitioned into a bounded number of pieces, almost all of which “behave randomly.”
arithwsun arithwsun

Front: [arXiv:0711.3388] Inverse Conjecture for the Gowers norm is false - 0 views

  • Let $p$ be a fixed prime number, and $N$ be a large integer. The 'Inverse Conjecture for the Gowers norm' states that if the "$d$-th Gowers norm" of a function $f:\F_p^N \to \F_p$ is non-negligible, that is larger than a constant independent of $N$, then $f$ can be non-trivially approximated by a degree $d-1$ polynomial. The conjecture is known to hold for $d=2,3$ and for any prime $p$. In this paper we show the conjecture to be false for $p=2$ and for $d = 4$, by presenting an explicit function whose 4-th Gowers norm is non-negligible, but whose correlation any polynomial of degree 3 is exponentially small.Essentially the same result (with different correlation bounds) was independently obtained by Green and Tao \cite{gt07}. Their analysis uses a modification of a Ramsey-type argument of Alon and Beigel \cite{ab} to show inapproximability of certain functions by low-degree polynomials. We observe that a combination of our results with the argument of Alon and Beigel implies the inverse conjecture to be false for any prime $p$, for $d = p^2$.
arithwsun arithwsun

Pierre Deligne and "Dynasty" contests - 0 views

arithwsun arithwsun

Book: Made to Stick - 0 views

  • Solving Mathematical Problems: A personal perspective. 2nd Edition, Terence Tao. Oxford University P ?The Journey of a thousand miles begins with one step? ? Lao Tzu Every so often, you come across a book that really stands out. I have recently been very fortunate to come across several such books, this being one of them. ?Solving mathematical problems? was written by Terence Tao when he was a 15 year old student and has now been slightly revised in this second edition. Like another of the reviewers at Amazon, I also came across this book after reading an article about Terence Tao winning the Fields medal (a bit like the Nobel prize for mathematics). Not only does it give a wonderful insight into the mind of a young Terence Tao, but also into the techniques used to elegantly solve some reasonably difficult problems, such as those posed as questions for the Maths Olympiad contests. [Terence competed in these challenges in his teens, winning bronze, silver and then gold.] Mathematical researchers are not always great e\ucators. Thankfully, Prof. Tao is.Mainly assuming only basic high-school pure mathematics, worked solutions to the problems are clearly and expertly described. Not only does he solve the problems but he also examines the steps, false starts and other solution possibilities that are part of the general approach to problem solving. I was only slightly disappointed that there were a handful of corrections in this second edition (available at Prof Tao?s blog here); one or two could perplex an unwary reader who might expect the work to be flawless. If you have an interest in mathematics, either as a high school student or a hobbyist, I would highly recommended reading this book. In the preface, Prof Tao remarks that if he wrote a book on the subject of competition problem-solving now, it would very different; now that is definitely a book I would like to read!….
  • Made to Stick: Why Some Ideas Survive and Others Die by Chip and Dan Heath helps us understand why our users (or our coworkers) can repeat the latest web hoax, but can’t remember anything about our projects. What we need to do is to create “sticky messages.” Sticky messages are not necessarily creative messages. In fact, there is formula that the brothers Heath have discovered that will help us to create sticky, memorable messages. That formula is:
    • arithwsun arithwsun
       
      I like this book
arithwsun arithwsun

Fermath - The Prime Numbers and Their Distribution - 0 views

  • The Prime Numbers and Their Distribution User Rating: / 5 PoorBest  Written by Giulia Biagini    Sunday, 14 January 2007 Basic Information Title: The Prime Numbers and Their Distribution Authors: Gérald Tenenbaum and Michel Mendès France Paperback: 115 pages Publisher: American Mathematical Society (May 2000) Language: English ISBN-10: 0821816470 ISBN-13: 978-0821816479
  • This book gives a general and pleasing overview on many topics about the distribution of prime numbers. Its goal is to provide insights of different nature on that theme and this is performed through the illustration of conjectures, methods, results and even (very concise) proofs.   The volume is divided into five chapters, they are: Genesis: from Euclid to Chebyshev; The Riemann Zeta Function; Stochastic Distribution of Prime Numbers; An Elementary Proof of the Prime Number Theorem; The Major Conjectures. All of them are almost independent one to another, so you may skip the ones you are not interested in without any problem. The first one consists of
arithwsun arithwsun

[math/0606087] Quadratic Uniformity of the Mobius Function - 0 views

  • Quadratic Uniformity of the Mobius Function Authors: Ben Green, Terence Tao (Submitted on 4 Jun 2006 (v1), last revised 22 Sep 2007 (this version, v2)) Abstract: This paper is a part of our programme to generalise the Hardy-Littlewood method to handle systems of linear questions in primes. This programme is laid out in our paper Linear Equations in Primes [LEP], which accompanies this submission. In particular, the results of this paper may be used, together with the machinery of [LEP], to establish an asymptotic for the number of four-term progressions p_1 < p_2 < p_3 < p_4 <= N of primes, and more generally any problem counting prime points inside a ``non-degenerate'' affine lattice of codimension at most 2. The main result of this paper is a proof of the Mobius and Nilsequences Conjecture for 1 and 2-step nilsequences. This conjecture is introduced in [LEP] and amounts to showing that if G/\Gamma is an s-step nilmanifold, s <= 2, if F : G/\Gamma -> [-1,1] is a Lipschitz function, and if T_g : G/\Gamma -> G/\Gamma is the action of g \in G on G/\Gamma, then the Mobius function \mu(n) is orthogonal to the sequence F(T_g^n x) in a fairly strong sense, uniformly in g and x in G/\Gamma. This can be viewed as a ``quadratic'' generalisation of an exponential sum estimate of Davenport, and is proven by the following the methods of Vinogradov and Vaughan.
arithwsun arithwsun

PrinceComp.pdf (application/pdf 对象) - 0 views

arithwsun arithwsun

Milliman Lecture I: Additive combinatorics and the primes « What's new - 0 views

  • However, it turns out that if one of the sets, say A, is sufficiently “uniform” or “pseudorandom”, then one can always solve this Goldbach-type problem, regardless of what the other two sets are. This type of fact is often established by Fourier-analytic means (or by closely related techniques, such as spectral theory), but let me give a heuristic combinatorial argument to indicate why one would expect this type of phenomenon to occur.
  • quares Primes Lagrange’s four square theorem: For every positive integer N, there exists a pattern in of the form . Vinogradov’s theorem: For every sufficiently large integer N, there exists a pattern in of the form . Fermat’s two square theorem: For every prime number , there exists a pattern in of the form . Even Goldbach conjecture: For every even number , there exists a pattern in of the form . Fermat’s four square theorem: There does not exist any pattern in of the form with . Green-Tao theorem: For any , there exist infinitely many patterns in of the form with . Pell’s equation: There are infinitely many patterns in of the form . Sophie Germain conjecture: There are infinitely many patterns in of the form .
arithwsun arithwsun

Quantization and Arithmetic - 0 views

  • The primary aim of this book is to create situations in which the zeta function, or other L-functions, will appear in spectral-theoretic questions. A secondary aim is to connect pseudo-differential analysis, or quantization theory, to analytic number theory. Both are attained through the analysis of operators on functions on the line by means of their diagonal matrix elements against families of arithmetic coherent states: these are families of discretely supported measures on the line, transforming in specific ways under the part of the metaplectic representation or, more generally, representations from the discrete series of SL(2,R), lying above an arithmetic group such as SL(2,Z).
arithwsun arithwsun

Structure and randomness in the prime numbers « What's new - 0 views

  • 2 July, 2008 at 6:28 pm Terence Tao It unfortunately seems that the decomposition claimed in equation (6.9) on page 20 of that paper is, in fact, impossible; it would endow the function h (which is holding the arithmetical information about the primes) with an extremely strong dilation symmetry which it does not actually obey. It seems that the author was relying on this symmetry to make the adelic Fourier transform far more powerful than it really ought to be for this problem.
  • 3 July, 2008 at 3:41 am Gergely Harcos I also have some (perhaps milder) troubles with the proof. It seems to me as if Li had treated the Dirac delta on L^2(A) as a function. For example, the first 5 lines of page 28 make little sense to me. Am I missing something here?
  • 4 July, 2008 at 5:15 am Lior Silberman The function defined on page 20 does have a strong dilation symmetry: it is invariant by multiplication by ideles of norm one (since it is merely a function of the norm of ). In particular, it is invariant under multiplication by elements of . I’m probably missing something here. Probably the subtlety is in passing from integration over the nice space of idele classes to the singular space . The topologies on the spaces of adeles and ideles are quite different. There is a formal error in Theorem 3.1 which doesn’t affect the paper: the distribution discussed is not unique. A distribution supported at a point is a sum of derivatives of the delta distribution. Clearly there exist many such with a given special value of the Fourier transform. There is also something odd about this paper: nowhere is it pointed out what is the new contribution of the paper. Specifically, what is the new insight about number theory?
  • ...12 more annotations...
  • 4 July, 2008 at 6:09 am Emmanuel Kowalski A remark concerning Lior’s remark: the function h(u) in the current (v4) version of the paper is _not_ the same as the one that was defined when T. Tao pointed out a problem with it. This earlier one (still visible on arXiv, v1) was defined in different ways depending on whether the idele had at most one or more than one non-unit component, and was therefore not invariant under multiplication by . (It is another problem with looking at such a paper if corrections as drastic as that are made without any indication of when and why).
  • 4 July, 2008 at 8:15 am Terence Tao Dear Lior, Emmanuel is correct. The old definition of h was in fact problematic for a large number of reasons (the author was routinely integrating h on the idele class group C, which is only well-defined if h was -invariant). Changing the definition does indeed fix the problem I pointed out (and a number of other issues too). But Connes has pointed out a much more serious issue, in the proof of the trace formula in Theorem 7.3 (which is the heart of the matter, and is what should be focused on in any future revision): the author is trying to use adelic integration to control a function (namely, h) supported on the ideles, which cannot work as the ideles have measure zero in the adeles. (The first concrete error here arises in the equation after (7.13): the author has made a change of variables on the idele class group C that only makes sense when u is an idele, but u is being integrated over the adeles instead. All subsequent manipulations involving the adelic Fourier transform Hh of h are also highly suspect, since h is zero almost everywhere on the adeles.)
  • More generally, there is a philosophical objection as to why a purely multiplicative adelic approach such as this one cannot work. The argument only uses the multiplicative structure of , but not the additive structure of k. (For instance, the fact that k is a cocompact discrete additive subgroup of A is not used.) Because of this, the arguments would still hold if we simply deleted a finite number of finite places v from the adeles (and from ). If the arguments worked, this would mean that the Weil-Bombieri positivity criterion (Theorem 3.2 in the paper) would continue to hold even after deleting an arbitrary number of places. But I am pretty sure one can cook up a function g which (assuming RH) fails this massively stronger positivity property (basically, one needs to take g to be a well chosen slowly varying function with broad support, so that the Mellin transforms at Riemann zeroes, as well as the pole at 1 and the place at infinity, are negligible but which gives a bad contribution to a single large prime (and many good contributions to other primes which we delete).)
  • Emmanuel Kowalski That’s an interesting point indeed, if one considers that the RH doesn’t work over function fields once we take out a point of a (smooth projective) curve — there arise zeros of the zeta function which are not on the critical line.
  • 6 July, 2008 at 5:28 pm Chip Neville Terence, I have a question about your comment: “Because of this, the arguments would still hold if we simply deleted a finite number of finite places v from the adeles (and from k^*). … (basically, one needs to take g to be a well chosen slowly varying function with broad support, so that the Mellin transforms at Riemann zeroes, as well as the pole at 1 and the place at infinity, are negligible but which gives a bad contribution to a single large prime (and many good contributions to other primes which we delete).)” Does this mean that you would be considering the “reduced” (for lack of a better name) zeta function \prod 1/(1-1/p^{-s}), where the product is taken over the set of primes not in a finite subset S? If so, this “reduced” zeta function has the same zeroes as the standard Riemann zeta function, since the finite product \prod_S 1/(1-1/p^{-s}) is an entire function with no zeroes in the complex plane. Thus the classical situation in the complex plane seems to be very different in this regard from the situation with function fields over smooth projective curves alluded to by Emmanuel above. Does anyone have an example of an infinite set S and corresponding reduced zeta function with zeroes in the half plane Re z > 1/2? A set S of primes p so that \sum_S 1/p^{1/2} converges will not do, since \prod_S 1/(1-1/p^{-s}) is holomorphic in the half plane Re z > 1/2 with no zeroes there. Perhaps a set S of primes P thick enough so that \sum_S 1/p^{1/2} diverges, but thin enough so that \sum_S 1/p converges, might do. This seems to me to be a delicate and difficult matter. I hope these questions do not sound too foolish.
  • 6 July, 2008 at 7:44 pm Terence Tao Dear Chip, Actually, the product has a number of poles on the line , when s is a multiple of . Li’s approach to the RH was not to tackle it directly, but instead to establish the Weil-Bombieri positivity condition which is known to be equivalent to RH. However, the proof of that equivalence implicitly uses the functional equation for the zeta function (via the explicit formula). If one starts deleting places (i.e. primes) from the problem, the RH stays intact (at least on the half-plane ), but the positivity condition does not, because the functional equation has been distorted.
  • The functional equation, incidentally, is perhaps the one non-trivial way we do know how to exploit the additive structure of k inside the adeles, indeed I believe this equation can be obtained from the Poisson summation formula for the adeles relative to k. But it seems that the functional equation alone is not enough to yield the RH; some other way of exploiting additive structure is also needed, but I have no idea what it should be. [Revised, July 7:] Looking back at Li’s paper, I see now that Poisson summation was indeed used quite a few times, and in actually a rather essential way, so my previous philosophical objection does not actually apply here. My revised opinion is now that, beyond the issues with the trace formula that caused the paper to be withdrawn, there is another fundamental problem with the paper, which is that the author is in fact implicitly assuming the Riemann hypothesis in order to justify some facts about the operator E (which one can think of as a sort of Mellin transform multiplier with symbol equal to the zeta function, related to the operator on ). More precisely, on page 18, the author establishes that and asserts that this implies that , but this requires certain invertibility properties of E which fail if there is a zero off of the critical line. (A related problem is that the decomposition used immediately afterwards is not justified, because is merely dense in rather than equal to it.)
  • 7 July, 2008 at 9:59 am javier Dear Terence, I am not sure I understand your “philosophical” complain on using only the multiplicative structure and not the additive one. This is essentially the philosophy while working over the (so over-hyped lately) field with one element, which apparently comes into the game in the description of the Connes-Bost system on the latest Connes-Consani-Marcolli paper (Fun with F_un). From an algebraic point of view, you can often recover the additive structure of a ring from the multiplicative one provided that you fix the zero. There is an explanation of this fact (using the language of monads) in the (also famous lately) work by Nikolai Durov “A new approach to Arakelov geometry (Section 4.8, on additivity on algebraic monads). By the way, I wanted to tell you that I think you are doing an impressive work with this blog and that I really enjoy learning from it, even if this is the very first time I’ve got something sensible to say :-)
  • 7 July, 2008 at 11:01 am Terence Tao Dear Javier, I must confess I do not understand the field with one element much at all (beyond the formal device of setting q to 1 in any formula derived using and seeing what one gets), and don’t have anything intelligent to say on that topic. Regarding my philosophical objection, the point was that if one deleted some places from the adele ring A and the multiplicative group (e.g. if k was the rationals, one could delete the place 2 by replacing with the group of non-zero rationals with odd numerator and denominator) then one would still get a perfectly good “adele” ring in place of A, and a perfectly good multiplicative group in place of (which would be the invertible elements in the ring of rationals with odd denominator), but somehow the arithmetic aspects of the adeles have been distorted in the process (in particular, Poisson summation and the functional equation get affected). The Riemann hypothesis doesn’t seem to extend to this general setting, so that suggests that if one wants to use adeles to prove RH, one has to somehow exploit the fact that one has all places present, and not just a subset of such places. Now, Poisson summation does exploit this very fact, and so technically this means that my objection does not apply to Li’s paper, but I feel that Poisson summation is not sufficient by itself for this task (just as the functional equation is insufficient to resolve RH), and some further exploitation of additive (or field-theoretic) structure of k should be needed. I don’t have a precise formalisation of this feeling, though.
  • 7 July, 2008 at 1:22 pm Gergely Harcos Dear Terry, you are absolutely right that Poisson summation over k inside A is the (now) standard way to obtain the functional equation for Hecke L-functions. This proof is due to Tate (his thesis from 1950), you can also find it in Weil’s Basic Number Theory, Chapter 7, Section 5.
  • 15 July, 2008 at 7:57 am michele I think that the paper of Prof. Xian-Jin Li will be very useful for a future and definitive proof of the Riemann hypothesis. Furthermore, many mathematics contents of this paper can be applied for further progress in varios sectors of theoretical physics (p-adic and adelic strings, zeta strings).
  • Babak Hi Terrance, A few months ago I stumbled upon an interesting differential equation while using probability heuristics to explore the distribution of primes. It’s probably nothing, but on the off-chance that it might mean something to a better trained mind, I decided to blog about it: http://babaksjournal.blogspot.com/2008/07/differential-equation-estimating.html -Babak
arithwsun arithwsun

Conference update, part II « The Accidental Mathematician - 0 views

  • In the second lecture (based on Gowers’s joint work with Julia Wolf) we were introduced to decomposition theorems. A decomposition theorem for the norm can be stated as follows: if is a function (on either or ) with , there is a decomposition , where are “generalized quadratic phase functions” and are error terms with and small. This can be deduced from the inverse theorem of Green-Tao; in fact a similar statement was already implicit in their work, based on the energy increment argument. Tim presented a different approach to deducing decomposition theorems from inverse theorems, based on functional-analytic arguments involving the geometry of normed spaces (specifically, a variant of the Hahn-Banach theorem).
  • This can be applied to the question of counting solutions to systems of linear equations in sets. Let’s say that we are interested in finding sensible conditions under which a set will have the “statistically correct” number of solutions to a system of linear equations. For instance, if it is 4-term arithmetic progressions that we are concerned with, then uniformity is sufficient (and, in general, necessary). Green and Tao prove a more general result of this type: they define the complexity of a system of linear forms, and prove that systems of complexity are controlled by norms.
  • Gowers and Wolf, however, do not stop there. Suppose that, instead of 4-term progressions, we are interested in configurations of the form, say, . The complexity of this system in the sense of Green-Tao is 2, hence a set uniform in the norm will contain the “right” number of such configurations. Gowers and Wolf, however, can prove that uniformity already guarantees the same conclusion! The difference between the two examples? The squares are linearly dependent, whereas are not. Gowers and Wolf prove that such “square independence” is in fact both sufficient and necessary for a system of complexity 2 to be controlled by the $U^2$ norm. The proof is based on the decomposition theorem described earlier.
arithwsun arithwsun

中国高等研究院"数学、理论物理和哲学杰出青年才俊免费班"招生启事-恒甫学社-搜狐博客 - 0 views

  • 中国高等研究院 2008年“数学、理论物理和哲学杰出青年才俊免费班”招生启事     中国高等研究院将从2008年9月开始,每个周末(周六、日)举办数学、理论物理和哲学杰出青年才俊班,讲授数学、理论物理和哲学领域的基础理论。该班为免费授课,欢迎全国各高校的大学生、硕士研究生报名,也欢迎博士研究生参加。   授课时间:每周六、日,第一次课程将于2008年9月6日、7日开始。   授课地点:中央财经大学校内   所授课程涵盖如下领域:   数学:代数,分析,几何,拓扑学; 理论物理:弦论,宇宙学,现象学; 哲学:数理逻辑,分析哲学,心灵哲学,哲学史,中西比较哲学。   授课教授:   数学和理论物理: 沈维孝(讲座教授,东京大学数学博士), 夏志宏(讲座教授,西北大学数学博士),刘清越 (副教授,中国科学院数学博士),郭光远(副教授,牛津大学数学博士,微分几何,拓扑),邓健 (副教授,布朗大学数学博士),徐栩(副教授,中国科技大学博士),梁湘三(教授,哈佛大学博士),杨海棠(副教授,MIT理论物理博士),吕宏(讲座教授,德州A&M大学理论物理博士)等。
arithwsun arithwsun

Number Theory and Polynomials - Cambridge University Press - 0 views

  • Many areas of active research within the broad field of number theory relate to properties of polynomials, and this volume displays the most recent and most interesting work on this theme. The 2006 Number Theory and Polynomials workshop in Bristol drew together international researchers with a variety of number-theoretic interests, and the book’s contents reflect the quality of the meeting. Topics covered include recent work on the Schur-Siegel-Smyth trace problem, Mahler measure and its generalisations, the merit factor problem, Barker sequences, K3-surfaces, self-inversive polynomials, Newman’s inequality, algorithms for sparse polynomials, the integer transfinite diameter, divisors of polynomials, non-linear recurrence sequences, polynomial ergodic averages, and the Hansen-Mullen primitivity conjecture. With surveys and expository articles presenting the latest research, this volume is essential for graduates and researchers looking for a snapshot of current progress in polynomials and number theory.• An invaluable resource to both students and experts in this area, with survey articles on the most important topics in the field • Expository articles introduce graduate students to some problems of active interest • The inclusion of new results from leading experts in the field provides a snapshot of current progress
arithwsun arithwsun

Introductory Lectures on Siegel Modular Forms - Cambridge University Press - 0 views

  • From their inception, Siegel modular forms have been studied extensively because of their significance in both automorphic functions in several complex variables and number theory. The comprehensive theory of automorphic forms to subgroups of algebraic groups and the arithmetical theory of modular forms illustrate these two aspects in an illuminating manner. The author’s aim is to present a straightforward and easily accessible survey of the main ideas of the theory at an elementary level, providing a sound basis from which the reader can study advanced works and undertake original research. This book is based on lectures given by the author for a number of years and is intended for a one-semester graduate course, though it can also be used profitably for self-study. The only prerequisites are a basic knowledge of algebra, number theory and complex analysis.Contents
  • Preface; 1. The modular group; 2. Basic facts on modular forms; 3. Large weights; 4. Small weights; 5. Modular functions; 6. Dirichlet series; Bibliography; Index.
‹ Previous 21 - 40 Next › Last »
Showing 20 items per page