Skip to main content

Home/ ErgodicPNT/ Contents contributed and discussions participated by arithwsun arithwsun

Contents contributed and discussions participated by arithwsun arithwsun

arithwsun arithwsun

Primitive root modulo n - Wikipedia, the free encyclopedia - 0 views

  • Fridlander (1949) and Salié (1950) proved[5] that that there is a constant C such that for infinitely many primes gp > C log p.
  • Shoup (1990, 1992) proved,[9] assuming the generalized Riemann hypothesis, that gp =O(log6 p).
arithwsun arithwsun

[math/0610021] The principle of the large sieve - 0 views

  • We describe a very general abstract form of sieve based on a large sieve inequality which generalizes both the classical sieve inequality of Montgomery (and its higher-dimensional variants), and our recent sieve for Frobenius over function fields. The general framework suggests new applications. We get some first results on the number of prime divisors of ``most'' elements of an elliptic divisibility sequence, and we develop in some detail ``probabilistic'' sieves for random walks on arithmetic groups, e.g., estimating the probability of finding a reducible characteristic polynomial at some step of a random walk on SL(n,Z). In addition to the sieve principle, the applications depend on bounds for a large sieve constant. To prove such bounds involves a variety of deep results, including Property (T) or expanding properties of Cayley graphs, and the Riemann Hypothesis over finite fields. It seems likely that this sieve can have further applications.
arithwsun arithwsun

The mean distance to the nth neighbour in a uniform distribution of random points - 0 views

  • Abstract. We study different ways of determining the mean distance rn between a reference point and its nth neighbour among random points distributed with uniform density in a D-dimensional Euclidean space. First, we present a heuristic method; though this method provides only a crude mathematical result, it shows a simple way of estimating rn. Next, we describe two alternative means of deriving the exact expression of rn: we review the method using absolute probability and develop an alternative method using conditional probability. Finally, we obtain an approximation to rn from the mean volume between the reference point and its nth neighbour and compare it with the heuristic and exact results.
arithwsun arithwsun

Quantization and Arithmetic - 0 views

  • The primary aim of this book is to create situations in which the zeta function, or other L-functions, will appear in spectral-theoretic questions. A secondary aim is to connect pseudo-differential analysis, or quantization theory, to analytic number theory. Both are attained through the analysis of operators on functions on the line by means of their diagonal matrix elements against families of arithmetic coherent states: these are families of discretely supported measures on the line, transforming in specific ways under the part of the metaplectic representation or, more generally, representations from the discrete series of SL(2,R), lying above an arithmetic group such as SL(2,Z).
arithwsun arithwsun

Structure and randomness in the prime numbers « What's new - 0 views

  • 2 July, 2008 at 6:28 pm Terence Tao It unfortunately seems that the decomposition claimed in equation (6.9) on page 20 of that paper is, in fact, impossible; it would endow the function h (which is holding the arithmetical information about the primes) with an extremely strong dilation symmetry which it does not actually obey. It seems that the author was relying on this symmetry to make the adelic Fourier transform far more powerful than it really ought to be for this problem.
  • 3 July, 2008 at 3:41 am Gergely Harcos I also have some (perhaps milder) troubles with the proof. It seems to me as if Li had treated the Dirac delta on L^2(A) as a function. For example, the first 5 lines of page 28 make little sense to me. Am I missing something here?
  • 4 July, 2008 at 5:15 am Lior Silberman The function defined on page 20 does have a strong dilation symmetry: it is invariant by multiplication by ideles of norm one (since it is merely a function of the norm of ). In particular, it is invariant under multiplication by elements of . I’m probably missing something here. Probably the subtlety is in passing from integration over the nice space of idele classes to the singular space . The topologies on the spaces of adeles and ideles are quite different. There is a formal error in Theorem 3.1 which doesn’t affect the paper: the distribution discussed is not unique. A distribution supported at a point is a sum of derivatives of the delta distribution. Clearly there exist many such with a given special value of the Fourier transform. There is also something odd about this paper: nowhere is it pointed out what is the new contribution of the paper. Specifically, what is the new insight about number theory?
  • ...12 more annotations...
  • 4 July, 2008 at 6:09 am Emmanuel Kowalski A remark concerning Lior’s remark: the function h(u) in the current (v4) version of the paper is _not_ the same as the one that was defined when T. Tao pointed out a problem with it. This earlier one (still visible on arXiv, v1) was defined in different ways depending on whether the idele had at most one or more than one non-unit component, and was therefore not invariant under multiplication by . (It is another problem with looking at such a paper if corrections as drastic as that are made without any indication of when and why).
  • 4 July, 2008 at 8:15 am Terence Tao Dear Lior, Emmanuel is correct. The old definition of h was in fact problematic for a large number of reasons (the author was routinely integrating h on the idele class group C, which is only well-defined if h was -invariant). Changing the definition does indeed fix the problem I pointed out (and a number of other issues too). But Connes has pointed out a much more serious issue, in the proof of the trace formula in Theorem 7.3 (which is the heart of the matter, and is what should be focused on in any future revision): the author is trying to use adelic integration to control a function (namely, h) supported on the ideles, which cannot work as the ideles have measure zero in the adeles. (The first concrete error here arises in the equation after (7.13): the author has made a change of variables on the idele class group C that only makes sense when u is an idele, but u is being integrated over the adeles instead. All subsequent manipulations involving the adelic Fourier transform Hh of h are also highly suspect, since h is zero almost everywhere on the adeles.)
  • More generally, there is a philosophical objection as to why a purely multiplicative adelic approach such as this one cannot work. The argument only uses the multiplicative structure of , but not the additive structure of k. (For instance, the fact that k is a cocompact discrete additive subgroup of A is not used.) Because of this, the arguments would still hold if we simply deleted a finite number of finite places v from the adeles (and from ). If the arguments worked, this would mean that the Weil-Bombieri positivity criterion (Theorem 3.2 in the paper) would continue to hold even after deleting an arbitrary number of places. But I am pretty sure one can cook up a function g which (assuming RH) fails this massively stronger positivity property (basically, one needs to take g to be a well chosen slowly varying function with broad support, so that the Mellin transforms at Riemann zeroes, as well as the pole at 1 and the place at infinity, are negligible but which gives a bad contribution to a single large prime (and many good contributions to other primes which we delete).)
  • Emmanuel Kowalski That’s an interesting point indeed, if one considers that the RH doesn’t work over function fields once we take out a point of a (smooth projective) curve — there arise zeros of the zeta function which are not on the critical line.
  • 6 July, 2008 at 5:28 pm Chip Neville Terence, I have a question about your comment: “Because of this, the arguments would still hold if we simply deleted a finite number of finite places v from the adeles (and from k^*). … (basically, one needs to take g to be a well chosen slowly varying function with broad support, so that the Mellin transforms at Riemann zeroes, as well as the pole at 1 and the place at infinity, are negligible but which gives a bad contribution to a single large prime (and many good contributions to other primes which we delete).)” Does this mean that you would be considering the “reduced” (for lack of a better name) zeta function \prod 1/(1-1/p^{-s}), where the product is taken over the set of primes not in a finite subset S? If so, this “reduced” zeta function has the same zeroes as the standard Riemann zeta function, since the finite product \prod_S 1/(1-1/p^{-s}) is an entire function with no zeroes in the complex plane. Thus the classical situation in the complex plane seems to be very different in this regard from the situation with function fields over smooth projective curves alluded to by Emmanuel above. Does anyone have an example of an infinite set S and corresponding reduced zeta function with zeroes in the half plane Re z > 1/2? A set S of primes p so that \sum_S 1/p^{1/2} converges will not do, since \prod_S 1/(1-1/p^{-s}) is holomorphic in the half plane Re z > 1/2 with no zeroes there. Perhaps a set S of primes P thick enough so that \sum_S 1/p^{1/2} diverges, but thin enough so that \sum_S 1/p converges, might do. This seems to me to be a delicate and difficult matter. I hope these questions do not sound too foolish.
  • 6 July, 2008 at 7:44 pm Terence Tao Dear Chip, Actually, the product has a number of poles on the line , when s is a multiple of . Li’s approach to the RH was not to tackle it directly, but instead to establish the Weil-Bombieri positivity condition which is known to be equivalent to RH. However, the proof of that equivalence implicitly uses the functional equation for the zeta function (via the explicit formula). If one starts deleting places (i.e. primes) from the problem, the RH stays intact (at least on the half-plane ), but the positivity condition does not, because the functional equation has been distorted.
  • The functional equation, incidentally, is perhaps the one non-trivial way we do know how to exploit the additive structure of k inside the adeles, indeed I believe this equation can be obtained from the Poisson summation formula for the adeles relative to k. But it seems that the functional equation alone is not enough to yield the RH; some other way of exploiting additive structure is also needed, but I have no idea what it should be. [Revised, July 7:] Looking back at Li’s paper, I see now that Poisson summation was indeed used quite a few times, and in actually a rather essential way, so my previous philosophical objection does not actually apply here. My revised opinion is now that, beyond the issues with the trace formula that caused the paper to be withdrawn, there is another fundamental problem with the paper, which is that the author is in fact implicitly assuming the Riemann hypothesis in order to justify some facts about the operator E (which one can think of as a sort of Mellin transform multiplier with symbol equal to the zeta function, related to the operator on ). More precisely, on page 18, the author establishes that and asserts that this implies that , but this requires certain invertibility properties of E which fail if there is a zero off of the critical line. (A related problem is that the decomposition used immediately afterwards is not justified, because is merely dense in rather than equal to it.)
  • 7 July, 2008 at 9:59 am javier Dear Terence, I am not sure I understand your “philosophical” complain on using only the multiplicative structure and not the additive one. This is essentially the philosophy while working over the (so over-hyped lately) field with one element, which apparently comes into the game in the description of the Connes-Bost system on the latest Connes-Consani-Marcolli paper (Fun with F_un). From an algebraic point of view, you can often recover the additive structure of a ring from the multiplicative one provided that you fix the zero. There is an explanation of this fact (using the language of monads) in the (also famous lately) work by Nikolai Durov “A new approach to Arakelov geometry (Section 4.8, on additivity on algebraic monads). By the way, I wanted to tell you that I think you are doing an impressive work with this blog and that I really enjoy learning from it, even if this is the very first time I’ve got something sensible to say :-)
  • 7 July, 2008 at 11:01 am Terence Tao Dear Javier, I must confess I do not understand the field with one element much at all (beyond the formal device of setting q to 1 in any formula derived using and seeing what one gets), and don’t have anything intelligent to say on that topic. Regarding my philosophical objection, the point was that if one deleted some places from the adele ring A and the multiplicative group (e.g. if k was the rationals, one could delete the place 2 by replacing with the group of non-zero rationals with odd numerator and denominator) then one would still get a perfectly good “adele” ring in place of A, and a perfectly good multiplicative group in place of (which would be the invertible elements in the ring of rationals with odd denominator), but somehow the arithmetic aspects of the adeles have been distorted in the process (in particular, Poisson summation and the functional equation get affected). The Riemann hypothesis doesn’t seem to extend to this general setting, so that suggests that if one wants to use adeles to prove RH, one has to somehow exploit the fact that one has all places present, and not just a subset of such places. Now, Poisson summation does exploit this very fact, and so technically this means that my objection does not apply to Li’s paper, but I feel that Poisson summation is not sufficient by itself for this task (just as the functional equation is insufficient to resolve RH), and some further exploitation of additive (or field-theoretic) structure of k should be needed. I don’t have a precise formalisation of this feeling, though.
  • 7 July, 2008 at 1:22 pm Gergely Harcos Dear Terry, you are absolutely right that Poisson summation over k inside A is the (now) standard way to obtain the functional equation for Hecke L-functions. This proof is due to Tate (his thesis from 1950), you can also find it in Weil’s Basic Number Theory, Chapter 7, Section 5.
  • 15 July, 2008 at 7:57 am michele I think that the paper of Prof. Xian-Jin Li will be very useful for a future and definitive proof of the Riemann hypothesis. Furthermore, many mathematics contents of this paper can be applied for further progress in varios sectors of theoretical physics (p-adic and adelic strings, zeta strings).
  • Babak Hi Terrance, A few months ago I stumbled upon an interesting differential equation while using probability heuristics to explore the distribution of primes. It’s probably nothing, but on the off-chance that it might mean something to a better trained mind, I decided to blog about it: http://babaksjournal.blogspot.com/2008/07/differential-equation-estimating.html -Babak
arithwsun arithwsun

Conference update, part II « The Accidental Mathematician - 0 views

  • In the second lecture (based on Gowers’s joint work with Julia Wolf) we were introduced to decomposition theorems. A decomposition theorem for the norm can be stated as follows: if is a function (on either or ) with , there is a decomposition , where are “generalized quadratic phase functions” and are error terms with and small. This can be deduced from the inverse theorem of Green-Tao; in fact a similar statement was already implicit in their work, based on the energy increment argument. Tim presented a different approach to deducing decomposition theorems from inverse theorems, based on functional-analytic arguments involving the geometry of normed spaces (specifically, a variant of the Hahn-Banach theorem).
  • This can be applied to the question of counting solutions to systems of linear equations in sets. Let’s say that we are interested in finding sensible conditions under which a set will have the “statistically correct” number of solutions to a system of linear equations. For instance, if it is 4-term arithmetic progressions that we are concerned with, then uniformity is sufficient (and, in general, necessary). Green and Tao prove a more general result of this type: they define the complexity of a system of linear forms, and prove that systems of complexity are controlled by norms.
  • Gowers and Wolf, however, do not stop there. Suppose that, instead of 4-term progressions, we are interested in configurations of the form, say, . The complexity of this system in the sense of Green-Tao is 2, hence a set uniform in the norm will contain the “right” number of such configurations. Gowers and Wolf, however, can prove that uniformity already guarantees the same conclusion! The difference between the two examples? The squares are linearly dependent, whereas are not. Gowers and Wolf prove that such “square independence” is in fact both sufficient and necessary for a system of complexity 2 to be controlled by the $U^2$ norm. The proof is based on the decomposition theorem described earlier.
arithwsun arithwsun

Neal Stephenson on Zeta Function Cryptography - 0 views

  • M. Anshel and D. Goldfeld, "Zeta Functions, One-Way Functions, and Pseudorandom Number Generators", Duke Mathematical Journal, Vol. 88 No. 2 (1997) 371-390. "In 1997,Anshel and Goldfeld [6],presented an explicit construction of a pseudorandom number generator arising from an elliptic curve,which can be effectively computed at low computational cost. They introduced a new intractable problem,distinct from integer factorization or the discrete log problem, that leads to a new class of one-way functions based on the theory of zeta functions,and against which there is no known attack."- Richard M. Mollin,"Introduction to Cryptography" CRC Press (2000)
arithwsun arithwsun

The quantitative behaviour of polynomial orbits on nilmanifolds « What's new - 0 views

  • For instance, the question of whether is equidistributed mod 1 is an old unsolved problem, equivalent to asking whether is normal base 10.
  • For instance, the question of whether is equidistributed mod 1 is an old unsolved problem, equivalent to asking whether is normal base 10.
  • [Incidentally, regarding the interactions between physics and number theory: physical intuition has proven to be quite useful in making accurate predictions about many mathematical objects, such as the distribution of zeroes of the Riemann zeta function, but has been significantly less useful in generating rigorous proofs of these predictions. In number theory, our ability to make accurate predictions on anything relating to the primes (or related objects) is now remarkably good, but our ability to actually prove these predictions rigorously lags behind quite significantly. So I doubt that the key to further rigorous progress on these problems lies with physics.]
  •  
    For instance, the question of whether (10^n \pi)_{n \in {\Bbb N}} is equidistributed mod 1 is an old unsolved problem, equivalent to asking whether \pi is normal base 10.
arithwsun arithwsun

[0807.1736] The Mobius and Nilsequences Conjecture - 0 views

  • We show that the Mobius function mu(n) is strongly asymptotically orthogonal to any polynomial nilsequence n -> F(g(n)L). Here, G is a simply-connected nilpotent Lie group with a discrete and cocompact subgroup L (so G/L is a nilmanifold), g : Z -> G is a polynomial sequence and F: G/L -> R is a Lipschitz function. More precisely, we show that the inner product of mu(n) with F(g(n)L) over {1,...,N} is bounded by 1/log^A N, for all A > 0. In particular, this implies the Mobius and Nilsequence conjecture MN(s) from our earlier paper ``Linear equations in primes'' for every positive integer s. This is one of two major ingredients in our programme, outlined in that paper, to establish a large number of cases of the generalised Hardy-Littlewood conjecture, which predicts how often a collection \psi_1,...,\psi_t : Z^d -> Z of linear forms all take prime values. The proof is a relatively quick application of the results in our recent companion paper on the distribution of polynomial orbits on nilmanifolds. We give some applications of our main theorem. We show, for example, that the Mobius function is uncorrelated with any bracket polynomial. We also obtain a result about the distribution of nilsequences n -> a^nxL as n ranges only over the primes.
arithwsun arithwsun

The Möbius and nilsequences conjecture « What's new - 0 views

  • There is an amusing way to interpret the conjecture (using the close relationship between nilsequences and bracket polynomials) as an assertion of the pseudorandomness of the Liouville function from a computational complexity perspective.   
arithwsun arithwsun

科学网-告别邹承鲁先生 - 0 views

  •  
    所谓"邹承鲁与诺贝尔奖两度擦肩而过"之真相 解 华 波 按:文*革结束不久,我国政府接受杨振宁曾"两度"提过的建议,经中科院研究后推举钮经义作为"中国人工合成牛胰岛素研究"项目的诺贝尔奖候选人。20年后,钮经义已逝,而当年参与该项目的邹承鲁却借"反伪打假"一举成名,很快被采访记者炒成"与诺贝尔奖擦肩而过";不久,又被爆炒为"两度擦肩而过"。知情者不免诧异:候选人都不是,何谈"擦肩"?又何来"两度"?有好奇者追根寻底后不禁拍案叫绝--原来,所谓"两度擦肩"竟是一场精心策划的造神闹剧。 * * * * * 不知何故,曾康慨激昂地宣称"不能靠媒体炒作搞诺贝尔奖"并以此为借口玩弄政*治手腕将张颖清的《全息生物学》打成伪科学的邹承鲁院士,却一直对媒体哄炒他本人"与诺贝尔奖擦肩而过"的喧哗之声装聋作哑。2003年夏,主流媒体"央视国际"专访邹承鲁,再把一轮爆炒推向了新高潮并达到了惊人的高度--"两度与诺贝尔奖擦肩而过"(见搜狐网科学频道:《邹承鲁:一个与诺贝尔奖两度擦肩而过的人》)。事实真相到底如何呢? 40年前,为显示伟大的社会主义中国在"科技战线"的能力,我国倾全国之生化研究力量组织了一个 "人工合成牛胰岛素试验"研究项目。众多科技人员参与了该项目,骨干就有十余位,分成几个小组,分别承担不同的任务,邹承鲁只是其中拆合组的组长。历尽艰难的最后阶段工作--人工A链与人工B链的全合成实验是由杜雨苍为主完成的。在当时的条件下,我国能搞出该项成果实属不易。为此,热心肠的美籍物理学家杨振宁分别于文*革期间和文*革后两度向我国政府建议为该项目申请诺贝尔奖。文*革期间
arithwsun arithwsun

Mathematics of Computation - 0 views

  • We verify a very recent conjecture of Farmer and Rhoades on the asymptotic rate of growth of the derivatives of the Riemann xi function at . We give two separate proofs of this result, with the more general method not restricted to . We briefly describe other approaches to our results, give a heuristic argument, and mention supporting numerical evidence.
arithwsun arithwsun

Eigenvalues of random matrices and not the Riemann Hypothesis | Pacific Institute for t... - 0 views

  • Random matrix theory has been a hot topic in number theory, particularly since the Rudnick and Sarnak landmark work on the spacing of consecutive zeros of L-functions. This highly accessible talk has a far more elementary flavour, focusing on eigenvalues of random integer matrices instead of the Gaussian Unitary Ensemble. For a fixed n, consider a random n×n integer matrix with entries bounded by the parameter k. I'll give a simple proof that such a matrix almost certainly has no rational eigenvalues (as k increases). Then we'll delve into more detail on the exact eigenvalue distribution of the 2×2 case. Along the way we'll rediscover a forgotten determinant identity and tackle some quadruple sums. This is joint work with Greg Martin.
arithwsun arithwsun

科学网-中国学者在科研上的合作:要经费还是要和合作? - 0 views

  • 这里,简单说几句关于中国人合作中的钱和感情的问题。
« First ‹ Previous 61 - 80 of 211 Next › Last »
Showing 20 items per page