Skip to main content

Home/ ErgodicPNT/ Group items tagged correlation

Rss Feed Group items tagged

arithwsun arithwsun

Szemeredi's theorem - 30 views

http://in-theory.blogspot.com/2006_05_28_archive.html in theory Saturday, June 03, 2006 Szemeredi's theorem Szemeredi's theorem on arithmetic progressions is one of the great triumphs of the "Hung...

szemeredi

started by arithwsun arithwsun on 03 Sep 07 no follow-up yet
arithwsun arithwsun

ScienceDirect - Journal of Approximation Theory : Prime pairs and the zeta function - 0 views

  • Are there infinitely many prime pairs with given even difference? Most mathematicians think so. Using a strong arithmetic hypothesis, Goldston, Pintz and Yildirim have recently shown that there are infinitely many pairs of primes differing by at most sixteen.There is extensive numerical support for the prime-pair conjecture (PPC) of Hardy and Littlewood [G.H. Hardy, J.E. Littlewood, Some problems of ‘partitio numerorum’. III: On the expression of a number as a sum of primes, Acta Math. 44 (1923) 1–70 (sec. 3)] on the asymptotic behavior of π2r(x), the number of prime pairs with p≤x. Assuming Riemann’s Hypothesis (RH), Montgomery and others have studied the pair-correlation of zeta’s complex zeros, indicating connections with the PPC. Using a Tauberian approach, the author shows that the PPC is equivalent to specific boundary behavior of a function involving zeta’s complex zeros. A certain hypothesis on equidistribution of prime pairs, or a speculative supplement to Montgomery’s work on pair-correlation, would imply that there is an abundance of prime pairs.
arithwsun arithwsun

Front: [arXiv:0711.3388] Inverse Conjecture for the Gowers norm is false - 0 views

  • Let $p$ be a fixed prime number, and $N$ be a large integer. The 'Inverse Conjecture for the Gowers norm' states that if the "$d$-th Gowers norm" of a function $f:\F_p^N \to \F_p$ is non-negligible, that is larger than a constant independent of $N$, then $f$ can be non-trivially approximated by a degree $d-1$ polynomial. The conjecture is known to hold for $d=2,3$ and for any prime $p$. In this paper we show the conjecture to be false for $p=2$ and for $d = 4$, by presenting an explicit function whose 4-th Gowers norm is non-negligible, but whose correlation any polynomial of degree 3 is exponentially small.Essentially the same result (with different correlation bounds) was independently obtained by Green and Tao \cite{gt07}. Their analysis uses a modification of a Ramsey-type argument of Alon and Beigel \cite{ab} to show inapproximability of certain functions by low-degree polynomials. We observe that a combination of our results with the argument of Alon and Beigel implies the inverse conjecture to be false for any prime $p$, for $d = p^2$.
arithwsun arithwsun

[0711.3388] Inverse Conjecture for the Gowers norm is false - 0 views

  • Inverse Conjecture for the Gowers norm is false Authors: Shachar Lovett, Roy Meshulam, Alex Samorodnitsky (Submitted on 21 Nov 2007) Abstract: Let $p$ be a fixed prime number, and $N$ be a large integer. The 'Inverse Conjecture for the Gowers norm' states that if the "$d$-th Gowers norm" of a function $f:\F_p^N \to \F_p$ is non-negligible, that is larger than a constant independent of $N$, then $f$ can be non-trivially approximated by a degree $d-1$ polynomial. The conjecture is known to hold for $d=2,3$ and for any prime $p$. In this paper we show the conjecture to be false for $p=2$ and for $d = 4$, by presenting an explicit function whose 4-th Gowers norm is non-negligible, but whose correlation any polynomial of degree 3 is exponentially small. Essentially the same result (with different correlation bounds) was independently obtained by Green and Tao \cite{gt07}. Their analysis uses a modification of a Ramsey-type argument of Alon and Beigel \cite{ab} to show inapproximability of certain functions by low-degree polynomials. We observe that a combination of our results with the argument of Alon and Beigel implies the inverse conjecture to be false for any prime $p$, for $d = p^2$. Comments: 20 pages
arithwsun arithwsun

Recent Perspectives in Random Matrix Theory and Number Theory - Cambridge University Pr... - 0 views

  • In recent years the application of random matrix techniques to analytic number theory has been responsible for major advances in this area of mathematics. As a consequence it has created a new and rapidly developing area of research. The aim of this book is to provide the necessary grounding both in relevant aspects of number theory and techniques of random matrix theory, as well as to inform the reader of what progress has been made when these two apparently disparate subjects meet. This volume of proceedings is addressed to graduate students and other researchers in both pure mathematics and theoretical physics. The contributing authors, who are among the world leading experts in this area, have taken care to write self-contained lectures on subjects chosen to produce a coherent volume.• Self-contained lectures by world-leading experts in the field • The volume is integrated, indexed and cross-referenced • This title covers the most important and recent advances in the subjectContents1. Introduction; 2. Prime number theory and the Riemann zeta-function; 3. Notes on pair correlation of zeros and prime numbers; 4. Notes on eigenvalue distributions for the classical compact groups; 5. Compound nucleus resonances, random matrices and quantum chaos; 6. Families of L-functions and 1-level densities; 7. Basic analytic number theory; 8. Applications of mean value theorems to the theory of the Riemann zeta function; 9. L-functions and the characteristic polynomials of random matrices; 10. Mock gaussian behaviour; 11. Some specimens of L-functions; 12. Computational methods and experiments in analytic number theory.
1 - 6 of 6
Showing 20 items per page