Skip to main content

Home/ ErgodicPNT/ Group items tagged Math-Web

Rss Feed Group items tagged

arithwsun arithwsun

E. Kowalski's blog » Averages of singular series, or: when Poisson is everywhere - 0 views

  • I have recently posted on my web page a preprint concerning some averages of “singular series” (another example of pretty bad mathematical terminology…) arising in the prime k-tuple conjecture, and its generalization the Bateman-Horn conjecture. The reason for looking at this is a result of Gallagher which is important in the original version of the proof by Goldston-Pintz-Yildirim that there are infinitely many primes p for which the gap q-p between p and the next prime q is smaller than ε times the average gap, for arbitrary small ε>0.
arithwsun arithwsun

Science News Online: Ivars Peterson's MathTrek (6/26/99): The Return of Zeta - 0 views

  • References: Cipra, B. 1998. A prime case of chaos. In What's Happening in the Mathematical Sciences, Vol. 4. Providence, R.I.: American Mathematical Society. (Available at http://www.ams.org/new-in-math/happening.html.) ______. 1996. Prime formula weds number theory and quantum physics. Science 274(Dec. 20):2014. Davis, P.J., and R. Hersch. 1981. The Mathematical Experience. New York: Viking Penguin. Katz, N.M., and P. Sarnak. 1999. Zeroes of zeta functions and symmetry. Bulletin of the American Mathematical Society 36(January):1. Peterson, I. 1995. Cavities of chaos. Science News 147(April 29):264. Richards, I. 1978. Number theory. In Mathematics Today: Twelve Informal Essays. L.A. Steen, ed. New York: Springer-Verlag. Peter Sarnak's lecture on random matrix models in number theory and quantum mechanics is available at http://www.msri.org/publications/video/fall98/mandm.html. Andrew Odlyzko's Web page at http://www.research.att.com/~amo/ features computations of the zeros of the zeta function.
  • The Riemann hypothesis was first proposed in 1859 by the German mathematician Georg Friedrich Bernhard Riemann (1826-1866). It concerns the so-called zeta function, which encodes a great deal of information about the seemingly haphazard distribution of prime numbers among the integers (see The Mark of Zeta, June 19, 1999).
arithwsun arithwsun

Lie groups - 0 views

  • Hall, Brian C. Lie groups, Lie algebras, and representations. An elementary introduction. Graduate Texts in Mathematics, 222. Springer-Verlag, New York, 2003. This is only a recommended text, but it is highly recommended. By emphasizing matrix groups, the book covers most of the important examples occuring in nature while avoiding a lot of the technical difficulties necessary in a more general treatment. It gives an excellent presentation of most of what we'll talk about. I think it will be a great book to read to supplement the lectures. Looking around on the web, I found many copies that were very reasonably priced.
  • Humphreys, James E. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, 9. Springer-Verlag, New York-Berlin, 1978. A classic. Would have been my choice for a textbook, but unfortunately only covers Lie algebras.
  • Fulton, William; Harris, Joe. Representation theory. A first course. Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991. A beautiful book to read. Very useful for self-study. Bump, Daniel. Lie groups. Graduate Texts in Mathematics, 225. Springer-Verlag, New York, 2004. Perhaps too hard for beginners, but it contains an excellent collection of topics in the final part.
  • ...3 more annotations...
  • Varadarajan, V. S. Lie groups, Lie algebras, and their representations. Graduate Texts in Mathematics, 102. Springer-Verlag, New York, 1984. Another classic. Very comprehensive. Representation theory of Lie groups. Proceedings of the SRC/LMS Research Symposium held in Oxford, June 28--July 15, 1977. Edited by G. L. Luke. London Mathematical Society Lecture Note Series, 34. Cambridge University Press, Cambridge-New York, 1979. See especially the articles by Macdonald and Bott.
  • Onishchik, A. L.; Vinberg, E. B. Lie groups and algebraic groups. Translated by D. A. Leites. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990. Written with a more algebraic flavor. Takes the unusual approach of omitting almost all proofs and presenting the material as a series of exercies. (This is not as crazy as it sounds. In fact it's a very pleasant read.)
  • Knapp, Anthony W. Lie groups beyond an introduction. Second edition. Progress in Mathematics, 140. Birkhauser Boston, Inc., Boston, MA, 2002. Contains a lot of material with complete proofs. Thorough, but difficult to read if this is your first exposure. Springer, T. A. Linear algebraic groups. Second edition. Progress in Mathematics, 9. Birkhauser Boston, Inc., Boston, MA, 1998. Sure, it's a textbook on algebraic groups, but there's plenty of relevance for the study of Lie groups. Freudenthal, Hans; de Vries, H. Linear Lie groups. Pure and Applied Mathematics, Vol. 35 Academic Press, New York-London 1969. Bizarre and fascinating.
arithwsun arithwsun

Book: Made to Stick - 0 views

  • Solving Mathematical Problems: A personal perspective. 2nd Edition, Terence Tao. Oxford University P ?The Journey of a thousand miles begins with one step? ? Lao Tzu Every so often, you come across a book that really stands out. I have recently been very fortunate to come across several such books, this being one of them. ?Solving mathematical problems? was written by Terence Tao when he was a 15 year old student and has now been slightly revised in this second edition. Like another of the reviewers at Amazon, I also came across this book after reading an article about Terence Tao winning the Fields medal (a bit like the Nobel prize for mathematics). Not only does it give a wonderful insight into the mind of a young Terence Tao, but also into the techniques used to elegantly solve some reasonably difficult problems, such as those posed as questions for the Maths Olympiad contests. [Terence competed in these challenges in his teens, winning bronze, silver and then gold.] Mathematical researchers are not always great e\ucators. Thankfully, Prof. Tao is.Mainly assuming only basic high-school pure mathematics, worked solutions to the problems are clearly and expertly described. Not only does he solve the problems but he also examines the steps, false starts and other solution possibilities that are part of the general approach to problem solving. I was only slightly disappointed that there were a handful of corrections in this second edition (available at Prof Tao?s blog here); one or two could perplex an unwary reader who might expect the work to be flawless. If you have an interest in mathematics, either as a high school student or a hobbyist, I would highly recommended reading this book. In the preface, Prof Tao remarks that if he wrote a book on the subject of competition problem-solving now, it would very different; now that is definitely a book I would like to read!….
  • Made to Stick: Why Some Ideas Survive and Others Die by Chip and Dan Heath helps us understand why our users (or our coworkers) can repeat the latest web hoax, but can’t remember anything about our projects. What we need to do is to create “sticky messages.” Sticky messages are not necessarily creative messages. In fact, there is formula that the brothers Heath have discovered that will help us to create sticky, memorable messages. That formula is:
    • arithwsun arithwsun
       
      I like this book
arithwsun arithwsun

Bryna Kra's web age. - 0 views

  •  
    The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view.
1 - 7 of 7
Showing 20 items per page