Skip to main content

Home/ COSEE-West/ Group items tagged off

Rss Feed Group items tagged

Gwen Noda

Galaxy Zoo Volunteers Share Pain and Glory of Research - 0 views

  •  
    Science 8 July 2011: Vol. 333 no. 6039 pp. 173-175 Galaxy Zoo Volunteers Share Pain and Glory of Research 1. Daniel Clery A project to "crowdsource" galactic classifications has paid off in ways the astronomers who started it never expected. Figure View larger version: * In this page * In a new window Space oddity. Greenish "voorwerp" spotted by a Dutch volunteer still intrigues scientists. "CREDIT: NASA, ESA, W. KEEL (UNIVERSITY OF ALABAMA), AND THE GALAXY ZOO TEAM" The automated surveys that are becoming increasingly common in astronomy are producing an embarrassment of riches for researchers. Projects such as the Sloan Digital Sky Survey (SDSS) are generating so much data that, in some cases, astronomers don't know what to do with them all. SDSS has compiled a list of more than 1 million galaxies. To glean information about galaxy evolution, however, astronomers need to know what type of galaxy each one is: spiral, barred spiral, elliptical, or something else. At present, the only reliable way to classify galaxies is to look at each one. But the SDSS list is so long that all the world's astronomers working together couldn't muster enough eyeballs for the task. Enter the "wisdom of crowds." An online effort called Galaxy Zoo, launched in 2007, set a standard for citizen-scientist participation projects. Zealous volunteers astonished the project's organizers by classifying the entire catalog years ahead of schedule. The results have brought real statistical rigor to a field used to samples too small to support firm conclusions. But that's not all. Buoyed by the curiosity and dedication of the volunteers, the Galaxy Zoo team went on to ask more-complicated classification questions that led to studies they hadn't thought possible. And in an online discussion forum on the Galaxy Zoo Web site, volunteers have pointed to anomalies that on closer inspection have turned out to be genuinely new astronomical objects. "I'm incredibly impres
Gwen Noda

UnderwaterTimes.com | Ocean Probes To Help Refine Climate Change Forecastin - 0 views

  •  
    Ocean Probes To Help Refine Climate Change Forecasting; 'Oceanography Is Risky; You Lose Things' by Underwatertimes.com News Service - August 5, 2011 17:43 EST LOS ANGELES, California -- A USC researcher has opened a new window to understanding how the ocean impacts climate change. Lisa Collins, environmental studies lecturer with the USC Dornsife College, spent four years collecting samples from floating sediment traps in the San Pedro Basin off the Los Angeles coast, giving scientists a peek at how much carbon is locked up in the ocean and where it comes from. Collins' research suggests that the majority of particulate organic carbon (POC) falling to the basin floor is marine-derived, not the result of runoff from rainfall. This means that the ocean off the coast of Southern California is acting as a carbon "sink" - taking carbon out of the atmosphere via phytoplankton and locking it up in sediment. Though estimates regarding the effect of carbon in the ocean already exist, her hard data can help climatologists create more accurate predictions of how carbon will impact global warming. What is unique about Collins' study is that it is not just a snapshot of POC falling, but rather a finely detailed record of four years of POC production, showing how much fell and when. "It's all tied to climate change," said Collins, who started the research as a graduate student working for USC Earth Sciences Professor Will Berelson. "This lets us see patterns. "Our data can help climate modelers better predict the interactions between the oceans and atmosphere with respect to carbon which can help them better predict how much carbon dioxide will end up sequestered over the long term as sediments in the ocean," she said. Collins' study is among the longest of its kind in the region. A similar study was conducted in Santa Monica Basin from 1985-1991, and another is currently underway in Hawaii. Her findings appear in the August issue of Deep-Sea Research I. Between Janua
Gwen Noda

Three Historic Blowouts - 0 views

  •  
    Three Historic Blowouts 1. Lauren Schenkman Figure Mexico 1979 "CREDIT: NOAA" The decade from 1969 to 1979 witnessed three massive spills from offshore oil wells around the world. Here is how they compare in size and impact. IXTOC 1 The biggest well-related spill was triggered on 3 June 1979, when a lack of drilling mud allowed oil and gas to shoot up through the 3.6-km-deep IXTOC 1 exploratory well, about 80 km offshore in the southern Gulf of Mexico. The initial daily outflow of 30,000 barrels of oil was eventually reduced to 10,000 barrels. The well was finally capped more than 9 months later. Mexico's state-owned oil company, PEMEX, treated the approximately 3.5-million-barrel spill with dispersants. U.S. officials had a 2-month head start to reduce impacts to the Texas coastline. Figure North Sea 1977 "CREDIT: WALLY FONG/AP PHOTO" Ekofisk The first major spill in the North Sea resulted in the release of 202,000 barrels of oil about 250 km off the coast of Norway. The 22 April 1977 blowout caused oil to gush from an open pipe 20 m above the sea surface. The well was capped after a week. Between 30% and 40% of the spill evaporated almost immediately. Rough waters broke up the slick before it reached shore. Figure Santa Barbara 1969 "CREDIT: BETTMANN/CORBIS" Santa Barbara A blown well 1 km below the sea floor and 9 km off the coast of Santa Barbara, California, spewed out a total of 100,000 barrels of oil. The initial eruption occurred on 28 January 1969, and the well was capped by mud and cement on 7 February, but the pressure forced oil through sea floor fissures until December. The oil contaminated 65 km of coastline. At least 3700 birds are known to have died, and commercial fishing in the area was closed until April.
Gwen Noda

SS13.10 Scientists Tag 20 Loggerhead Turtles off Mid-Atlantic Coast, Test Solar-Powered... - 0 views

  •  
    "Scientists Tag 20 Loggerhead Turtles off Mid-Atlantic Coast, Test Solar-Powered Tag"
Gwen Noda

Know Your Ocean | Science and Technology | Ocean Today - 0 views

  •  
    NARRATOR: Even though the ocean covers seventy percent of the Earth's surface, people tend to know more information about land than the sea. As a result, our understanding of the ocean is often incomplete or full of misconceptions. How well do you know the ocean? You may think Earth has five separate oceans. They're clearly labeled on our maps. But, in actuality, these are all connected, and part of one global ocean system. Ever wonder why the ocean is blue? You may have heard its because the water reflects the color of the sky. Not quite. Sunlight contains all the colors of the rainbow. When it hits the ocean, it gets scattered by the water molecules. Blue light is scattered the most, which is why the ocean appears blue. Even more interesting is that floating plants and sediments in the water can cause light to bounce in such a way for the ocean to appear green, yellow, and even red! Another idea some people have is that the sea floor is flat. Actually, just like land, the sea floor has canyons, plains, and mountain ranges. And many of these features are even bigger than those found on land. You may also think that our ocean's saltwater is just a mix of water and table salt. Not so. Seawater's "salt" is actually made of dissolved minerals from surface runoff. That is, excess water from rain and melting snow flowing over land and into the sea. This is why the ocean doesn't have the same level of salinity everywhere. Salinity varies by location and season. Finally, you may have heard that melting sea ice will cause sea levels to rise. In reality, sea ice is just frozen seawater, and because it routinely freezes and melts, its volume is already accounted for in the ocean. Sea levels can rise, however, from ice that melts off land and into the ocean. Understanding basic facts about the ocean is important since it affects everything from our atmosphere to our ecosystems. By knowing your ocean, you are better prepared to help protect it.
Gwen Noda

The Ten Best Ocean Stories of 2012 | Surprising Science - 0 views

  •  
    December 18, 2012 The Ten Best Ocean Stories of 2012 | | | Share on redditReddit | Share on diggDigg | Share on stumbleuponStumble | Share on emailEmail | More Sharing ServicesMore Two market squids mating 2012 was a big year for squid science. Photo Credit: © Brian Skerry, www.brianskerry.com Despite covering 70 percent of the earth's surface, the ocean doesn't often make it into the news. But when it does, it makes quite a splash (so to speak). Here are the top ten ocean stories we couldn't stop talking about this year, in no particular order. Add your own in the comments! 2012: The Year of the Squid From the giant squid's giant eyes (the better to see predatory sperm whales, my dear), to the vampire squid's eerie diet of remains and feces, the strange adaptations and behavior of these cephalopods amazed us all year. Scientists found a deep-sea squid that dismembers its own glowing arm to distract predators and make a daring escape. But fascinating findings weren't relegated to the deep: at the surface, some squids will rocket themselves above the waves to fly long distances at top speeds. James Cameron Explores the Deep Sea Filmmaker James Cameron has never shied away from marine movie plots (See: Titanic, The Abyss), but this year he showed he was truly fearless, becoming the first person to hit the deepest point on the seafloor (35,804 feet) in a solo submarine. While he only managed to bring up a single mud sample from the deepest region, he found thriving biodiversity in the other deep-sea areas his expedition explored, including giant versions of organisms found in shallow water. Schooling sardines form a "bait ball." Small fish, such as these schooling sardines, received well-deserved attention for being an important part of the food chain in 2012. Photo Credit: © Erwin Poliakoff, Flickr Small Fish Make a Big Impact Forage fish-small, schooling fish that are gulped down by predators-should be left in the ocean for larger fish, marin
Gwen Noda

Dogs Take Lead in Sniffing Out Arctic Oil - The Pew Charitable Trusts - 0 views

  •  
    Publication: The Guardian Author: Suzanne Goldenberg 03/12/2012 - When it comes to drilling for oil in the harsh and unpredictable Arctic, Shell has gone to the dogs, it seems. A dachshund and two border collies to be specific. The dogs' ability to sniff out oil spills beneath snow and ice has been tested and paid for by Shell - and other oil companies and government research organisations - in preparation for the industry's entry into the forbidding Arctic terrain. The company hopes to begin drilling for oil off the north-west coast of Alaska in June. ... Others said the study should be an embarrassment to the industry. "This is another example of how we do not have adequate science and technology yet to drill in the Arctic Ocean - particularly in ice," Marilyn Heiman, the director of the US Arctic Programme for the Pew Environment Group said in an email. "It is embarrassing that using dogs to sniff out oil is the best technology we have to track oil under ice. Industry needs to invest in research to determine how to track oil under ice, as well as significantly improve spill response capability in ice, before [being] allowed to drill in ice conditions."
Gwen Noda

NOAA awards grant to advance harmful algal bloom warnings to protect public and animal ... - 0 views

  •  
    Scientists researching harmful algal bloom "hot spots" off southern and central California have been awarded $821,673 for the first year of an anticipated 5-year $4,076,929 project to investigate methods that could provide early warning detection of the toxic blooms, also known as red tides. The research is being conducted in partnership with two U.S. Integrated Ocean Observing System partners - the Central and Northern California Ocean Observing System and the Southern California Coastal Ocean Observing System. The teams will combine the detection and monitoring of the toxic blooms with ocean models that can forecast ocean conditions, potentially leading to bloom predictions.
Gwen Noda

Major Research Effort to Track Carbon, Identify Dead Zone Processes - 0 views

  •  
    Discovering what happens to the huge amounts of carbon - an estimated 2 megatons a year off the Oregon coast alone - is critical to understanding the interface between the atmosphere and the open ocean that influences marine dead zones, atmospheric pollution and ultimately climate change.
Gwen Noda

Coral Bleaching: A White Hot Problem (COSEE-NOW) - 0 views

  •  
    "Some of the planet's most beautiful and diverse ecosystems are at risk. With temperatures on the rise, coral reefs are at greater risk for coral bleaching. Using ocean observing system data from NOAA's National Data Buoy Center, this classroom activity examines ocean temperatures off Puerto Rico to see how coral reefs are being impacted and predict what's on the horizon. Brought to you by Sea Grant's Bridge website and COSEE-NOW. This activity was developed in response to the 2005 massive coral bleaching event in the Caribbean caused by high sea surface temperatures. Using ocean observing system data, water temperatures can be monitored to evaluate the likeliness of other bleaching events. Via the COSEE-NOW online community, we were able to receive valuable feedback on making the graph of water temperature more user-friendly and expanding the discussion questions to evoke some higher level thinking from students. This activity has been demonstrated to teachers at the National Marine Educators Association conference and Virginia Sea Grant professional development institutes; and to graduate students in several different settings. http://www2.vims.edu/bridge/DATA.cfm?Bridge_Location=archive0406.html"
Gwen Noda

USC researcher experiments with changing ocean chemistry | 89.3 KPCC - 0 views

  •  
    "USC researcher experiments with changing ocean chemistry Jan. 19, 2011 | Molly Peterson | KPCC In his lab, USC's Dave Hutchins is simulating possible future atmospheres and temperatures for the Earth. He says he's trying to figure out how tiny organisms that form the base of the food web will react to a more carbon-intense ocean. Burning fossil fuels doesn't just put more carbon into the atmosphere and help warm the climate. It's also changing the chemistry of sea water. KPCC's Molly Peterson visits a University of Southern California researcher who studies the consequences of a more corrosive ocean. Tailpipes and refineries and smokestacks as far as the eye can see in Los Angeles symbolize the way people change the planet's climate. They remind Dave Hutchins that the ocean's changing too. Hutchins teaches marine biology at USC. He says about a third of all the carbon, or CO2, that people have pushed into earth's atmosphere ends up in sea water - "which is a good thing for us because if the ocean hadn't taken up that CO2 the greenhouse effect would be far more advanced than it is." He smiles. Hutchins says that carbon is probably not so good for the ocean. "The more carbon dioxide that enters the ocean the more acidic the ocean gets." On the pH scale, smaller numbers represent more acidity. The Monterey Bay Aquarium Research Institute estimates we've pumped 500 million tons of carbon into the world's oceans. Dave Hutchins at USC says that carbon has already lowered the pH value for sea water. "By the end of this century we are going to have increased the amount of acid in the ocean by maybe 200 percent over natural pre-industrial levels," he says. "So we are driving the chemistry of the ocean into new territory - into areas that it has never seen." Hutchins is one of dozens of scientists who study the ripples of that new chemistry into the marine ecosystem. Now for an aside. I make bubbly water at home with a soda machine, and to do that, I pump ca
Gwen Noda

Science/AAAS: Science Magazine: The Tohoku-Oki Earthquake, Japan - 0 views

  •  
    Special: The Tohoku-Oki Earthquake, Japan The 11 March 2011 magnitude-9.0 Tohoku-Oki earthquake off the eastern coast of Japan was one of the largest recorded earthquakes in history. It triggered a devastating tsunami that killed more than 20,000 people and an ongoing nuclear disaster at the Fukushima Daiichi power plant. Three research papers in the 17 June 2011 issue (published on 19 May) report on the mechanics of this megaquake and provide insights into the behavior of other very large, rare earthquakes. Science is making these research papers FREE for all site visitors. Also provided is a collection of recent news coverage of the Japan earthquake and nuclear crisis in Science and on our science news and policy blog, ScienceInsider.
Gwen Noda

First Pictures: Wild Fish Uses Tool - 0 views

  •  
    A blackspot tuskfish off Australia has its mouth full as it carries a cockle to a nearby rock, against which the fish was seen repeatedly bashing the shellfish to get at the fleshy bits inside.
Gwen Noda

Bounds and Vision - 0 views

  •  
    Information Science Bounds and Vision Atlas of Science Visualizing What We Know by Katy Börner MIT Press, Cambridge, MA, 2010. 266 pp. $$29.95, £22.95. ISBN 9780262014458. 1. Mason A. Porter + Author Affiliations 1. The reviewer is at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX1 3LB, UK, and at the CABDyN Complexity Centre and Somerville College, University of Oxford. 1. E-mail: porterm@maths.ox.ac.uk Visualization is a crucial but underappreciated part of science. As venues like the American Physical Society's Gallery of Fluid Motion and Gallery of Nonlinear Images illustrate every year, good visuals can make science more beautiful, more artistic, more tangible, and often more discernible. Katy Börner's continuing exhibition Places & Spaces: Mapping Science (1) and her book Atlas of Science: Visualizing What We Know arise from a similar spirit but are much more ambitious. Visualization is one of the most compelling aspects of science. Breathtaking visuals from sources like fractals and Disneyland's long-dead "Adventure Thru Inner Space" ride are what originally inspired me toward my personal scientific path, so I welcome any resource that promises to bring the visual joys of discovery to a wide audience. Importantly, Börner's exhibition and book are not mere artistic manifestations, although they would be impressive accomplishments even if that were her only goal. Some scientists have occasionally had great success in the visual arts; for example, physicist Eric Heller has long exhibited the gorgeous fruits of his research on quantum chaos and other topics (2). To fully appreciate Börner's efforts, however, one must be conscious that she is deeply concerned not just with visualization itself but with the science of visualization. Accordingly, her book discusses the history of the science of visualization, where it is now, and where she thinks it can go. Atlas of Scie
1 - 20 of 41 Next › Last »
Showing 20 items per page