Skip to main content

Home/ COSEE-West/ Group items tagged lack

Rss Feed Group items tagged

Gwen Noda

http://www.benthic-acidification.org - 0 views

  •  
    "What are the impacts of ocean acidification on key benthic (seabed) ecosystems, communities, habitats, species and their life cycles? The average acidity (pH) of the world's oceans has been stable for the last 25 million years. However, the oceans are now absorbing so much man made CO2 from the atmosphere that measurable changes in seawater pH and carbonate chemistry can be seen. It is predicted that this could affect the basic biological functions of many marine organisms. This in turn could have implications for the survival of populations and communities, as well as the maintenance of biodiversity and ecosystem function. In the seas around the UK, the habitats that make up the seafloor, along with the animals associated with them, play a crucial role in maintaining a healthy and productive marine ecosystem. This is important considering 40% of the world's population lives within 100km of the coast and many of these people depend on coastal systems for food, economic prosperity and well-being. Given that coastal habitats also harbour incredibly high levels of biodiversity, any environmental change that affects these important ecosystems could have substantial environmental and economical impacts. During several recent international meetings scientific experts have concluded that new research is urgently needed. In particular we need long-term studies that determine: which organisms are likely to be tolerant to high CO2 and which are vulnerable; whether organisms will have time to adapt or acclimatise to this rapid environmental change; and how the interactions between individuals that determine ecosystem structure will be affected. This current lack of understanding is a major problem as ocean acidification is a rapidly evolving management issue and, with an insufficient knowledge base, policy makers and managers are struggling to formulate effective strategies to sustain and protect the marine environment in the face of ocean acidification."
Gwen Noda

http://www.oceanacidification.org.uk - 0 views

  •  
    The term ocean acidification is used to describe the ongoing decrease in ocean pH caused by human CO2 emissions, such as the burning of fossil fuels. It is the little known consequence of living in a high CO2 world, dubbed at the 2009 United Nations Climate Change Conference (COP15) as the "evil twin of climate change". The oceans currently absorb approximately half of the CO2 produced by burning fossil fuel; put simply, climate change would be far worse if it were not for the oceans. However, there is a cost to the oceans - when CO2 dissolves in seawater it forms carbonic acid and as more CO2 is taken up by the oceans surface, the pH decreases, moving towards a less alkaline and therefore more acidic state. Already ocean pH has decreased by about 30% and if we continue emitting CO2 at the same rate by 2100 ocean acidity will increase by about 150%, a rate that has not been experienced for at least 400,000 years. Such a monumental alteration in basic ocean chemistry is likely to have wide implications for ocean life, especially for those organisms that require calcium carbonate to build shells or skeletons. Ocean acidification is a relatively new field of research, with most of the studies having been conducted over the last decade. While it is gaining some attention among policy makers, international leaders and the media, scientists find there is still a lack of understanding.
Gwen Noda

Three Historic Blowouts - 0 views

  •  
    Three Historic Blowouts 1. Lauren Schenkman Figure Mexico 1979 "CREDIT: NOAA" The decade from 1969 to 1979 witnessed three massive spills from offshore oil wells around the world. Here is how they compare in size and impact. IXTOC 1 The biggest well-related spill was triggered on 3 June 1979, when a lack of drilling mud allowed oil and gas to shoot up through the 3.6-km-deep IXTOC 1 exploratory well, about 80 km offshore in the southern Gulf of Mexico. The initial daily outflow of 30,000 barrels of oil was eventually reduced to 10,000 barrels. The well was finally capped more than 9 months later. Mexico's state-owned oil company, PEMEX, treated the approximately 3.5-million-barrel spill with dispersants. U.S. officials had a 2-month head start to reduce impacts to the Texas coastline. Figure North Sea 1977 "CREDIT: WALLY FONG/AP PHOTO" Ekofisk The first major spill in the North Sea resulted in the release of 202,000 barrels of oil about 250 km off the coast of Norway. The 22 April 1977 blowout caused oil to gush from an open pipe 20 m above the sea surface. The well was capped after a week. Between 30% and 40% of the spill evaporated almost immediately. Rough waters broke up the slick before it reached shore. Figure Santa Barbara 1969 "CREDIT: BETTMANN/CORBIS" Santa Barbara A blown well 1 km below the sea floor and 9 km off the coast of Santa Barbara, California, spewed out a total of 100,000 barrels of oil. The initial eruption occurred on 28 January 1969, and the well was capped by mud and cement on 7 February, but the pressure forced oil through sea floor fissures until December. The oil contaminated 65 km of coastline. At least 3700 birds are known to have died, and commercial fishing in the area was closed until April.
1 - 8 of 8
Showing 20 items per page