Skip to main content

Home/ COSEE-West/ Group items tagged hundreds

Rss Feed Group items tagged

Gwen Noda

USC researcher experiments with changing ocean chemistry | 89.3 KPCC - 0 views

  •  
    "USC researcher experiments with changing ocean chemistry Jan. 19, 2011 | Molly Peterson | KPCC In his lab, USC's Dave Hutchins is simulating possible future atmospheres and temperatures for the Earth. He says he's trying to figure out how tiny organisms that form the base of the food web will react to a more carbon-intense ocean. Burning fossil fuels doesn't just put more carbon into the atmosphere and help warm the climate. It's also changing the chemistry of sea water. KPCC's Molly Peterson visits a University of Southern California researcher who studies the consequences of a more corrosive ocean. Tailpipes and refineries and smokestacks as far as the eye can see in Los Angeles symbolize the way people change the planet's climate. They remind Dave Hutchins that the ocean's changing too. Hutchins teaches marine biology at USC. He says about a third of all the carbon, or CO2, that people have pushed into earth's atmosphere ends up in sea water - "which is a good thing for us because if the ocean hadn't taken up that CO2 the greenhouse effect would be far more advanced than it is." He smiles. Hutchins says that carbon is probably not so good for the ocean. "The more carbon dioxide that enters the ocean the more acidic the ocean gets." On the pH scale, smaller numbers represent more acidity. The Monterey Bay Aquarium Research Institute estimates we've pumped 500 million tons of carbon into the world's oceans. Dave Hutchins at USC says that carbon has already lowered the pH value for sea water. "By the end of this century we are going to have increased the amount of acid in the ocean by maybe 200 percent over natural pre-industrial levels," he says. "So we are driving the chemistry of the ocean into new territory - into areas that it has never seen." Hutchins is one of dozens of scientists who study the ripples of that new chemistry into the marine ecosystem. Now for an aside. I make bubbly water at home with a soda machine, and to do that, I pump ca
Gwen Noda

UnderwaterTimes.com | Ocean Probes To Help Refine Climate Change Forecastin - 0 views

  •  
    Ocean Probes To Help Refine Climate Change Forecasting; 'Oceanography Is Risky; You Lose Things' by Underwatertimes.com News Service - August 5, 2011 17:43 EST LOS ANGELES, California -- A USC researcher has opened a new window to understanding how the ocean impacts climate change. Lisa Collins, environmental studies lecturer with the USC Dornsife College, spent four years collecting samples from floating sediment traps in the San Pedro Basin off the Los Angeles coast, giving scientists a peek at how much carbon is locked up in the ocean and where it comes from. Collins' research suggests that the majority of particulate organic carbon (POC) falling to the basin floor is marine-derived, not the result of runoff from rainfall. This means that the ocean off the coast of Southern California is acting as a carbon "sink" - taking carbon out of the atmosphere via phytoplankton and locking it up in sediment. Though estimates regarding the effect of carbon in the ocean already exist, her hard data can help climatologists create more accurate predictions of how carbon will impact global warming. What is unique about Collins' study is that it is not just a snapshot of POC falling, but rather a finely detailed record of four years of POC production, showing how much fell and when. "It's all tied to climate change," said Collins, who started the research as a graduate student working for USC Earth Sciences Professor Will Berelson. "This lets us see patterns. "Our data can help climate modelers better predict the interactions between the oceans and atmosphere with respect to carbon which can help them better predict how much carbon dioxide will end up sequestered over the long term as sediments in the ocean," she said. Collins' study is among the longest of its kind in the region. A similar study was conducted in Santa Monica Basin from 1985-1991, and another is currently underway in Hawaii. Her findings appear in the August issue of Deep-Sea Research I. Between Janua
Gwen Noda

Governments refusal to address ocean acidification. - Sacramento Political Buzz | Exami... - 0 views

  •  
    Global warming…the Earth is steadily getting warmer. The why is it getting warmer question will solicit so many theories that it would drive one mad to sort through them all. Global warming itself is sort of a misnomer; it is a symptom of the problem, not the cause. The cause for all the debate is whether or not the atmospheric increase of CO2 gas over the last two-hundred years has affected the Earth's climate. Recently scientists have discovered another reason to be concerned about the increasing level of atmospheric CO2. It is startling that the media and science has hardly touched upon ocean acidification. It would not be surprising if you have never heard this term. A LexisNexis search of the news wire services found in the past week there were 348 articles that mentioned global warming. Three articles contained ocean acidification. In the last 2 years, a LexisNexis search of all sources found a mere 216 articles that mentioned ocean acidification. That is a worldwide search of newspapers, magazines and wire services. The New York Times did not mention it a single time, but they ran so many Global Warming articles that there were too many matches for the page to display.
Gwen Noda

Ice Flow of the Antarctic Ice Sheet - 0 views

  •  
    "We present a reference, comprehensive, high-resolution, digital mosaic of ice motion in Antarctica assembled from multiple satellite interferometric synthetic-aperture radar data acquired during the International Polar Year 2007 to 2009. The data reveal widespread, patterned, enhanced flow with tributary glaciers reaching hundreds to thousands of kilometers inland over the entire continent. This view of ice sheet motion emphasizes the importance of basal-slip-dominated tributary flow over deformation-dominated ice sheet flow, redefines our understanding of ice sheet dynamics, and has far-reaching implications for the reconstruction and prediction of ice sheet evolution. "
1 - 5 of 5
Showing 20 items per page