Skip to main content

Home/ Computer Science Knowledge Sharing/ Group items tagged local

Rss Feed Group items tagged

6More

Simulated annealing - Wikipedia, the free encyclopedia - 1 views

  • Simulated annealing (SA) is a generic probabilistic metaheuristic for the global optimization problem of applied mathematics, namely locating a good approximation to the global minimum of a given function in a large search space. It is often used when the search space is discrete (e.g., all tours that visit a given set of cities). For certain problems, simulated annealing may be more effective than exhaustive enumeration — provided that the goal is merely to find an acceptably good solution in a fixed amount of time, rather than the best possible solution. The name and inspiration come from annealing in metallurgy, a technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce their defects. The heat causes the atoms to become unstuck from their initial positions (a local minimum of the internal energy) and wander randomly through states of higher energy; the slow cooling gives them more chances of finding configurations with lower internal energy than the initial one. By analogy with this physical process, each step of the SA algorithm replaces the current solution by a random "nearby" solution, chosen with a probability that depends on the difference between the corresponding function values and on a global parameter T (called the temperature), that is gradually decreased during the process. The dependency is such that the current solution changes almost randomly when T is large, but increasingly "downhill" as T goes to zero. The allowance for "uphill" moves saves the method from becoming stuck at local minima—which are the bane of greedier methods. The method was independently described by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983 [1], and by V. Černý in 1985 [2]. The method is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo method to generate sample states of a thermodynamic system, invented by N. Metropolis et al. in 1953 [3].
  • Simulated annealing (SA) is a generic probabilistic metaheuristic for the global optimization problem of applied mathematics, namely locating a good approximation to the global minimum of a given function in a large search space. It is often used when the search space is discrete (e.g., all tours that visit a given set of cities). For certain problems, simulated annealing may be more effective than exhaustive enumeration — provided that the goal is merely to find an acceptably good solution in a fixed amount of time, rather than the best possible solution. The name and inspiration come from annealing in metallurgy, a technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce their defects. The heat causes the atoms to become unstuck from their initial positions (a local minimum of the internal energy) and wander randomly through states of higher energy; the slow cooling gives them more chances of finding configurations with lower internal energy than the initial one. By analogy with this physical process, each step of the SA algorithm replaces the current solution by a random "nearby" solution, chosen with a probability that depends on the difference between the corresponding function values and on a global parameter T (called the temperature), that is gradually decreased during the process. The dependency is such that the current solution changes almost randomly when T is large, but increasingly "downhill" as T goes to zero. The allowance for "uphill" moves saves the method from becoming stuck at local minima—which are the bane of greedier methods. The method was independently described by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983 [1], and by V. Černý in 1985 [2]. The method is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo method to generate sample states of a thermodynamic system, invented by N. Metropolis et al. in 1953 [3].
  • Simulated annealing (SA) is a generic probabilistic metaheuristic for the global optimization problem of applied mathematics, namely locating a good approximation to the global minimum of a given function in a large search space. It is often used when the search space is discrete (e.g., all tours that visit a given set of cities). For certain problems, simulated annealing may be more effective than exhaustive enumeration — provided that the goal is merely to find an acceptably good solution in a fixed amount of time, rather than the best possible solution. The name and inspiration come from annealing in metallurgy, a technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce their defects. The heat causes the atoms to become unstuck from their initial positions (a local minimum of the internal energy) and wander randomly through states of higher energy; the slow cooling gives them more chances of finding configurations with lower internal energy than the initial one. By analogy with this physical process, each step of the SA algorithm replaces the current solution by a random "nearby" solution, chosen with a probability that depends on the difference between the corresponding function values and on a global parameter T (called the temperature), that is gradually decreased during the process. The dependency is such that the current solution changes almost randomly when T is large, but increasingly "downhill" as T goes to zero. The allowance for "uphill" moves saves the method from becoming stuck at local minima—which are the bane of greedier methods. The method was independently described by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983 [1], and by V. Černý in 1985 [2]. The method is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo method to generate sample states of a thermodynamic system, invented by N. Metropolis et al. in 1953 [3].
  • ...1 more annotation...
  • Simulated annealing (SA) is a generic probabilistic metaheuristic for the global optimization problem of applied mathematics, namely locating a good approximation to the global minimum of a given function in a large search space. It is often used when the search space is discrete (e.g., all tours that visit a given set of cities). For certain problems, simulated annealing may be more effective than exhaustive enumeration — provided that the goal is merely to find an acceptably good solution in a fixed amount of time, rather than the best possible solution. The name and inspiration come from annealing in metallurgy, a technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce their defects. The heat causes the atoms to become unstuck from their initial positions (a local minimum of the internal energy) and wander randomly through states of higher energy; the slow cooling gives them more chances of finding configurations with lower internal energy than the initial one. By analogy with this physical process, each step of the SA algorithm replaces the current solution by a random "nearby" solution, chosen with a probability that depends on the difference between the corresponding function values and on a global parameter T (called the temperature), that is gradually decreased during the process. The dependency is such that the current solution changes almost randomly when T is large, but increasingly "downhill" as T goes to zero. The allowance for "uphill" moves saves the method from becoming stuck at local minima—which are the bane of greedier methods. The method was independently described by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983 [1], and by V. Černý in 1985 [2]. The method is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo method to generate sample states of a thermodynamic system, invented by N. Metropolis et al. in 1953 [3].
  •  
    Simulated annealing (SA) is a generic probabilistic metaheuristic for the global optimization problem of applied mathematics, namely locating a good approximation to the global minimum of a given function in a large search space. It is often used when the search space is discrete (e.g., all tours that visit a given set of cities). For certain problems, simulated annealing may be more effective than exhaustive enumeration - provided that the goal is merely to find an acceptably good solution in a fixed amount of time, rather than the best possible solution. The name and inspiration come from annealing in metallurgy, a technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce their defects. The heat causes the atoms to become unstuck from their initial positions (a local minimum of the internal energy) and wander randomly through states of higher energy; the slow cooling gives them more chances of finding configurations with lower internal energy than the initial one. By analogy with this physical process, each step of the SA algorithm replaces the current solution by a random "nearby" solution, chosen with a probability that depends on the difference between the corresponding function values and on a global parameter T (called the temperature), that is gradually decreased during the process. The dependency is such that the current solution changes almost randomly when T is large, but increasingly "downhill" as T goes to zero. The allowance for "uphill" moves saves the method from becoming stuck at local minima-which are the bane of greedier methods. The method was independently described by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983 [1], and by V. Černý in 1985 [2]. The method is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo method to generate sample states of a thermodynamic system, invented by N. Metropolis et al. in 1953 [3].
  •  
    A natural AI approach
1More

LM Studio - Discover, download, and run local LLMs - 0 views

  •  
    "Discover, download, and run local LLMs"
1More

Hill climbing - Wikipedia, the free encyclopedia - 0 views

  • In computer science, hill climbing is a mathematical optimization technique which belongs to the family of local search. It is relatively simple to implement, making it a popular first choice. Although more advanced algorithms may give better results, in some situations hill climbing works just as well. Hill climbing can be used to solve problems that have many solutions, some of which are better than others. It starts with a random (potentially poor) solution, and iteratively makes small changes to the solution, each time improving it a little. When the algorithm cannot see any improvement anymore, it terminates. Ideally, at that point the current solution is close to optimal, but it is not guaranteed that hill climbing will ever come close to the optimal solution. For example, hill climbing can be applied to the traveling salesman problem. It is easy to find a solution that visits all the cities but will be very poor compared to the optimal solution. The algorithm starts with such a solution and makes small improvements to it, such as switching the order in which two cities are visited. Eventually, a much better route is obtained. Hill climbing is used widely in artificial intelligence, for reaching a goal state from a starting node. Choice of next node and starting node can be varied to give a list of related algorithms.
1More

Blockstack, building the decentralized internet - 0 views

  •  
    "A New Internet for Decentralized Apps Blockstack is a new decentralized internet where users own their data and apps run locally. A browser portal is all that's needed to get started."
1More

Wolfram Language for Knowledge-Based Programming - 0 views

  •  
    "Designed for the new generation of programmers, the Wolfram Language has a vast depth of built-in algorithms and knowledge, all automatically accessible through its elegant unified symbolic language. Scalable for programs from tiny to huge, with immediate deployment locally and in the cloud, the Wolfram Language builds on clear principles-and three decades of development-to create what promises to be the world's most productive programming language."
1More

Logseq: A privacy-first, open-source knowledge base - 1 views

  •  
    "Logseq is a privacy-first, open-source knowledge base that works on top of local plain-text Markdown and Org-mode files. Use it to write, organize and share your thoughts, keep your to-do list, and build your own digital garden."
1More

DecentAI - Your Gateway to Open-Source AI - 0 views

  •  
    "Explore diverse AI models in one private app Access GPT-4, Claude 3.5, Llama 3, Stable Diffusion, and more with smart routing and local storage"

PC Tech Support Saved the Day - 1 views

started by shalani mujer on 10 Nov 11 no follow-up yet
4More

Uniform Resource Identifier - Wikipedia, the free encyclopedia - 0 views

shared by Islam TeCNo on 16 Jun 09 - Cached
  • In computing, a Uniform Resource Identifier (URI) consists of a string of characters used to identify or name a resource on the Internet. Such identification enables interaction with representations of the resource over a network (typically the World Wide Web) using specific protocols. Schemes specifying a specific syntax and associated protocols define each URI. Contents [hide]
    • Abdelrahman Ogail
       
      I've confused between URL & URI till reading this article !
    • Islam TeCNo
       
      URL no3 men el URI :D ....ana faker eno kont shoft el 7eta deh fe ketab 3an el HTTP bas nesetha .......Zanks Zikas Again
  • A Uniform Resource Name (URN) functions like a person's name, while a Uniform Resource Locator (URL) resembles that person's street address. The URN defines an item's identity, while the URL provides a method for finding it. The ISBN system for uniquely identifying books provides a typical example of the use of typical URNs. ISBN 0486275574 (urn:isbn:0-486-27557-4) cites unambiguously a specific edition of Shakespeare's play Romeo and Juliet. In order to gain access to this object and read the book, one would need its location: a URL address. A typical URL for this book on a unix-like operating system might look like the file path file:///home/username/RomeoAndJuliet.pdf, identifying the electronic book saved in a local hard disk. So URNs and URLs have complementary purposes.

Reliable Online Computer Repair - 1 views

started by cecilia marie on 17 May 11 no follow-up yet

Reliable Online Computer Repair - 1 views

started by anonymous on 12 May 11 no follow-up yet

Computer Help Online - 1 views

started by shalani mujer on 12 Sep 11 no follow-up yet

Computer Help Online - 1 views

started by seth kutcher on 12 Sep 11 no follow-up yet
1 - 13 of 13
Showing 20 items per page