Skip to main content

Home/ beyondwebct/ Group items tagged logic

Rss Feed Group items tagged

Celeste Arrieta

Garr Reynolds/Presentations - 0 views

    • Celeste Arrieta
       
      SIMPLICITY!!
  • you have to think very hard about what to include and what can be left out.
  • essence
  • ...31 more annotations...
  • message
  • audience could remember only three things about your presentation,what would you want it to be?
  • analog
  • the best presenters often scratch out their ideas and objectives with a pen and paper.
  • whiteboard
  • sketch out my ideas
  • write down ke
  • points
  • outline and structure
  • speaking and connecting to an audience
  • persuade
  • storyboard
  • I draw sample images that I can use to support a particular point, say, a pie chart here, a photo there, perhaps a line graph
  • content to flow
  • notes
  • iStockphoto.com
  • presentation structure
  • logic of your content and the flow of the presentation
  • (so what?
  • "sell" your message in 30-45 seconds. I
  • essence of your presentation content and write it on the back of a business card?
  • Good presentations include stories. The best presenters illustrate their points with the use of storie
  • relevant
  • remember
  • memorable
  • remember
  • Good stories have interesting, clear beginnings, provocative, engaging content in the middle, and a clear, logical conclusion
  • rehearsed
  • several times
  • What is the purpose of the event?
  • Who is the audience?
Barbara Lindsey

Do You Speak "Academia"? » Edurati Review - 0 views

  • the opening main clause, “Education is an all-encompassing institution,” makes little sense, and the rest of the sentence fails to clarify its meaning. The use of “each and every” is redundant; if each continent and culture, then, by default, it is every continent and culture. After the semicolon, good verbs become weak adjectives: functional and organizational. The entire paragraph could be restructured as an easily understood sentence: In every society, schools organize, function, and operate similarly.
  • Why pick on paragraphs pulled from their contexts? If you read (or try to read) educational journals, you’ll find that these examples are not isolated. They illustrate the “academic style” characterizing such periodicals. These periodicals, their supporters argue, provide the link between research and classroom practice. But the poor communication—the academic writing—requires the reader to add steps to the usually efficient cognition of comprehension. The reader is forced to pause and ask, “What does that mean in plain English?” It’s not that different from reading text in a second language, one in which the reader may be knowledgeable but not proficient.
  • This same gap often exists between students and their textbooks.
  • ...9 more annotations...
  • This issue is so prevalent that some experts recommend we teach students “academic language.”
  • This additional distance between the writer and reader decreases the likelihood that the journals will actually be read. And if the journals are not read by teachers, the research will be slow to influence educational practice, if it does at all.
  • We are spending time, effort, and sometimes money on research doomed to remain idle because it’s not communicated well. The poor writing prevents worthwhile application.
  • If understanding depends on translating the language, students who struggle with this prerequisite may lack the motivation or inertia to think beyond, or even through, the interpretation. We’re making understanding more difficult—a seeming antithesis to our role as educators.
  • Why can’t “academic” journals and textbooks utilize common principles of good writing. Why do we insist on communication complexity when our goals would be better served by simple clarity?
  • Status? Are we insisting on “academic writing” because it separates journals from the “rags” intended for the masses or textbooks from the unlearned? If so, our goal must be to maintain some perceived elite readership—a readership probably not teaching or sitting in our classrooms.
  • Do we think that our research and subject matter is complicated, therefore our communicating should also be complex? This is so contrary to logic and sound teaching that it’s an oxymoron.
  • A complex topic requires simple writing, especially when the reader likely lacks the author’s background knowledge and experience. This is almost always the case when a researcher seeks to address individuals who were not part of the research team or involved in similar research themselves, or when experts in a field seek to articulate concepts for students.
  • Medina presents ideas simply and in ways known to foster learning. As the brain engages in elaboration, it overlays new data with known experiences, making connections that help construct understanding. Medina relates a new, complex topic to a familiar childhood activity—origami (even though he is not writing for children). By giving us a reference point for understanding DNA, he equips us with the tools needed to construct understanding. Isn’t this what we should be striving for, both in our textbooks and our journals?
Barbara Lindsey

Convenience, Communications, and Control: How Students Use Technology | Resources | EDU... - 0 views

  • They are characterized as preferring teamwork, experiential activities, and the use of technology
  • Doing is more important than knowing, and learning is accomplished through trial and error as opposed to a logical and rule-based approach.2 Similarly, Paul Hagner found that these students not only possess the skills necessary to use these new communication forms, but there is an ever increasing expectation on their part that these new communication paths be used
  • Much of the work to date, while interesting and compelling, is intuitive and largely based on qualitative data and observation.
  • ...34 more annotations...
  • There is an inexorable trend among college students to universal ownership, mobility, and access to technology.
  • Students were asked about the applications they used on their electronic devices. They reported that they use technology first for educational purposes, followed by communication.
    • Barbara Lindsey
       
      All self-reported. Would have been powerful if could have actually tracked a representative sample and compared actual use with reported use.
  • presentation software was driven primarily by the requirements of the students' major and the curriculum.
  • Communications and entertainment are very much related to gender and age.
  • From student interviews, a picture emerged of student technology use driven by the demands of the major and the classes that students take. Seniors reported spending more time overall on a computer than do freshmen, and they reported greater use of a computer at a place of employment. Seniors spent more hours on the computer each week in support of their educational activities and also more time on more advanced applications—spreadsheets, presentations, and graphics.
  • Confirming what parents suspect, students with the lowest grade point averages (GPAs) spend significantly more time playing computer games; students with the highest GPAs spend more hours weekly using the computer in support of classroom activities. At the University of Minnesota, Crookston, students spent the most hours on the computer in support of classroom activities. This likely reflects the deliberate design of the curriculum to use a laptop extensively. In summary, the curriculum's technology requirements are major motivators for students to learn to use specialized software.
  • The interviews indicated that students are skilled with basic office suite applications but tend to know just enough technology functionality to accomplish their work; they have less in-depth application knowledge or problem solving skills.
  • According to McEuen, student technology skills can be likened to writing skills: Students come to college knowing how to write, but they are not developed writers. The analogy holds true for information technology, and McEuen suggested that colleges and universities approach information technology in the same way they approach writing.6
  • he major requires the development of higher-level skill sets with particular applications.
    • Barbara Lindsey
       
      Not really quantitative--self-reported data back by selected qualitative interviews
  • The comparative literature on student IT skill self-assessment suggests that students overrate their skills; freshmen overrate their skills more than seniors, and men overrate their skills more than women.7 Our data supports these conclusions. Judy Doherty, director of the Student Technologies Resource Group at Colgate University, remarked on student skill assessment, "Students state in their job applications that they are good if not very good, but when tested their skills are average to poor, and they need a lot of training."8
  • Mary Jane Smetanka of the Minneapolis–St. Paul Star Tribune reported that some students are so conditioned by punch-a-button problem solving on computers that they approach problems with a scattershot impulsiveness instead of methodically working them through. In turn, this leads to problem-solving difficulties.
  • We expected to find that the Net Generation student prefers classes that use technology. What we found instead is a bell curve with a preference for a moderate use of technology in the classroom (see Figure 1).
    • Barbara Lindsey
       
      More information needs to be given to find out why--may be tool and method not engaging.
  • It is not surprising that if technology is used well by the instructor, students will come to appreciate its benefits.
  • A student's major was also an important predictor of preferences for technology in the classroom (see Table 3), with engineering students having the highest preference for technology in the classroom (67.8 percent), followed by business students (64.3 percent).
  • Humanities 7.7% 47.9% 40.2
  • he highest scores were given to improved communications, followed by factors related to the management of classroom activities. Lower impact activities had to do with comprehension of classroom materials (complex concepts).
  • I spend more time engaged in course activities in those courses that require me to use technology.
  • The instructors' use of technology in my classes has increased my interest in the subject matter. 3.25 Classes that use information technology are more likely to focus on real-world tasks and examples.
  • Interestingly, students do not feel that use of information technology in classes greatly increases the amount of time engaged with course activities (3.22 mean).12 This is in direct contrast to faculty perceptions reported in an earlier study, where 65 percent of faculty reported they perceived that students spend more time engaged with course materials
  • Only 12.7 percent said the most valuable benefit was improved learning; 3.7 percent perceived no benefit whatsoever. Note that students could only select one response, so more than 12.7 percent may have felt learning was improved, but it was not ranked highest. These findings compare favorably with a study done by Douglas Havelka at the University of Miami in Oxford, Ohio, who identified the top six benefits of the current implementation of IT as improving work efficiency, affecting the way people behave, improving communications, making life more convenient, saving time, and improving learning ability.14
    • Barbara Lindsey
       
      Would have been good to know exactly what kinds of technologies were meant here.
  • Our data suggest that we are at best at the cusp of technologies being employed to improve learning.
  • The interactive features least used by faculty were the features that students indicated contributed the most to their learning.
  • he students in this study called our attention to performance by noting an uneven diffusion of innovation using this technology. This may be due, in part, to faculty or student skill. It may also be due to a lack of institutional recognition of innovation, especially as the successful use of course management systems affects or does not affect faculty tenure, promotion, and merit decisions
  • we found that many of the students most skilled in the use of technology had mixed feelings about technology in the classroom.
  • What we found was that many necessary skills had to be learned at the college or university and that the motivation for doing so was very much tied to the requirements of the curriculum. Similarly, the students in our survey had not gained the necessary skills to use technology in support of academic work outside the classroom. We found a significant need for further training in the use of information technology in support of learning and problem-solving skills.
  • Course management systems were used most by both faculty and students for communication of information and administrative activities and much less in support of learning.
  • In 1997, Michael Hooker proclaimed, "higher education is on the brink of a revolution." Hooker went on to note that two of the greatest challenges our institutions face are those of "harnessing the power of digital technology and responding to the information revolution."18 Hooker and many others, however, did not anticipate the likelihood that higher education's learning revolution would be a journey of a thousand miles rather than a discrete event. Indeed, a study of learning's last great revolution—the invention of moveable type—reveals, too, a revolution conducted over centuries leading to the emergence of a publishing industry, intellectual property rights law, the augmentation of customized lectures with textbooks, and so forth.
  • Both the ECAR study on faculty use of course management systems and this study of student experiences with information technology concluded that, while information technology is indeed making important inroads into classroom and learning activities, to date the effects are largely in the convenience of postsecondary teaching and learning and do not yet constitute a "learning revolution." This should not surprise us. The invention of moveable type enhanced, nearly immediately, access to published information and reduced the time needed to produce new publications. This invention did not itself change literacy levels, teaching styles, learning styles, or other key markers of a learning revolution. These changes, while catalyzed by the new technology, depended on slower social changes to institutions. I believe that is what we are witnessing in higher education today.
  • The institutions chosen represent a nonrepresentative mix of the different types of higher education institution in the United States, in terms of Carnegie class as well as location, source of funding, and levels of technology emphasis. Note, however, that we consider our findings to be instructive rather than conclusive of student experiences at different types of Carnegie institutions.
  • Qualitative data were collected by means of focus groups and individual interviews. We interviewed undergraduate students, administrators, and individuals identified as experts in the field of student technology use in the classroom. Student focus groups and interviews of administrators were conducted at six of the thirteen schools participating in the study.
Barbara Lindsey

Online debate community for logical, passionate people - CreateDebate - 0 views

  •  
    Not sure this isn't just another venue for folks to leave emotional, biased, uninformed comments
Barbara Lindsey

Hearing Bilingual - How Babies Tell Languages Apart - NYTimes.com - 0 views

  • “What the study demonstrates is that the variability in bilingual babies’ experience keeps them open,” said Dr. Patricia Kuhl, co-director of the Institute for Learning and Brain Sciences at the University of Washington and one of the authors of the study. “They do not show the perceptual narrowing as soon as monolingual babies do. It’s another piece of evidence that what you experience shapes the brain.
  • In one recent study, Dr. Werker and her collaborators showed that babies born to bilingual mothers not only prefer both of those languages over others — but are also able to register that the two languages are different.
  • Over the past decade, Ellen Bialystok, a distinguished research professor of psychology at York University in Toronto, has shown that bilingual children develop crucial skills in addition to their double vocabularies, learning different ways to solve logic problems or to handle multitasking, skills that are often considered part of the brain’s so-called executive function.
  • ...3 more annotations...
  • These higher-level cognitive abilities are localized to the frontal and prefrontal cortex in the brain. “Overwhelmingly, children who are bilingual from early on have precocious development of executive function,” Dr. Bialystok said.
  • Dr. Kuhl calls bilingual babies “more cognitively flexible” than monolingual infants.
  • “This special mapping that babies seem to do with language happens in a social setting,” Dr. Kuhl said. “They need to be face to face, interacting with other people. The brain is turned on in a unique way.”
  •  
    One of the key take aways for me is this quote: "This special mapping that babies seem to do with language happens in a social setting," Dr. Kuhl said. "They need to be face to face, interacting with other people. The brain is turned on in a unique way."
1 - 7 of 7
Showing 20 items per page