Skip to main content

Home/ beyondwebct/ Group items tagged open source

Rss Feed Group items tagged

Barbara Lindsey

An Education in Open Source -- THE Journal - 0 views

  •  
    Just wonder what will happen when some or most open source apps go freemium or fee-based: "At Maryland's Chelsea School, free and open source software is helping deliver services to the school's elementary students inside the classroom and out--from audio editing software to learning apps for special needs students to course management. In fact, open source so permeates Chelsea that some students are even working to contribute code back to the open source development community."
Barbara Lindsey

Dr. Mashup; or, Why Educators Should Learn to Stop Worrying and Love the Remix | EDUCAU... - 0 views

  • A classroom portal that presents automatically updated syndicated resources from the campus library, news sources, student events, weblogs, and podcasts and that was built quickly using free tools.
  • Increasingly, it's not just works of art that are appropriated and remixed but the functionalities of online applications as well.
  • mashups involve the reuse, or remixing, of works of art, of content, and/or of data for purposes that usually were not intended or even imagined by the original creators.
  • ...31 more annotations...
  • hat, exactly, constitutes a valid, original work? What are the implications for how we assess and reward creativity? Can a college or university tap the same sources of innovative talent and energy as Google or Flickr? What are the risks of permitting or opening up to this activity?
    • Barbara Lindsey
       
      Good discussion point
  • Remix is the reworking or adaptation of an existing work. The remix may be subtle, or it may completely redefine how the work comes across. It may add elements from other works, but generally efforts are focused on creating an alternate version of the original. A mashup, on the other hand, involves the combination of two or more works that may be very different from one another. In this article, I will apply these terms both to content remixes and mashups, which originated as a music form but now could describe the mixing of any number of digital media sources, and to data mashups, which combine the data and functionalities of two or more Web applications.
  • Harper's article "The Ecstasy of Influence," the novelist Jonathan Lethem imaginatively reviews the history of appropriation and recasts it as essential to the act of creation.3
  • Lethem's article is a must-read for anyone with an interest in the history of ideas, creativity, and intellectual property. It brilliantly synthesizes multiple disciplines and perspectives into a wonderfully readable and compelling argument. It is also, as the subtitle of his article acknowledges, "a plagiarism." Virtually every passage is a direct lift from another source, as the author explains in his "Key," which gives the source for every line he "stole, warped, and cobbled together." (He also revised "nearly every sentence" at least slightly.) Lethem's ideas noted in the paragraph above were appropriated from Siva Vaidhyanathan, Craig Baldwin, Richard Posner, and George L. Dillon.
  • Reading Walter Benjamin's highly influential 1936 essay "The Work of Art in the Age of Mechanical Reproduction,"4 it's clear that the profound effects of reproductive technology were obvious at that time. As Gould argued in 1964 (influenced by theorists such as Marshall McLuhan5), changes in how art is produced, distributed, and consumed in the electronic age have deep effects on the character of the art itself.
  • Yet the technology developments of the past century have clearly corresponded with a new attitude toward the "aura" associated with a work of invention and with more aggressive attitudes toward appropriation. It's no mere coincidence that the rise of modernist genres using collage techniques and more fragmented structures accompanied the emergence of photography and audio recording.
  • Educational technologists may wonder if "remix" or "content mashup" are just hipper-sounding versions of the learning objects vision that has absorbed so much energy from so many talented people—with mostly disappointing results.
  • The question is, why should a culture of remix take hold when the learning object economy never did?
  • when most learning object repositories were floundering, resource-sharing services such as del.icio.us and Flickr were enjoying phenomenal growth, with their user communities eagerly contributing heaps of useful metadata via simple folksonomy-oriented tagging systems.
  • the standards/practices relationship implicit in the learning objects model has been reversed. With only the noblest of intentions, proponents of learning objects (and I was one of them) went at the problem of promoting reuse by establishing an arduous and complex set of interoperability standards and then working to persuade others to adopt those standards. Educators were asked to take on complex and ill-defined tasks in exchange for an uncertain payoff. Not surprisingly, almost all of them passed.
  • Discoverable Resources
  • Educators might justifiably argue that their materials are more authoritative, reliable, and instructionally sound than those found on the wider Web, but those materials are effectively rendered invisible and inaccessible if they are locked inside course management systems.
  • It's a dirty but open secret that many courses in private environments use copyrighted third-party materials in a way that pushes the limits of fair use—third-party IP is a big reason why many courses cannot easily be made open.
  • The potential payoff for using open and discoverable resources, open and transparent licensing, and open and remixable formats is huge: more reuse means that more dynamic content is being produced more economically, even if the reuse happens only within an organization. And when remixing happens in a social context on the open web, people learn from each other's process.
  • Part of making a resource reusable involves making the right choices for file formats.
  • To facilitate the remixing of materials, educators may want to consider making the source files that were used to create a piece of multimedia available along with the finished result.
  • In addition to choosing the right file format and perhaps offering the original sources, another issue to consider when publishing content online is the critical question: "Is there an RSS feed available?" If so, conversion tools such as Feed2JS (http://www.feed2JS.org) allow for the republication of RSS-ified content in any HTML Web environment, including a course management system, simply by copying and pasting a few lines of JavaScript code. When an original source syndicated with RSS is updated, that update is automatically rendered anywhere it has been republished.
  • Jack Schofield
  • Guardian Unlimited
  • "An API provides an interface and a set of rules that make it much easier to extract data from a website. It's a bit like a record company releasing the vocals, guitars and drums as separate tracks, so you would not have to use digital processing to extract the parts you wanted."1
  • What's new about mashed-up application development? In a sense, the factors that have promoted this approach are the same ones that have changed so much else about Web culture in recent years. Essential hardware and software has gotten more powerful and for the most part cheaper, while access to high-speed connectivity and the enhanced quality of online applications like Google Docs have improved to the point that Tim O'Reilly and others can talk of "the emergent Internet operating system."15 The growth of user-centered technologies such as blogs have fostered a DIY ("do it yourself") culture that increasingly sees online interaction as something that can be personalized and adapted on the individual level. As described earlier, light syndication and service models such as RSS have made it easier and faster than ever to create simple integrations of diverse media types. David Berlind, executive editor of ZDNet, explains: "With mashups, fewer technical skills are needed to become a developer than ever. Not only that, the simplest ones can be done in 10 or 15 minutes. Before, you had to be a pretty decent code jockey with languages like C++ or Visual Basic to turn your creativity into innovation. With mashups, much the same way blogging systems put Web publishing into the hands of millions of ordinary non-technical people, the barrier to developing applications and turning creativity into innovation is so low that there's a vacuum into which an entire new class of developers will be sucked."16
  • The ability to "clone" other users' mashups is especially exciting: a newcomer does not need to spend time learning how to structure the data flows but can simply copy an existing framework that looks useful and then make minor modifications to customize the result.19
    • Barbara Lindsey
       
      This is the idea behind the MIT repository--remixing content to suit local needs.
  • As with content remixing, open access to materials is not just a matter of some charitable impulse to share knowledge with the world; it is a core requirement for participating in some of the most exciting and innovative activity on the Web.
  • "My Maps" functionality
  • For those still wondering what the value proposition is for offering an open API, Google's development process offers a compelling example of the potential rewards.
    • Barbara Lindsey
       
      Wikinomics
  • Elsewhere, it is difficult to point to significant activity suggesting that the mashup ethos is taking hold in academia the way it is on the wider Web.
  • Yet for the most part, the notion of the data mashup and the required openness is not even a consideration in discussions of technology strategy in higher educational institutions. "Data integration" across campus systems is something that is handled by highly skilled professionals at highly skilled prices.
  • Revealing how a more adventurous and inclusive online development strategy might look on campus, Raymond Yee recently posted a comprehensive proposal for his university (UC Berkeley), in which he outlined a "technology platform" not unlike the one employed by Amazon.com (http://aws.amazon.com/)—resources and access that would be invaluable for the institution's programmers as well as for outside interests to build complementary services.
  • All too often, college and university administrators react to this type of innovation with suspicion and outright hostility rather than cooperation.
  • those of us in higher education who observe the successful practices in the wider Web world have an obligation to consider and discuss how we might apply these lessons in our own contexts. We might ask if the content we presently lock down could be made public with a license specifying reasonable terms for reuse. When choosing a content management system, we might consider how well it supports RSS syndication. In an excellent article in the March/April 2007 issue of EDUCAUSE Review, Joanne Berg, Lori Berquam, and Kathy Christoph listed a number of campus activities that could benefit from engaging social networking technologies.26
  • What might happen if we allow our campus innovators to integrate their practices in these areas in the same way that social networking application developers are already integrating theirs? What is the mission-critical data we cannot expose, and what can we expose with minimal risk? And if the notion of making data public seems too radical a step, can APIs be exposed to selected audiences, such as on-campus developers or consortia partners?
Barbara Lindsey

Minds on Fire: Open Education, the Long Tail, and Learning 2.0 (EDUCAUSE Review) | EDUC... - 0 views

  • But at the same time that the world has become flatter, it has also become “spikier”: the places that are globally competitive are those that have robust local ecosystems of resources supporting innovation and productiveness.2
  • various initiatives launched over the past few years have created a series of building blocks that could provide the means for transforming the ways in which we provide education and support learning. Much of this activity has been enabled and inspired by the growth and evolution of the Internet, which has created a global “platform” that has vastly expanded access to all sorts of resources, including formal and informal educational materials. The Internet has also fostered a new culture of sharing, one in which content is freely contributed and distributed with few restrictions or costs.
  • the most visible impact of the Internet on education to date has been the Open Educational Resources (OER) movement, which has provided free access to a wide range of courses and other educational materials to anyone who wants to use them. The movement began in 2001 when the William and Flora Hewlett and the Andrew W. Mellon foundations jointly funded MIT’s OpenCourseWare (OCW) initiative, which today provides open access to undergraduate- and graduate-level materials and modules from more than 1,700 courses (covering virtually all of MIT’s curriculum). MIT’s initiative has inspired hundreds of other colleges and universities in the United States and abroad to join the movement and contribute their own open educational resources.4 The Internet has also been used to provide students with direct access to high-quality (and therefore scarce and expensive) tools like telescopes, scanning electron microscopes, and supercomputer simulation models, allowing students to engage personally in research.
  • ...29 more annotations...
  • most profound impact of the Internet, an impact that has yet to be fully realized, is its ability to support and expand the various aspects of social learning. What do we mean by “social learning”? Perhaps the simplest way to explain this concept is to note that social learning is based on the premise that our understanding of content is socially constructed through conversations about that content and through grounded interactions, especially with others, around problems or actions. The focus is not so much on what we are learning but on how we are learning.5
  • This perspective shifts the focus of our attention from the content of a subject to the learning activities and human interactions around which that content is situated. This perspective also helps to explain the effectiveness of study groups. Students in these groups can ask questions to clarify areas of uncertainty or confusion, can improve their grasp of the material by hearing the answers to questions from fellow students, and perhaps most powerfully, can take on the role of teacher to help other group members benefit from their understanding (one of the best ways to learn something is, after all, to teach it to others).
  • This encourages the practice of what John Dewey called “productive inquiry”—that is, the process of seeking the knowledge when it is needed in order to carry out a particular situated task.
  • ecoming a trusted contributor to Wikipedia involves a process of legitimate peripheral participation that is similar to the process in open source software communities. Any reader can modify the text of an entry or contribute new entries. But only more experienced and more trusted individuals are invited to become “administrators” who have access to higher-level editing tools.8
  • by clicking on tabs that appear on every page, a user can easily review the history of any article as well as contributors’ ongoing discussion of and sometimes fierce debates around its content, which offer useful insights into the practices and standards of the community that is responsible for creating that entry in Wikipedia. (In some cases, Wikipedia articles start with initial contributions by passionate amateurs, followed by contributions from professional scholars/researchers who weigh in on the “final” versions. Here is where the contested part of the material becomes most usefully evident.) In this open environment, both the content and the process by which it is created are equally visible, thereby enabling a new kind of critical reading—almost a new form of literacy—that invites the reader to join in the consideration of what information is reliable and/or important.
  • But viewing learning as the process of joining a community of practice reverses this pattern and allows new students to engage in “learning to be” even as they are mastering the content of a field.
  • Mastering a field of knowledge involves not only “learning about” the subject matter but also “learning to be” a full participant in the field. This involves acquiring the practices and the norms of established practitioners in that field or acculturating into a community of practice.
  • Another interesting experiment in Second Life was the Harvard Law School and Harvard Extension School fall 2006 course called “CyberOne: Law in the Court of Public Opinion.” The course was offered at three levels of participation. First, students enrolled in Harvard Law School were able to attend the class in person. Second, non–law school students could enroll in the class through the Harvard Extension School and could attend lectures, participate in discussions, and interact with faculty members during their office hours within Second Life. And at the third level, any participant in Second Life could review the lectures and other course materials online at no cost. This experiment suggests one way that the social life of Internet-based virtual education can coexist with and extend traditional education.
  • Digital StudyHall (DSH), which is designed to improve education for students in schools in rural areas and urban slums in India. The project is described by its developers as “the educational equivalent of Netflix + YouTube + Kazaa.”11 Lectures from model teachers are recorded on video and are then physically distributed via DVD to schools that typically lack well-trained instructors (as well as Internet connections). While the lectures are being played on a monitor (which is often powered by a battery, since many participating schools also lack reliable electricity), a “mediator,” who could be a local teacher or simply a bright student, periodically pauses the video and encourages engagement among the students by asking questions or initiating discussions about the material they are watching.
  • John King, the associate provost of the University of Michigan
  • For the past few years, he points out, incoming students have been bringing along their online social networks, allowing them to stay in touch with their old friends and former classmates through tools like SMS, IM, Facebook, and MySpace. Through these continuing connections, the University of Michigan students can extend the discussions, debates, bull sessions, and study groups that naturally arise on campus to include their broader networks. Even though these extended connections were not developed to serve educational purposes, they amplify the impact that the university is having while also benefiting students on campus.14 If King is right, it makes sense for colleges and universities to consider how they can leverage these new connections through the variety of social software platforms that are being established for other reasons.
  • The project’s website includes reports of how students, under the guidance of professional astronomers, are using the Faulkes telescopes to make small but meaningful contributions to astronomy.
  • “This is not education in which people come in and lecture in a classroom. We’re helping students work with real data.”16
  • HOU invites students to request observations from professional observatories and provides them with image-processing software to visualize and analyze their data, encouraging interaction between the students and scientists
  • The site is intended to serve as “an open forum for worldwide discussions on the Decameron and related topics.” Both scholars and students are invited to submit their own contributions as well as to access the existing resources on the site. The site serves as an apprenticeship platform for students by allowing them to observe how scholars in the field argue with each other and also to publish their own contributions, which can be relatively small—an example of the “legitimate peripheral participation” that is characteristic of open source communities. This allows students to “learn to be,” in this instance by participating in the kind of rigorous argumentation that is generated around a particular form of deep scholarship. A community like this, in which students can acculturate into a particular scholarly practice, can be seen as a virtual “spike”: a highly specialized site that can serve as a global resource for its field.
  • I posted a list of links to all the student blogs and mentioned the list on my own blog. I also encouraged the students to start reading one another's writing. The difference in the writing that next week was startling. Each student wrote significantly more than they had previously. Each piece was more thoughtful. Students commented on each other's writing and interlinked their pieces to show related or contradicting thoughts. Then one of the student assignments was commented on and linked to from a very prominent blogger. Many people read the student blogs and subscribed to some of them. When these outside comments showed up, indicating that the students really were plugging into the international community's discourse, the quality of the writing improved again. The power of peer review had been brought to bear on the assignments.17
  • for any topic that a student is passionate about, there is likely to be an online niche community of practice of others who share that passion.
  • Finding and joining a community that ignites a student’s passion can set the stage for the student to acquire both deep knowledge about a subject (“learning about”) and the ability to participate in the practice of a field through productive inquiry and peer-based learning (“learning to be”). These communities are harbingers of the emergence of a new form of technology-enhanced learning—Learning 2.0—which goes beyond providing free access to traditional course materials and educational tools and creates a participatory architecture for supporting communities of learners.
  • We need to construct shared, distributed, reflective practicums in which experiences are collected, vetted, clustered, commented on, and tried out in new contexts.
  • An example of such a practicum is the online Teaching and Learning Commons (http://commons.carnegiefoundation.org/) launched earlier this year by the Carnegie Foundation for the Advancement of Teaching
  • The Commons is an open forum where instructors at all levels (and from around the world) can post their own examples and can participate in an ongoing conversation about effective teaching practices, as a means of supporting a process of “creating/using/re-mixing (or creating/sharing/using).”20
  • The original World Wide Web—the “Web 1.0” that emerged in the mid-1990s—vastly expanded access to information. The Open Educational Resources movement is an example of the impact that the Web 1.0 has had on education.
  • But the Web 2.0, which has emerged in just the past few years, is sparking an even more far-reaching revolution. Tools such as blogs, wikis, social networks, tagging systems, mashups, and content-sharing sites are examples of a new user-centric information infrastructure that emphasizes participation (e.g., creating, re-mixing) over presentation, that encourages focused conversation and short briefs (often written in a less technical, public vernacular) rather than traditional publication, and that facilitates innovative explorations, experimentations, and purposeful tinkerings that often form the basis of a situated understanding emerging from action, not passivity.
  • In the twentieth century, the dominant approach to education focused on helping students to build stocks of knowledge and cognitive skills that could be deployed later in appropriate situations. This approach to education worked well in a relatively stable, slowly changing world in which careers typically lasted a lifetime. But the twenty-first century is quite different.
  • We now need a new approach to learning—one characterized by a demand-pull rather than the traditional supply-push mode of building up an inventory of knowledge in students’ heads. Demand-pull learning shifts the focus to enabling participation in flows of action, where the focus is both on “learning to be” through enculturation into a practice as well as on collateral learning.
  • The demand-pull approach is based on providing students with access to rich (sometimes virtual) learning communities built around a practice. It is passion-based learning, motivated by the student either wanting to become a member of a particular community of practice or just wanting to learn about, make, or perform something. Often the learning that transpires is informal rather than formally conducted in a structured setting. Learning occurs in part through a form of reflective practicum, but in this case the reflection comes from being embedded in a community of practice that may be supported by both a physical and a virtual presence and by collaboration between newcomers and professional practitioners/scholars.
  • The building blocks provided by the OER movement, along with e-Science and e-Humanities and the resources of the Web 2.0, are creating the conditions for the emergence of new kinds of open participatory learning ecosystems23 that will support active, passion-based learning: Learning 2.0.
  • As a graduate student at UC-Berkeley in the late 1970s, Treisman worked on the poor performance of African-Americans and Latinos in undergraduate calculus classes. He discovered the problem was not these students’ lack of motivation or inadequate preparation but rather their approach to studying. In contrast to Asian students, who, Treisman found, naturally formed “academic communities” in which they studied and learned together, African-Americans tended to separate their academic and social lives and studied completely on their own. Treisman developed a program that engaged these students in workshop-style study groups in which they collaborated on solving particularly challenging calculus problems. The program was so successful that it was adopted by many other colleges. See Uri Treisman, “Studying Students Studying Calculus: A Look at the Lives of Minority Mathematics Students in College,” College Mathematics Journal, vol. 23, no. 5 (November 1992), pp. 362–72, http://math.sfsu.edu/hsu/workshops/treisman.html.
  • In the early 1970s, Stanford University Professor James Gibbons developed a similar technique, which he called Tutored Videotape Instruction (TVI). Like DSH, TVI was based on showing recorded classroom lectures to groups of students, accompanied by a “tutor” whose job was to stop the tape periodically and ask questions. Evaluations of TVI showed that students’ learning from TVI was as good as or better than in-classroom learning and that the weakest students academically learned more from participating in TVI instruction than from attending lectures in person. See J. F. Gibbons, W. R. Kincheloe, and S. K. Down, “Tutored Video-tape Instruction: A New Use of Electronics Media in Education,” Science, vol. 195 (1977), pp. 1136–49.
Barbara Lindsey

EC&I 831 - 1 views

  • The goals of this course follow. Participants will: better understand the historical role technology and media have played in educational & social change; become knowledgeable of social learning tools & FLOSS (Free/Libre and Open Source Software) as tools for teaching, facilitating learning, & designing educational environments; become familiar with the wealth of open educational resources (OERs), learning-related content, & media available for teaching & learning; become knowledgeable of relevant social learning theories and philosophies that respond to learning in the digital age; better understand the many social, educational, political, cultural, and administrative issues often associated with technology & media in education and society; become critical consumers and producers of digital media and information; and, build sustainable, personal learning environments and networks.
  • A significant portion of the course learning will happen outside of the scheduled, synchronous sessions. Participants will gain experience in social learning processes such as: writing reflective blog posts, commenting on participant blogs, reading and commenting on educational blogs from outside of the course, microblogging, reading and exploring other educational technology and learning-focused media, exploring social learning tools, and creating educational media.
  •  
    Couros Course on Social Media & Open Education "Open, Connected, Social" this course is open to credit and not-for-credit' students and features synchronous discussions via Elluminate and asynchronous work via microblogging, blogging, and the creation of digital content.
Barbara Lindsey

Open university: Joi Ito plans a radical reinvention of MIT's Media Lab (Wired UK) - 0 views

  • They have a maker space in a church, a place where the kids can learn how to build a computer, a bike shop where they can learn how to do repairs. The kid who runs this place, Jeff Sturges, is awesome.We're sending a bunch of Media Lab people to Detroit to work with local innovators already doing stuff on the ground."
  • in which any bright talent anywhere, academically qualified or not, can be part of the world's leading "antidisciplinary" research lab. "Opening up the lab is more about expanding our reach and creating our network," explains Ito, appointed director in April 2011.
  • as Ito sees it, the formal channels of academia today inhibit progress. "In the old days, being relevant was writing academic papers. Today, if people can't find you on the internet, if they're not talking about you in Rwanda, you're irrelevant. That's the worst thing in the world for any researcher. The people inventing things might be in Kenya, and they go to the internet and search. Funders do the same thing. The old, traditional academic channel is not a good channel for attracting attention, funding, people, or preventing other people from competing with you.
  • ...10 more annotations...
  • You can't actually tell people to think for themselves, or be creative. You have to work with them and have them learn it themselves."
  • "Being open, you're much less likely to have someone competitive emerge and you're also much more likely to find somebody who wants to come to work with you. Innovation is happening everywhere -- not just in the Ivy League schools. And that's why we're working with you guys [at Wired] too -- in the old days, academics didn't want to be in popular magazines. Openness is a survival trait."
  • It was, according to a 1984 briefing document by Negroponte, "designed to be a place where people of dramatically different backgrounds can simultaneously use and invent new media, and where the computer itself is seen as a medium -- part of a communications network of people and machines -- not just an object in front of which one sits."
  • As Ito sees it, the lab's mission "is to come up with ideas that would never be able to occur anywhere else because most places are incremental, directed and disciplinary".
  • There are lots of kids who are not happy with this massive consumerism, this unsustainable growth, but who have really smart science and technology values. That's a type of person we can draw into what I think will become a movement."
  • "We aim to capture serendipity. You don't get lucky if you plan everything -- and you don't get serendipity unless you have peripheral vision and creativity.
  • Our funding model allows our students to do anything they want without asking permission. It's like venture capital: we don't expect every experiment to succeed -- in fact, a lot are failures. But that's great -- failure is another word for discovery. We're very much against incrementalism -- we look for unexplored spaces, and our key metrics for defining a good project are uniqueness, impact and magic."
  • Ito set out some of his key principles. These included: "Encourage rebellion instead of compliance"; "Practice instead of theory"; " Constant learning instead of education"; "Compass over map". "The key principles include disobedience -- no one ever won a Nobel prize by doing as they're told," he explains later. "And it's about resilience versus strength -- you don't try to resist failure, you allow failure and bounce back. And compass over map is important -- you need to know where you're going, but the cost of planning often exceeds the cost of actually trying. The maps you have are often wrong. These principles affect and apply to just about any organisation."
  • In the old days, you needed hundreds of millions of dollars and armies of people to do anything that mattered. Today a couple of kids using open-source software, a generic PC and the internet can create a Google, a Yahoo! and a Facebook in their dorm room, and plug it in and it's working even before they've raised money. That takes all the innovation from the centre and pushes it to the edges -- into the little labs inside the Media Lab; inside dorm rooms; even inside terrorist cells. Suddenly the world is out of control -- the people innovating, disrupting, creating these tools, they're not scholars. They don't care about disciplines. They're antidisciplinary."
  • So when Ito was appointed, Negroponte wanted the press release headlined: "University dropout named director of Media Lab". "But," he says with raised eyebrows, "the fact that he didn't have a degree was buried near the last paragraph. That's the good Peter Thiel -- if you do drop out and do something creative, more power to you."
Barbara Lindsey

Open Source Open World - 0 views

  •  
    Nice graphic but critically marred by all rights reserved copyright on it.
Barbara Lindsey

YouTube - Sintel - 0 views

  •  
    "Sintel" is an independently produced short film, initiated by the Blender Foundation as a means to further improve and validate the free/open source 3D creation suite Blender. With initial funding provided by 1000s of donations via the internet community, it has again proven to be a viable development model for both open 3D technology as for independent animation film. This 15 minute film has been realized in the studio of the Amsterdam Blender Institute, by an international team of artists and developers. In addition to that, several crucial technical and creative targets have been realized online, by developers and artists and teams all over the world.
Barbara Lindsey

Video: Voices From the Front Lines of Online Learning - Wired Campus - The Chronicle of... - 0 views

  • As a first time student enrolled in an online course, I am dismayed by the total lack of the instructor's input. She merely feeds us the publisher's materials, has a teaching assistant grade the homework and pulls her tests from the publisher's test bank. I could teach this course, easily, myself.
  • There is no "teaching" or explanation, just self study. Silly things are graded like participation in discussions, and homework is often graded despite the fact the solutions manuals are all available online for students. Many online courses are taught by for-profit schools whose key motivation is to never fail students and to keep their tuition dollars flowing in. Even traditional schools' online courses are silly. The teacher has no way to know who is taking the exams. Exams are open book. Let's all start calling it the sham that it really is.
  • I have to say, from my experience as a student in an Ivy League school on the ground I had experiences like that. You can't judge an entire way of teaching and learning from these experiences.I have been teaching graduate school online since 1999. I engage actively with learners one on one, in small groups and in the class. I use meeting technologies as well as the Blackboard discussion. Learners work independently or collaboratively, depending on the assignment. I review and make detailed comments on their writing in assignments that require them to reasearch and draw on multiple scholarly sources. There is typically not one textbook, so "publisher's materials" or "open book exams" are non-existent. Even discussion assignments are submitted in full APA style and require references to the assigned and other scholarly readings. Higher order critical and creative thinking, original analysis, are required.
  • ...10 more annotations...
  • When these learners complete the program, they have competencies relevant to 21c life-- they can communicate, collaborate, access and integrate information from diverse sources using electronic libraries. It is an exciting way to teach and learn and it is the wave of the future so we need to gain the skills needed to make these educational experiences consistently meaningful.
  • Working with online instruction requires different techniques. An instructor online cannot usually look at a student's face and see that she isn't grasping the point, for example, or when she has fallen asleep. I can see why instructors would miss this type of face-to-face communication; online feedback is both less immediate and in some cases more direct. But a lecture can be truly engaging or enormously incomprehensible even for the student who moves to the front row to try to understand it all. Online learning can also reap huge results or can suffer from another set of equally mind-numbing problems.
  • I have to agree with jsalmons and bghansel. It's not the fact that a school is online or on-ground that matters. It's the quality of the educator that matters. I, too, have gone to and taught in Ivy League schools and found them to be a mixed bag, just as I've found online schools to be a mixed bag.
  • Yes, softshellcrab, discussion questions are the backbone of online courses. Are you telling me they don't play a role in on-ground education? Are you telling me that only talking-head lectures educate? Is there something wrong with students doing self-studying? Haven't you seen lecture content in online courses? I'm puzzled as to why you think critical thinking, Socratic reasoning/questioning, and constructivism are bad or can't be done online, but can on-ground.
  • The most (Stress THE MOST)primary issue with distance education is the degree of affective education taught.
  • We can use SKYPE, WIMBA or other "video" based education, but what we lose is the subtle differences of students and their interactions with others that makes it difficult to determine their level of character (highest level of affect).
  • Bill Gates may think we will have less seated instruction in the future (see another Chronicle issue elsewhere), but the backlash against online will be in the form of those who cannot interact and thus not obtain jobs (except in the places where it wont matter because none have any affect in that place).The bottom line is that we are losing a major portion of our education system in a pure online education format. Until we recognize how to better teach affective education with online, and more importantly assess that type of education, we will have major issues not only in higher education, but also in industry/business.And this is an open invitation for Bill Gates to discuss this issue.
  • "Quality on-line teaching is harder than regular classroom teaching, but poor on-line teaching is easier than regular classroom teaching."
  • But can I make it more specific - "Quality on-line teaching is harder (taking more time, e.g.)than regular classroom teaching of the same quality (in achieving the same extent of satisfaction in students, e.g.)?"
  • However, no one has mentioned the preparation required for quality online instruction. Some building blocks of good online programs are high quality/targeted content, flexible tools for development and delivery, engaging and interactive design, attentive and responsive instructors during the class, self motivated learners, and as always outcomes-based curriculum.
Barbara Lindsey

Opportunities for Creating the Future of Learning - 2020 Forecast: Creating the Future ... - 0 views

  • It remains to be seen whether new learning agents and traditionally certified teachers will cooperate or compete.
  • Secondly, it emphasizes the need for learning to be an ongoing process whereby we all become engaged citizens of a global society. T
  • By embracing technologies of cooperation, prototyping new models of learning, and cultivating open and collaborative approaches to leadership, “amplified” educators and learners will become the organizational “superheroes” of schools and districts.
  • ...5 more annotations...
  • The globalization of open learning systems characterized by cooperative resource creation, evaluation, and sharing will change how educational institutions view their roles and will offer new forms of value in the global learning ecosystem.
  • The result will be an emerging toolset for designing personalized, learner-centered experiences and environments that reflect the differentiation among learners instead of forcing compliance to an average learning style and level of performance.
  • As the hierarchical structure of education splinters, traditional top-down movements of authority, knowledge, and power will unravel. Before new patterns get established, it will seem as if a host of new species has been introduced into the learning ecosystem. Authority will be a hotly contested resource, and there will be the potential for conflict and distrust.
  • Learning geographies will be accessible to communities through a range of key tools, such as data aggregated from disparate sources, geo-coded data linking learning resources and educational information to specific community locations, and visualization tools that help communicate such information in easily understood visual and graphic forms. Such information will often contain multiple layers of data (for example, school performance statistics, poverty rates, and the degree of access to fresh food).
  • These new dimensions of learning geographies will require new core skills. Among them will be navigating new visual cartographies, identifying learning resources in previously unexpected places, leveraging networks to take advantage of learning opportunities, and creating flexible educational infrastructures that can make use of dispersed community resources. Through enhanced visibility and accessibility, learning geographies will bring new transparency to issues of equity in learning.
  •  
    By embracing technologies of cooperation, prototyping new models of learning, and cultivating open and collaborative approaches to leadership, "amplified" educators and learners will become the organizational "superheroes" of schools and districts.
Barbara Lindsey

Apple, Publishers, Open-Source Dictate Law School Textbook Evolution - 0 views

  •  
    fall 2012
Barbara Lindsey

Spot.us - 0 views

  •  
    We are an open source project to pioneer "community powered reporting." Through Spot.Us the public can commission and participate with journalists to do reporting on important and perhaps overlooked topics.
Barbara Lindsey

Planning for Neomillennial Learning Styles: Implications for Investments in Technology ... - 0 views

  • Research indicates that each of these media, when designed for education, fosters particular types of interactions that enable—and undercut—various learning styles.
    • Barbara Lindsey
       
      How much do we know about our students' learning styles? How do we know this?
  • Over the next decade, three complementary interfaces will shape how people learn
  • The familiar "world to the desktop." Provides access to distant experts and archives and enables collaborations, mentoring relationships, and virtual communities of practice. This interface is evolving through initiatives such as Internet2. "Alice in Wonderland" multiuser virtual environments (MUVEs). Participants' avatars (self-created digital characters) interact with computer-based agents and digital artifacts in virtual contexts. The initial stages of studies on shared virtual environments are characterized by advances in Internet games and work in virtual reality. Ubiquitous computing. Mobile wireless devices infuse virtual resources as we move through the real world. The early stages of "augmented reality" interfaces are characterized by research on the role of "smart objects" and "intelligent contexts" in learning and doing.
  • ...48 more annotations...
  • This immersion in virtual environments and augmented realities shapes participants' learning styles beyond what using sophisticated computers and telecommunications has fostered thus far, with multiple implications for higher education.
  • Beyond actional and symbolic immersion, advances in interface technology are now creating virtual environments and augmented realities that induce a psychological sense of sensory and physical immersion.
  • The research on virtual reality Salzman and I conducted on frames of reference found that the exocentric and the egocentric FORs have different strengths for learning. Our studies established that learning ideally involves a "bicentric" perspective alternating between egocentric and exocentric FORs.
    • Barbara Lindsey
       
      Could we make the argument that this is one of the main goals of language programs?
  • But what is so special about the egocentric perspectives and situated learning now enabled by emerging media? After all, each of us lives with an egocentric perspective in the real world and has many opportunities for situated learning without using technology. One attribute that makes mediated immersion different and powerful is the ability to access information resources and psychosocial community distributed across distance and time, broadening and deepening experience. A second important attribute is the ability to create interactions and activities in mediated experience not possible in the real world, such as teleporting within a virtual environment, enabling a distant person to see a real-time image of your local environment, or interacting with a (simulated) chemical spill in a busy public setting. Both of these attributes are actualized in the Alice-in-Wonderland interface.
  • Notion of place is layered/blended/multiple; mobility and nomadicity prevalent among dispersed, fragmented, fluctuating habitats (for example, coffeehouses near campus)
  • Guided social constructivism and situated learning as major forms of pedagogy
  • he defining quality of a learning community is that there is a culture of learning, in which everyone is involved in a collective effort of understanding. There are four characteristics that such a culture must have: (1) diversity of expertise among its members, who are valued for their contributions and given support to develop, (2) a shared objective of continually advancing the collective knowledge and skills, (3) an emphasis on learning how to learn, and (4) mechanisms for sharing what is learned. If a learning community is presented with a problem, then the learning community can bring its collective knowledge to bear on the problem. It is not necessary that each member assimilate everything that the community knows, but each should know who within the community has relevant expertise to address any problem. This is a radical departure from the traditional view of schooling, with its emphasis on individual knowledge and performance, and the expectation that students will acquire the same body of knowledge at the same time.26
  • Peer-developed and peer-rated forms of assessment complement faculty grading, which is often based on individual accomplishment in a team performance context  Assessments provide formative feedback on instructional effectiveness
  • Multipurpose habitats—creating layered/blended/personalizable places rather than specialized locations (such as computer labs)
  • o the extent that some of these ideas about neomillennial learning styles are accurate, campuses that make strategic investments in physical plant, technical infrastructure, and professional development along the dimensions suggested will gain a considerable competitive advantage in both recruiting top students and teaching them effectively.
  • Net Generation learning styles stem primarily from the world-to-the-desktop interface; however, the growing prevalence of interfaces to virtual environments and augmented realities is beginning to foster so-called neomillennial learning styles in users of all ages.
    • Barbara Lindsey
       
      What is the timeline?
  • Immersion is the subjective impression that one is participating in a comprehensive, realistic experience.
  • Inducing a participant's symbolic immersion involves triggering powerful semantic associations via the content of an experience.
    • Barbara Lindsey
       
      Felice's Utopian City
  • The capability of computer interfaces to foster psychological immersion enables technology-intensive educational experiences that draw on a powerful pedagogy: situated learning.
  • The major schools of thought cited are behaviorist theories of learning (presentational instruction), cognitivist theories of learning (tutoring and guided learning by doing), and situated theories of learning (mentoring and apprenticeships in communities of practice).
    • Barbara Lindsey
       
      What kinds of learning environments do you prefer and what kinds do you create for your students?
  • Situated learning requires authentic contexts, activities, and assessment coupled with guidance from expert modeling, mentoring, and "legitimate peripheral participation."8 As an example of legitimate peripheral participation, graduate students work within the laboratories of expert researchers, who model the practice of scholarship. These students interact with experts in research as well as with other members of the research team who understand the complex processes of scholarship to varying degrees. While in these laboratories, students gradually move from novice researchers to more advanced roles, with the skills and expectations for them evolving.
  • Potentially quite powerful, situated learning is much less used for instruction than behaviorist or cognitivist approaches. This is largely because creating tacit, relatively unstructured learning in complex real-world settings is difficult.
    • Barbara Lindsey
       
      Not too far in the future!
  • However, virtual environments and ubiquitous computing can draw on the power of situated learning by creating immersive, extended experiences with problems and contexts similar to the real world.9 In particular, MUVEs and real-world settings augmented with virtual information provide the capability to create problem-solving communities in which participants can gain knowledge and skills through interacting with other participants who have varied levels of skills, enabling legitimate peripheral participation driven by intrinsic sociocultural forces.
  • Situated learning is important in part because of the crucial issue of transfer. Transfer is defined as the application of knowledge learned in one situation to another situation and is demonstrated if instruction on a learning task leads to improved performance on a transfer task, typically a skilled performance in a real-world setting
    • Barbara Lindsey
       
      One of the most difficult skills to master.
  • Moreover, the evolution of an individual's or group's identity is an important type of learning for which simulated experiences situated in virtual environments or augmented realities are well suited. Reflecting on and refining an individual identity is often a significant issue for higher education students of all ages, and learning to evolve group and organizational identity is a crucial skill in enabling innovation and in adapting to shifting contexts.
  • Immersion is important in this process of identity exploration because virtual identity is unfettered by physical attributes such as gender, race, and disabilities.
    • Barbara Lindsey
       
      Don't agree with this. We come to any environment with our own baggage and we do not interact in a neutral social context.
  • Thanks to out-of-game trading of in-game items, Norrath, the virtual setting of the MMOG EverQuest, is the seventy-seventh largest economy in the real world, with a GNP per capita between that of Russia and Bulgaria. One platinum piece, the unit of currency in Norrath, trades on real world exchange markets higher than both the Yen and the Lira (Castronova, 2001).14
  • Multiple teams of students can access the MUVE simultaneously, each individual manipulating an avatar which is "sent back in time" to this virtual environment. Students must collaborate to share the data each team collects. Beyond textual conversation, students can project to each other "snapshots" of their current individual point of view (when someone has discovered an item of general interest) and also can "teleport" to join anyone on their team for joint investigation. Each time a team reenters the world, several months of time have passed in River City, so learners can track the dynamic evolution of local problems.
  • In our research on this educational MUVE based on situated learning, we are studying usability, student motivation, student learning, and classroom implementation issues. The results thus far are promising: All learners are highly motivated, including students typically unengaged in classroom settings. All students build fluency in distributed modes of communication and expression and value using multiple media because each empowers different types of communication, activities, experiences, and expressions. Even typically low-performing students can master complex inquiry skills and sophisticated content. Shifts in the pedagogy within the MUVE alter the pattern of student performance.
    • Barbara Lindsey
       
      Would like to see research on this.
  • Research shows that many participants value this functionality and choose to access the Web page after leaving the museum.
    • Barbara Lindsey
       
      More could be done with this.
  • Participants in these distributed simulations use location-aware handheld computers (with GPS technology), allowing users to physically move throughout a real-world location while collecting place-dependent simulated field data, interviewing virtual characters, and collaboratively investigating simulated scenarios.
    • Barbara Lindsey
       
      Much better
  • Initial research on Environmental Detectives and other AR-based educational simulations demonstrates that this type of immersive, situated learning can effectively engage students in critical thinking about authentic scenarios.
  • Students were most effective in learning and problem-solving when they collectively sought, sieved, and synthesized experiences rather than individually locating and absorbing information from some single best source.
    • Barbara Lindsey
       
      How does this 'fit' learning goals and teaching styles in our program?
  • Rheingold's forecasts draw on lifestyles seen at present among young people who are high-end users of new media
  • Rather than having core identities defined through a primarily local set of roles and relationships, people would express varied aspects of their multifaceted identities through alternate extended experiences in distributed virtual environments and augmented realities.
    • Barbara Lindsey
       
      How is this different from current experiences for individuals working within/across different social groups and boundaries?
  • one-third of U.S. households now have broadband access to the Internet. In the past three years, 14 million U.S. families have linked their computers with wireless home networks. Some 55 percent of Americans now carry cell phones
  • Mitchell's forecasts25 are similar to Rheingold's in many respects. He too envisions largely tribal lifestyles distributed across dispersed, fragmented, fluctuating habitats: electronic nomads wandering among virtual campfires. People's senses and physical agency are extended outward and into the intangible, at considerable cost to individual privacy. Individual identity is continuously reformed via an ever-shifting series of networking with others and with tools. People express themselves through nonlinear, associational webs of representations rather than linear "stories" and co-design services rather than selecting a precustomized variant from a menu of possibilities.
  • More and more, though, people of all ages will have lifestyles involving frequent immersion in both virtual and augmented reality. How might distributed, immersive media be designed specifically for education, and what neomillennial learning styles might they induce?
  • Mediated immersion creates distributed learning communities, which have different strengths and limits than location-bound learning communities confined to classroom settings and centered on the teacher and archival materials.27
  • Neomillenial Versus Millennial Learning Styles
  • Emphasis is placed on implications for strategic investments in physical plant, technology infrastructure, and professional development.
  • such as textbooks linked to course ratings by students)
  • Mirroring": Immersive virtual environments provide replicas of distant physical settings
  • Middleware, interoperability, open content, and open source
  • Finding information Sequential assimilation of linear information stream
  • Student products generally tests or papers Grading centers on individual performance
  • These ideas are admittedly speculative rather than based on detailed evidence and are presented to stimulate reaction and dialogue about these trends.
  • f we accept much of the analysis above
    • Barbara Lindsey
       
      But have they made the case for its educational value?
  • students of all ages with increasingly neomillennial learning styles will be drawn to colleges and universities that have these capabilities. Four implications for investments in professional development also are apparent. Faculty will increasingly need capabilities in:
  • Some of these shifts are controversial for many faculty; all involve "unlearning" almost unconscious beliefs, assumptions, and values about the nature of teaching, learning, and the academy. Professional development that requires unlearning necessitates high levels of emotional/social support in addition to mastering the intellectual/technical dimensions involved. The ideal form for this type of professional development is distributed learning communities so that the learning process is consistent with the knowledge and culture to be acquired. In other words, faculty must themselves experience mediated immersion and develop neomillennial learning styles to continue teaching effectively as the nature of students alters.
  • Differences among individuals are greater than dissimilarities between groups, so students in any age cohort will present a mixture of neomillennial, millennial, and traditional learning styles
  • The technologies discussed are emerging rather than mature, so their final form and influences on users are not fully understood. A substantial number of faculty and administrators will likely dismiss and resist some of the ideas and recommendations presented here.
Barbara Lindsey

My School, Meet MySpace: Social Networking at School | Edutopia - 0 views

  • Months before the newly hired teachers at Philadelphia's Science Leadership Academy (SLA) started their jobs, they began the consuming work of creating the high school of their dreams -- without meeting face to face. They articulated a vision, planned curriculum, designed assessment rubrics, debated discipline policies, and even hammered out daily schedules using the sort of networking tools -- messaging, file swapping, idea sharing, and blogging -- kids love on sites such as MySpace.
  • hen, weeks before the first day of school, the incoming students jumped onboard -- or, more precisely, onto the Science Leadership Academy Web site -- to meet, talk with their teachers, and share their hopes for their education. So began a conversation that still perks along 24/7 in SLA classrooms and cyberspace. It's a bold experiment to redefine learning spaces, the roles and relationships of teachers and students, and the mission of the modern high school.
  • When I hear people say it's our job to create the twenty-first-century workforce, it scares the hell out of me," says Chris Lehmann, SLA's founding principal. "Our job is to create twenty-first-century citizens. We need workers, yes, but we also need scholars, activists, parents -- compassionate, engaged people. We're not reinventing schools to create a new version of a trade school. We're reinventing schools to help kids be adaptable in a world that is changing at a blinding rate."
  • ...11 more annotations...
  • It's the spirit of science rather than hardcore curriculum that permeates SLA. "In science education, inquiry-based learning is the foothold," Lehmann says. "We asked, 'What does it mean to build a school where everything is based on the core values of science: inquiry, research, collaboration, presentation, and reflection?'"
  • It means the first-year curriculum is built around essential questions: Who am I? What influences my identity? How do I interact with my world? In addition to science, math, and engineering, core courses include African American history, Spanish, English, and a basic how-to class in technology that also covers Internet safety and the ethical use of information and software. Classes focus less on facts to be memorized and more on skills and knowledge for students to master independently and incorporate into their lives. Students rarely take tests; they write reflections and do "culminating" projects. Learning doesn't merely cross disciplines -- it shatters outdated departmental divisions. Recently, for instance, kids studied atomic weights in biochemistry (itself a homegrown interdisciplinary course), did mole calculations in algebra, and created Dalton models (diagrams that illustrate molecular structures) in art.
  • This is Dewey for the digital age, old-fashioned progressive education with a technological twist.
  • computers and networking are central to learning at, and shaping the culture of, SLA. "
  • he zest to experiment -- and the determination to use technology to run a school not better, but altogether differently -- began with Lehmann and the teachers last spring when they planned SLA online. Their use of Moodle, an open source course-management system, proved so easy and inspired such productive collaboration that Lehmann adopted it as the school's platform. It's rare to see a dog-eared textbook or pad of paper at SLA; everybody works on iBooks. Students do research on the Internet, post assignments on class Moodle sites, and share information through forums, chat, bookmarks, and new software they seem to discover every day.
  • Teachers continue to use Moodle to plan, dream, and learn, to log attendance and student performance, and to talk about everything -- from the student who shows up each morning without a winter coat to cool new software for tagging research sources. There's also a schoolwide forum called SLA Talk, a combination bulletin board, assembly, PA system, and rap session.
  • Web technology, of course, can do more than get people talking with those they see every day; people can communicate with anyone anywhere. Students at SLA are learning how to use social-networking tools to forge intellectual connections.
  • In October, Lehmann noticed that students were sorting themselves by race in the lunchroom and some clubs. He felt disturbed and started a passionate thread on self-segregation.
  • "Having the conversation changed the way kids looked at themselves," he says.
  • "What I like best about this school is the sense of community," says student Hannah Feldman. "You're not just here to learn, even though you do learn a lot. It's more like a second home."
  • As part of the study of memoirs, for example, Alexa Dunn's English class read Funny in Farsi, Firoozeh Dumas's account of growing up Iranian in the United States -- yes, the students do read books -- and talked with the author in California via Skype. The students also wrote their own memoirs and uploaded them to SLA's network for the teacher and class to read and edit. Then, digital arts teacher Marcie Hull showed the students GarageBand, which they used to turn their memoirs into podcasts. These they posted on the education social-networking site EduSpaces (formerly Elgg); they also posted blogs about the memoirs.
Barbara Lindsey

Print: The Chronicle: 6/15/2007: The New Metrics of Scholarly Authority - 0 views

    • Barbara Lindsey
       
      Higher ed slow to respond.
  • Web 2.0 is all about responding to abundance, which is a shift of profound significance.
  • Chefs simply couldn't exist in a world of universal scarcity
  • ...33 more annotations...
  • a time when scholarship, and how we make it available, will be affected by information abundance just as powerfully as food preparation has been.
  • Scholarly communication before the Internet required the intermediation of publishers. The costliness of publishing became an invisible constraint that drove nearly all of our decisions. It became the scholar's job to be a selector and interpreter of difficult-to-find primary and secondary sources; it was the scholarly publisher's job to identify the best scholars with the best perspective and the best access to scarce resources.
    • Barbara Lindsey
       
      Comments?
  • Online scholarly publishing in Web 1.0 mimicked those fundamental conceptions. The presumption was that information scarcity still ruled. Most content was closed to nonsubscribers; exceedingly high subscription costs for specialty journals were retained; libraries continued to be the primary market; and the "authoritative" version was untouched by comments from the uninitiated. Authority was measured in the same way it was in the scarcity world of paper: by number of citations to or quotations from a book or article, the quality of journals in which an article was published, the institutional affiliation of the author, etc.
  • Google
  • Google
    • Barbara Lindsey
       
      Where critical analysis comes in
  • The challenge for all those sites pertains to abundance:
  • Such systems have not been framed to confer authority, but as they devise means to deal with predators, scum, and weirdos wanting to be a "friend," they are likely to expand into "trust," or "value," or "vouching for my friend" metrics — something close to authority — in the coming years.
  • ecently some more "authoritative" editors have been given authority to override whining ax grinders.
  • In many respects Boing Boing is an old-school edited resource. It doesn't incorporate feedback or comments, but rather is a publication constructed by five editor-writers
  • As the online environment matures, most social spaces in many disciplines will have their own "boingboings."
  • They differ from current models mostly by their feasible computability in a digital environment where all elements can be weighted and measured, and where digital interconnections provide computable context.
  • In the very near future, if we're talking about a universe of hundreds of billions of documents, there will routinely be thousands, if not tens of thousands, if not hundreds of thousands, of documents that are very similar to any new document published on the Web. If you are writing a scholarly article about the trope of smallpox in Shakespearean drama, how do you ensure you'll be read? By competing in computability. Encourage your friends and colleagues to link to your online document. Encourage online back-and-forth with interested readers. Encourage free access to much or all of your scholarly work. Record and digitally archive all your scholarly activities. Recognize others' works via links, quotes, and other online tips of the hat. Take advantage of institutional repositories, as well as open-access publishers. The list could go on.
  • the new authority metrics, instead of relying on scholarly publishers to establish the importance of material for them.
  • They need to play a role in deciding not just what material will be made available online, but also how the public will be allowed to interact with the material. That requires a whole new mind-set.
  • cholarly publishers
  • Many of the values of scholarship are not well served yet by the Web: contemplation, abstract synthesis, construction of argument.
  • Traditional models of authority will probably hold sway in the scholarly arena for 10 to 15 years, while we work out the ways in which scholarly engagement and significance can be measured in new kinds of participatory spaces.
  • if scholarly output is locked away behind fire walls, or on hard drives, or in print only, it risks becoming invisible to the automated Web crawlers, indexers, and authority-interpreters that are being developed. Scholarly invisibility is rarely the path to scholarly authority.
  • Web 1.0,
  • garbed new business and publishing models in 20th-century clothes.
  • fundamental presumption is one of endless information abundance.
  • Flickr, YouTube
  • micromarkets
  • multiple demographics
  • Abundance leads to immediate context and fact checking, which changes the "authority market" substantially. The ability to participate in most online experiencesvia comments, votes, or ratingsis now presumed, and when it's not available, it's missed.
  • Google interprets a link from Page A to Page B as a vote, by Page A, for Page B. But, Google looks at more than the sheer volume of votes, or links a page receives; for example, it also analyzes the page that casts the vote. Votes cast by pages that are themselves 'important' weigh more heavily and help to make other pages 'important,'"
  • It has its limits, but it also both confers and confirms authority because people tend to point to authoritative sources to bolster their own work.
  • That kind of democratization of authority is nearly unique to wikis that are group edited, since not observation, but active participation in improvement, is the authority metric.
  • user-generated authority, many of which are based on algorithmic analysis of participatory engagement. The emphasis in such models is often not on finding scarce value, but on weeding abundance
  • Authority 3.0 will probably include (the list is long, which itself is a sign of how sophisticated our new authority makers will have to be): Prestige of the publisher (if any). Prestige of peer prereviewers (if any). Prestige of commenters and other participants. Percentage of a document quoted in other documents. Raw links to the document. Valued links, in which the values of the linker and all his or her other links are also considered. Obvious attention: discussions in blogspace, comments in posts, reclarification, and continued discussion. Nature of the language in comments: positive, negative, interconnective, expanded, clarified, reinterpreted. Quality of the context: What else is on the site that holds the document, and what's its authority status? Percentage of phrases that are valued by a disciplinary community. Quality of author's institutional affiliation(s). Significance of author's other work. Amount of author's participation in other valued projects, as commenter, editor, etc. Reference network: the significance rating of all the texts the author has touched, viewed, read. Length of time a document has existed. Inclusion of a document in lists of "best of," in syllabi, indexes, and other human-selected distillations. Types of tags assigned to it, the terms used, the authority of the taggers, the authority of the tagging system.
  • Most technophile thinkers out there believe that Web 3.0 will be driven by artificial intelligences — automated computer-assisted systems that can make reasonable decisions on their own, to preselect, precluster, and prepare material based on established metrics, while also attending very closely to the user's individual actions, desires, and historic interests, and adapting to them.
  •  
    When the system of scholarly communications was dependent on the physical movement of information goods, we did business in an era of information scarcity. As we become dependent on the digital movement of information goods, we find ourselves entering an era of information abundance. In the process, we are witnessing a radical shift in how we establish authority, significance, and even scholarly validity. That has major implications for, in particular, the humanities and social sciences.
1 - 20 of 37 Next ›
Showing 20 items per page