Skip to main content

Home/ Advanced Concepts Team/ Group items tagged emissions

Rss Feed Group items tagged

Thijs Versloot

Combined nanoplasmonic and optical resonators produces laser-like light emission - 0 views

  •  
    "We have made optical systems at the microscopic scale that amplify light and produce ultra-narrowband spectral output," explained J. Gary Eden, a professor of electrical and computer engineering (ECE) at Illinois. "These new optical amplifiers are well-suited for routing optical power on a chip containing both electronic and optical components.
LeopoldS

Plant sciences: Plants drink mineral water : Nature : Nature Publishing Group - 1 views

  •  
    Here we go: we might not need liquid water after all on mars to get some nice flowering plants there! ... and terraform ? :-) Thirsty plants can extract water from the crystalline structure of gypsum, a rock-forming mineral found in soil on Earth and Mars.

    Some plants grow on gypsum outcrops and remain active even during dry summer months, despite having shallow roots that cannot reach the water table. Sara Palacio of the Pyrenean Institute of Ecology in Jaca, Spain, and her colleagues compared the isotopic composition of sap from one such plant, called Helianthemum squamatum (pictured), with gypsum crystallization water and water found free in the soil. The team found that up to 90% of the plant's summer water supply came from gypsum.

    The study has implications for the search for life in extreme environments on this planet and others.

    Nature Commun 5, 4660 (2014)
  •  
    Very interesting indeed. Attention is to be put on the form of calcium sulfate that is found on Mars. If it is hydrated (gypsum Ca(SO4)*2(H2O)) it works, but if it is dehydrated there is no water for the roots to take in. The Curiosity Rover tries to find out, but has uncertainty in recognising the hydrogen presence in the mineral: Copying : "(...) 3.2 Hydration state of calcium sulfates Calcium sulfates occur as a non-hydrated phase (anhydrite, CaSO4) or as one of two hydrated phases (bassanite, CaSO4.1/2H2O, which can contain a somewhat variable water content, and gypsum, CaSO4.2H2O). ChemCam identifies the presence of hydrogen at 656 nm, as already found in soils and dust [Meslin et al., 2013] and within fluvial conglomerates [Williams et al., 2013]. However, the quantification of H is strongly affected by matrix effects [Schröder et al., 2013], i.e. effects including major or even minor element chemistry, optical and mechanical properties, that can result in variations of emission lines unrelated to actual quantitative variations of the element in question in the sample. Due to these effects, discriminating between bassanite and gypsum is difficult. (...)"
Nina Nadine Ridder

Air travel and climate: A potential new feedback? - 0 views

  •  
    Global air travel contributes around 3.5 percent of the greenhouse gas emissions behind/driving anthropogenic climate change, according to the International Panel on Climate Change (IPCC). But what impact does a warming planet have on air travel and how might that, in turn, affect the rate of warming itself?
jcunha

AGM2015: Antineutrino Global Map 2015 : Scientific Reports - 1 views

shared by jcunha on 08 Sep 15 - No Cached
  •  
    Cool study about measuring antineutrino emissions in order to prospect composition of Earth's crust and mantle.
Thijs Versloot

Electromagnetism generated by symmetry breaking in dielectrics - 0 views

  •  
    Using dielectric materials as efficient EM radiators and receivers can scale down these antenna's to the chip level, reducing both weight and power consumption. The infamous internet-of-things one step closer. But could we also transmit power this way?? "In dielectric aerials, the medium has high permittivity, meaning that the velocity of the radio wave decreases as it enters the medium," said Dr Dhiraj Sinha, the paper's lead author. "What hasn't been known is how the dielectric medium results in emission of electromagnetic waves. This mystery has puzzled scientists and engineers for more than 60 years." The researchers determined that the reason for this phenomenon is due to symmetry breaking of the electric field associated with the electron acceleration The researchers found that by subjecting the piezoelectric thin films to an asymmetric excitation, the symmetry of the system is similarly broken, resulting in a corresponding symmetry breaking of the electric field, and the generation of electromagnetic radiation.
pacome delva

The Coolest Antiprotons - 2 views

  • Researchers cooled a cloud of about 4,000 antiprotons down to 9 kelvin using a standard approach for cooling atoms that has never been used with charged particles or ions. The technique could provide a new way to create and trap antihydrogen, which could help researchers probe a basic symmetry of nature.
  • hydrogen and antihydrogen should share many basic traits, like mass, magnetic moment, and emission spectrum. If antihydrogen and hydrogen have even slightly different spectra, it indicates some new physics principles beyond the standard model, a very big deal.
  •  
    antihydrogen propulsion...?
  • ...1 more comment...
  •  
    how to efficiently direct it?
  •  
    didn't roger write an assessment of antimatter propulsion when he was in the ACT?
  •  
    yeah the problem is the amount of antimatter you can get and more specifically how to trap it. I found that you would need around one gram to go to the outer Solar System. So we are far from that, but finding an efficient way to trap it, with an electromagnetic trap rather than solid walls is a first step !
Luzi Bergamin

Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative... - 3 views

shared by Luzi Bergamin on 26 Mar 10 - Cached
LeopoldS liked it
  •  
    A new paper related to our old Ariadna on microstructured radiators.
  •  
    This is actually a very nice paper in my view .... José, have a look at it!! "This study demonstrates that appropriately designed metallo-dielectric systems can serve as compact, highly directive and ultra radiative antennas. Let us emphasize that contrary to fully metallic antennas, the high directivity of this antenna does not result from a plasmonic effect, and that it is efficient over a wide range of frequencies. In consequence, the high directivity does compromise the high radiative decay rate enhancement offered by two coupled metallic particles and it is possible to exploit whispering gallery modes to further enhance the radiative decay rates. This work paves the way towards the design of compact, simple and highly efficient optical antennas."
LeopoldS

Access : Coherent emission of light by thermal sources : Nature - 0 views

  •  
    how "large" could these distances be? - ready for SPS?
  •  
    I don't think that the distance is the important criteria... It seems that the directivity is of the order of a laser one, so the divergence will be equivalent. Perhaps the important criteria is that the cost of these type of light sources could be cheaper...? and also perhaps what power transmission is achievable? It seems also that now that this concept could be used for to focus cheap lasers, instead of using complex optics in cd-rom players, etc... see http://news.softpedia.com/news/Highly-Directional-Semiconductor-Laser-Created-at-Harvard-90839.shtml
ESA ACT

The Space Review: Space tourism and carbon dioxide emissions - 0 views

  •  
    Sensible and balanced article
Thijs Versloot

Lasers May Solve the Black Hole Information Paradox - 0 views

  •  
    "In an effort to help solve the black hole information paradox that has immersed theoretical physics in an ocean of soul searching for the past two years, two researchers have thrown their hats into the ring with a novel solution: Lasers. Technically, we're not talking about the little flashy devices you use to keep your cat entertained, we're talking about the underlying physics that produces laser light and applying it to information that falls into a black hole. According to the researchers, who published a paper earlier this month to the journal Classical and Quantum Gravity (abstract), the secret to sidestepping the black hole information paradox (and, by extension, the 'firewall' hypothesis that was recently argued against by Stephen Hawking) lies in stimulated emission of radiation (the underlying physics that generates laser light) at the event horizon that is distinct from Hawking radiation, but preserves information as matter falls into a black hole."
jmlloren

Scientists discover how to turn light into matter after 80-year quest - 5 views

  •  
    Theoretized 80 years ago was Breit-Wheeler pair production in which two photons result in an electron-positron pair (via a virtual electron). It is a relatively simple Feynmann diagram, but the problem is/was how to produce in practice a high energy photon-photon collider... The collider experiment that the scientists have proposed involves two key steps. First, the scientists would use an extremely powerful high-intensity laser to speed up electrons to just below the speed of light. They would then fire these electrons into a slab of gold to create a beam of photons a billion times more energetic than visible light. The next stage of the experiment involves a tiny gold can called a hohlraum (German for 'empty room'). Scientists would fire a high-energy laser at the inner surface of this gold can, to create a thermal radiation field, generating light similar to the light emitted by stars. They would then direct the photon beam from the first stage of the experiment through the centre of the can, causing the photons from the two sources to collide and form electrons and positrons. It would then be possible to detect the formation of the electrons and positrons when they exited the can. Now this is a good experiment... :)
  • ...6 more comments...
  •  
    The solution of thrusting in space.
  •  
    Thrusting in space is solved already. Maybe you wanted to say something different?
  •  
    Thrusting until your fuel runs out is solved, in this way one can produce mass from, among others, solar/star energy directly. What I like about this experiment is that we have the technology already to do it, many parts have been designed for inertial confinement fusion.
  •  
    I am quite certain that it would be more efficient to use the photons directly for thrust instead of converting them into matter. Also, I am a bit puzzled at the asymmetric layout for photon creation. Typically, colliders use two beam of particle with equal but opposite momentum. Because the total momentum for two colliding particles is zero the reaction products are produced more efficiently as a minimum of collision energy is waisted on accelerating the products. I guess in this case the thermal radiation in the cavity is chosen instead of an opposing gamma ray beam to increase the photon density and increase the number of collisions (even if the efficiency decreases because of the asymmetry). However, a danger from using a high temperature cavity might be that a lot of thermionic emission creates lots of free electrons with the cavity. This could reduce the positron yield through recombination and would allow the high energetic photons to loose energy through Compton scattering instead of the Breit-Wheeler pair production.
  •  
    Well, the main benefit from e-p pair creation might be that one can accelerate these subsequently to higher energies again. I think the photon-photon cross-section is extremely low, such that direct beam-beam interactions are basically not happening (below 1/20.. so basically 0 according to quantum probability :P), in this way, the central line of the hohlraum actually has a very high photon density and if timed correctly maximizes the reaction yield such that it could be measured.
  •  
    I agree about the reason for the hohlraum - but I also keep my reservations about the drawbacks. About the pair production as fuel: I pretty sure that your energy would be used smarter in using photon (not necessarily high energy photons) for thrust directly instead of putting tons of energy in creating a rest-mass and then accelerating that. If you look at E² = (p c)²+(m0 c)² then putting energy into the mass term will always reduce your maximum value of p.
  •  
    True, but isnt it E2=(pc)^2 + (m0c^2)^2 such that for photons E\propto{pc} and for mass E\propto{mc^2}. I agree it will take a lot of energy, but this assumes that that wont be the problem at least. The question therefore is whether the mass flow of the photon rocket (fuel consumed to create photons, eg fission/fusion) is higher/lower than the mass flow for e-p creation. You are probably right that the low e-p cross-section will favour direct use of photons to create low thrust for long periods of time, but with significant power available the ISP might be higher for e-p pair creation.
  •  
    In essence the equation tells you that for photons with zero rest mass m0 all the energy will be converted to momentum of the particles. If you want to accelerate e-p then you first spend part of the energy on creating them (~511 keV each) and you can only use the remaining energy to accelerate them. In this case the equation gives you a lower particle momentum which leads to lower thrust (even when assuming 100% acceleration efficiency). ISP is a tricky concept in this case because there are different definitions which clash in the relativistic context (due to the concept of mass flow). R. Tinder gets to a I_SP = c (speed of light) for a photon rocket (using the relativistic mass of the photons) which is the maximum possible relativistic I_SP: http://goo.gl/Zz5gyC .
Thijs Versloot

Watch uranium radiation inside a cloud chamber - 6 views

  •  
    Ever wondered what radiation looks like? If you have, I bet you didn't think it would look as cool as this. This is a small piece of uranium mineral sitting in a cloud chamber, which means you can see the process of decay and radiation emission....
  •  
    Once I saw a DIY spark chamber in LIP (CERN associated laboratory). It was the work of a bunch of BSc students, they made it all from scratch, so it seemed to be not that difficult to have one at home. Yet another project for the future 'Experimental Physics' stagiare maybe :)
johannessimon81

Scientists engineer shortcut for photosynthetic glitch, boost crop growth by 40 percent - 3 views

  •  
    Did we just solve overpopulation and climate change? With 40% more efficient crops we could easily sustain 10+ billion people on Earth. And 40% more efficient plants would absorb much more CO2 than we are emitting (currently: artificial CO2 emission ~29 GT/y, photosynthesis CO2 capture through plants ~450 GT/y) I am usually very worried about the risks of climate change, but this could be a real game changer!
  •  
    I love the car animation!
jaihobah

Probing Planets in Extragalactic Galaxies Using Quasar Microlensing - 2 views

  •  
    Here, we show that quasar microlensing provides a means to probe extragalactic planets in the lens galaxy, by studying the microlensing properties of emission close to the event horizon of the supermassive black hole of the background quasar, using the current generation telescopes
‹ Previous 21 - 35 of 35
Showing 20 items per page