Skip to main content

Home/ Advanced Concepts Team/ Group items tagged dangers

Rss Feed Group items tagged

LeopoldS

Video: Pentagon's Cyborg Beetle Takes Flight | Danger Room | Wired.com - 0 views

  •  
    wow!!!
LeopoldS

Darpa: Heat + Energy = Brains. Now Make Us Some. | Danger Room | Wired.com - 0 views

  •  
    good luck!!
ESA ACT

Super Antennas, Made From 'Invisible' Stuff | Danger Room from Wired.com - 0 views

  •  
    should we send them our reports? :-)
jmlloren

Scientists discover how to turn light into matter after 80-year quest - 5 views

  •  
    Theoretized 80 years ago was Breit-Wheeler pair production in which two photons result in an electron-positron pair (via a virtual electron). It is a relatively simple Feynmann diagram, but the problem is/was how to produce in practice a high energy photon-photon collider... The collider experiment that the scientists have proposed involves two key steps. First, the scientists would use an extremely powerful high-intensity laser to speed up electrons to just below the speed of light. They would then fire these electrons into a slab of gold to create a beam of photons a billion times more energetic than visible light. The next stage of the experiment involves a tiny gold can called a hohlraum (German for 'empty room'). Scientists would fire a high-energy laser at the inner surface of this gold can, to create a thermal radiation field, generating light similar to the light emitted by stars. They would then direct the photon beam from the first stage of the experiment through the centre of the can, causing the photons from the two sources to collide and form electrons and positrons. It would then be possible to detect the formation of the electrons and positrons when they exited the can. Now this is a good experiment... :)
  • ...6 more comments...
  •  
    The solution of thrusting in space.
  •  
    Thrusting in space is solved already. Maybe you wanted to say something different?
  •  
    Thrusting until your fuel runs out is solved, in this way one can produce mass from, among others, solar/star energy directly. What I like about this experiment is that we have the technology already to do it, many parts have been designed for inertial confinement fusion.
  •  
    I am quite certain that it would be more efficient to use the photons directly for thrust instead of converting them into matter. Also, I am a bit puzzled at the asymmetric layout for photon creation. Typically, colliders use two beam of particle with equal but opposite momentum. Because the total momentum for two colliding particles is zero the reaction products are produced more efficiently as a minimum of collision energy is waisted on accelerating the products. I guess in this case the thermal radiation in the cavity is chosen instead of an opposing gamma ray beam to increase the photon density and increase the number of collisions (even if the efficiency decreases because of the asymmetry). However, a danger from using a high temperature cavity might be that a lot of thermionic emission creates lots of free electrons with the cavity. This could reduce the positron yield through recombination and would allow the high energetic photons to loose energy through Compton scattering instead of the Breit-Wheeler pair production.
  •  
    Well, the main benefit from e-p pair creation might be that one can accelerate these subsequently to higher energies again. I think the photon-photon cross-section is extremely low, such that direct beam-beam interactions are basically not happening (below 1/20.. so basically 0 according to quantum probability :P), in this way, the central line of the hohlraum actually has a very high photon density and if timed correctly maximizes the reaction yield such that it could be measured.
  •  
    I agree about the reason for the hohlraum - but I also keep my reservations about the drawbacks. About the pair production as fuel: I pretty sure that your energy would be used smarter in using photon (not necessarily high energy photons) for thrust directly instead of putting tons of energy in creating a rest-mass and then accelerating that. If you look at E² = (p c)²+(m0 c)² then putting energy into the mass term will always reduce your maximum value of p.
  •  
    True, but isnt it E2=(pc)^2 + (m0c^2)^2 such that for photons E\propto{pc} and for mass E\propto{mc^2}. I agree it will take a lot of energy, but this assumes that that wont be the problem at least. The question therefore is whether the mass flow of the photon rocket (fuel consumed to create photons, eg fission/fusion) is higher/lower than the mass flow for e-p creation. You are probably right that the low e-p cross-section will favour direct use of photons to create low thrust for long periods of time, but with significant power available the ISP might be higher for e-p pair creation.
  •  
    In essence the equation tells you that for photons with zero rest mass m0 all the energy will be converted to momentum of the particles. If you want to accelerate e-p then you first spend part of the energy on creating them (~511 keV each) and you can only use the remaining energy to accelerate them. In this case the equation gives you a lower particle momentum which leads to lower thrust (even when assuming 100% acceleration efficiency). ISP is a tricky concept in this case because there are different definitions which clash in the relativistic context (due to the concept of mass flow). R. Tinder gets to a I_SP = c (speed of light) for a photon rocket (using the relativistic mass of the photons) which is the maximum possible relativistic I_SP: http://goo.gl/Zz5gyC .
jcunha

Artifitial Intelligence to predict solar flares - 0 views

  •  
    A team from Stanford showing possibility of solar flare prediction using AI techniques and data from the NASA SDO observatory.
jcunha

First Terahertz Amplifier "Goes to 11" - 2 views

  •  
    Guinness World Record breaking, "first radio amplifier operating at terahertz frequencies could lead to communications systems with much higher data rates, better radar, high-resolution imaging that could penetrate smoke and fog, and better ways of identifying dangerous substances, say the researchers who built it". Built from HEMTs (High Electron Mobility Transistors) made of InP (Indium Phosphide), this is a new milestone on the road to the THz applications.
marenr

NeuroNex - Odor2Action - 0 views

  •  
    Let's keep a eye on this... Animals use odor cues to navigate through their environments, helping them locate targets and assess danger. Much of how animal brains organize, read out, and respond to odor stimuli across spatial and temporal scales is not well understood. To tackle these questions, Odor2Action uses a highly interdisciplinary team science approach. Our work uses fruit fly, honeybee, and mouse models to determine how neural representations of odor are generated, reformatted, and translated to generate useful behaviors that guide how animals interact with their environment.
  •  
    reminds me of the methan smelling source finding study we did ...
‹ Previous 21 - 29 of 29
Showing 20 items per page