Skip to main content

Home/ Advanced Concepts Team/ Group items tagged System

Rss Feed Group items tagged

Tom Gheysens

Cheap battery stores energy for a rainy day : Nature News & Comment - 0 views

  •  
    Thijs interested? quinones are my field
  •  
    I think the major benefit of this system is the low cost of the products involved compared to standard flow batteries. However, two issues still remain, corrosion and size. I think these things need to be big right due to the volumetric storage using quinones? Nevertheless, it is interesting to see where this development will lead to. "The system is far from perfect, however: bromine and hydrobromic acid are corrosive, and could cause serious pollution if they leaked. "The bromine is, right now, the Achilles heel of this particular battery," Aziz says. The answer could be to go completely organic, he adds: "We are working on replacing the bromine with a different quinone." Are there quinones which would not be corrosive but retain good volumetric performance?
LeopoldS

An optical lattice clock with accuracy and stability at the 10-18 level : Nature : Natu... - 0 views

  •  
    Progress in atomic, optical and quantum science1, 2 has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard3, 4, 5. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks6, 7, their accuracy has remained 16 times worse8, 9, 10. Here we demonstrate a many-atom system that achieves an accuracy of 6.4 × 10−18, which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard-stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units11, the search for time variation of fundamental constants12, clock-based geodesy13 and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering14 (such as spin squeezing) to advance measurement precision beyond the standard quantum limit.
jmlloren

Cool Tools - Systemantics - 1 views

shared by jmlloren on 26 Feb 14 - No Cached
dejanpetkow liked it
  •  
    We begin at the beginning, with the Fundamental Theorem: New systems mean new problems.
LeopoldS

Cell phones are 'Stalin's dream,' says free software movement founder - 3 views

  •  
    "I don't have a cell phone. I won't carry a cell phone," says Stallman, founder of the free software movement and creator of the GNU operating system. "It's Stalin's dream. Cell phones are tools of Big Brother. I'm not going to carry a tracking device that records where I go all the time, and I'm not going to carry a surveillance device that can be turned on to eavesdrop." he is right once more ...
  •  
    I am going to live in the forest! Sadly, while true, there's no way around it these days. On the up-side the information overflow these days exceeds processing speeds. Soon it will become increasingly difficult for NSA or other organizations to find anything in the tons of data they stash away. Like some guy said in a random youtube video I can't find now anymore: "good luck trying to find my personal data when I'm tagged in 5000 pictures of cats!"
Thijs Versloot

Computer as smart as a 4-year-old? Researchers IQ test new artificial intelligence system - 0 views

  •  
    Artificial and natural knowledge researchers at the University of Illinois at Chicago have IQ-tested one of the best available artificial intelligence systems to see how intelligent it really is. Turns out it's about as smart as the average 4-year-old, they will report July 17 at the U.S. Artificial Intelligence Conference in Bellevue, Wash.
Isabelle Dicaire

Laser and optical glass can store data for millions of years - 1 views

  •  
    Scientists have fabricated a portable data storage system based on nanostructured glass that seems to be much more stable than current disks. I wonder if it can survive that long in space?
Tom Gheysens

Dragonflies can see by switching 'on' and 'off' - 0 views

  •  
    Researchers at the University of Adelaide have discovered a novel and complex visual circuit in a dragonfly's brain that could one day help to improve vision systems for robots.
johannessimon81

Water found on exoplanets - 1 views

  •  
    A few years ago we did not even know if there was any planets outside the solar system. Now we know some of the stuff that happens on them. Wonder how long it takes until we discover life somewhere else!
  •  
    I do not know what is yetto come, but I am looking forward to the "starshade" Sara Seager's team wants to couple to a telescope: "The star shade and the telescope have to be aligned perfectly at 125,000 miles away. Once aligned, the system will observe a distant star, and then move to another distant star and re-align. This is technologically speaking, unchartered territory." http://www.youtube.com/watch?feature=player_embedded&v=G68sqgRhP2E
LeopoldS

Testing Continues for Satellite Servicing Capabilities | NASA - 0 views

  •  
    Engineers at NASA's Kennedy Space Center in Florida are partnering with counterparts at the agency's Goddard Space Flight Center in Maryland to develop systems to bring potential future robotic "service tow trucks" to orbiting spacecraft in need of aid
Thijs Versloot

NASA set to debut online software catalog April 10 - 1 views

  •  
    The catalog, a master list organized into 15 categories, is intended for industry, academia, other government agencies, and general public. The catalog covers technology topics ranging from project management systems, design tools, data handling, image processing, solutions for life support functions, aeronautics, structural analysis, and robotic and autonomous systems. NASA said the codes represent NASA's best solutions to an array of complex mission requirements. McMillan reported that "Within a few weeks of publishing the list, NASA says, it will also offer a searchable database of projects, and then, by next year, it will host the actual software code in its own online repository, a kind of GitHub for astronauts."
Beniamino Abis

Two Suns Could Boost Odds of Habitable 'Exomoons' - 1 views

  •  
    The habitable zones of single stars are larger and wider as the temperatures increase. Although hotter stars have the widest regions where water can lie on the surface, they also have short lifetimes that limit the ability of life to evolve. Moons in close binary solar systems have a better chance of hosting life than those in single-star systems, new research has shown.
  •  
    looks like the study Aurélie wanted to do ...
Thijs Versloot

Vibrational free cooling systems for sensors - 1 views

  •  
    The system is based on two liquids which are adsorbed. As the sensor generates heat, the liquids desorb and the pressure builds up, it can then move to an expansion vessel which is held at a cooler temperature and the liquid then adsorb together again. This technique requires no mechanical compression and there are less vibration, leading to less wear and tear of components. It is being developed in a joint collaboration between UTwente and Dutch Space.
tvinko

Massively collaborative mathematics : Article : Nature - 28 views

  •  
    peer-to-peer theorem-proving
  • ...14 more comments...
  •  
    Or: mathematicians catch up with open-source software developers :)
  •  
    "Similar open-source techniques could be applied in fields such as [...] computer science, where the raw materials are informational and can be freely shared online." ... or we could reach the point, unthinkable only few years ago, of being able to exchange text messages in almost real time! OMG, think of the possibilities! Seriously, does the author even browse the internet?
  •  
    I do not agree with you F., you are citing out of context! Sharing messages does not make a collaboration, nor does a forum, .... You need a set of rules and a common objective. This is clearly observable in "some team", where these rules are lacking, making team work inexistent. The additional difficulties here are that it involves people that are almost strangers to each other, and the immateriality of the project. The support they are using (web, wiki) is only secondary. What they achieved is remarkable, disregarding the subject!
  •  
    I think we will just have to agree to disagree then :) Open source developers have been organizing themselves with emails since the early '90s, and most projects (e.g., the Linux kernel) still do not use anything else today. The Linux kernel mailing list gets around 400 messages per day, and they are managing just fine to scale as the number of contributors increases. I agree that what they achieved is remarkable, but it is more for "what" they achieved than "how". What they did does not remotely qualify as "massively" collaborative: again, many open source projects are managed collaboratively by thousands of people, and many of them are in the multi-million lines of code range. My personal opinion of why in the scientific world these open models are having so many difficulties is that the scientific community today is (globally, of course there are many exceptions) a closed, mostly conservative circle of people who are scared of changes. There is also the fact that the barrier of entry in a scientific community is very high, but I think that this should merely scale down the number of people involved and not change the community "qualitatively". I do not think that many research activities are so much more difficult than, e.g., writing an O(1) scheduler for an Operating System or writing a new balancing tree algorithm for efficiently storing files on a filesystem. Then there is the whole issue of scientific publishing, which, in its current form, is nothing more than a racket. No wonder traditional journals are scared to death by these open-science movements.
  •  
    here we go ... nice controversy! but maybe too many things mixed up together - open science journals vs traditional journals, conservatism of science community wrt programmers (to me one of the reasons for this might be the average age of both groups, which is probably more than 10 years apart ...) and then using emailing wrt other collaboration tools .... .... will have to look at the paper now more carefully ... (I am surprised to see no comment from José or Marek here :-)
  •  
    My point about your initial comment is that it is simplistic to infer that emails imply collaborative work. You actually use the word "organize", what does it mean indeed. In the case of Linux, what makes the project work is the rules they set and the management style (hierachy, meritocracy, review). Mailing is just a coordination mean. In collaborations and team work, it is about rules, not only about the technology you use to potentially collaborate. Otherwise, all projects would be successful, and we would noy learn management at school! They did not write they managed the colloboration exclusively because of wikipedia and emails (or other 2.0 technology)! You are missing the part that makes it successful and remarkable as a project. On his blog the guy put a list of 12 rules for this project. None are related to emails, wikipedia, forums ... because that would be lame and your comment would make sense. Following your argumentation, the tools would be sufficient for collaboration. In the ACT, we have plenty of tools, but no team work. QED
  •  
    the question on the ACT team work is one that is coming back continuously and it always so far has boiled down to the question of how much there need and should be a team project to which everybody inthe team contributes in his / her way or how much we should leave smaller, flexible teams within the team form and progress, more following a bottom-up initiative than imposing one from top-down. At this very moment, there are at least 4 to 5 teams with their own tools and mechanisms which are active and operating within the team. - but hey, if there is a real will for one larger project of the team to which all or most members want to contribute, lets go for it .... but in my view, it should be on a convince rather than oblige basis ...
  •  
    It is, though, indicative that some of the team member do not see all the collaboration and team work happening around them. We always leave the small and agile sub-teams to form and organize themselves spontaneously, but clearly this method leaves out some people (be it for their own personal attitude or be it for pure chance) For those cases which we could think to provide the possibility to participate in an alternative, more structured, team work where we actually manage the hierachy, meritocracy and perform the project review (to use Joris words).
  •  
    I am, and was, involved in "collaboration" but I can say from experience that we are mostly a sum of individuals. In the end, it is always one or two individuals doing the job, and other waiting. Sometimes even, some people don't do what they are supposed to do, so nothing happens ... this could not be defined as team work. Don't get me wrong, this is the dynamic of the team and I am OK with it ... in the end it is less work for me :) team = 3 members or more. I am personally not looking for a 15 member team work, and it is not what I meant. Anyway, this is not exactly the subject of the paper.
  •  
    My opinion about this is that a research team, like the ACT, is a group of _people_ and not only brains. What I mean is that people have feelings, hate, anger, envy, sympathy, love, etc about the others. Unfortunately(?), this could lead to situations, where, in theory, a group of brains could work together, but not the same group of people. As far as I am concerned, this happened many times during my ACT period. And this is happening now with me in Delft, where I have the chance to be in an even more international group than the ACT. I do efficient collaborations with those people who are "close" to me not only in scientific interest, but also in some private sense. And I have people around me who have interesting topics and they might need my help and knowledge, but somehow, it just does not work. Simply lack of sympathy. You know what I mean, don't you? About the article: there is nothing new, indeed. However, why it worked: only brains and not the people worked together on a very specific problem. Plus maybe they were motivated by the idea of e-collaboration. No revolution.
  •  
    Joris, maybe I made myself not clear enough, but my point was only tangentially related to the tools. Indeed, it is the original article mention of "development of new online tools" which prompted my reply about emails. Let me try to say it more clearly: my point is that what they accomplished is nothing new methodologically (i.e., online collaboration of a loosely knit group of people), it is something that has been done countless times before. Do you think that now that it is mathematicians who are doing it makes it somehow special or different? Personally, I don't. You should come over to some mailing lists of mathematical open-source software (e.g., SAGE, Pari, ...), there's plenty of online collaborative research going on there :) I also disagree that, as you say, "in the case of Linux, what makes the project work is the rules they set and the management style (hierachy, meritocracy, review)". First of all I think the main engine of any collaboration like this is the objective, i.e., wanting to get something done. Rules emerge from self-organization later on, and they may be completely different from project to project, ranging from almost anarchy to BDFL (benevolent dictator for life) style. Given this kind of variety that can be observed in open-source projects today, I am very skeptical that any kind of management rule can be said to be universal (and I am pretty sure that the overwhelming majority of project organizers never went to any "management school"). Then there is the social aspect that Tamas mentions above. From my personal experience, communities that put technical merit above everything else tend to remain very small and generally become irrelevant. The ability to work and collaborate with others is the main asset the a participant of a community can bring. I've seen many times on the Linux kernel mailing list contributions deemed "technically superior" being disregarded and not considered for inclusion in the kernel because it was clear that
  •  
    hey, just catched up the discussion. For me what is very new is mainly the framework where this collaborative (open) work is applied. I haven't seen this kind of working openly in any other field of academic research (except for the Boinc type project which are very different, because relying on non specialists for the work to be done). This raise several problems, and mainly the one of the credit, which has not really been solved as I read in the wiki (is an article is written, who writes it, what are the names on the paper). They chose to refer to the project, and not to the individual researchers, as a temporary solution... It is not so surprising for me that this type of work has been first done in the domain of mathematics. Perhaps I have an ideal view of this community but it seems that the result obtained is more important than who obtained it... In many areas of research this is not the case, and one reason is how the research is financed. To obtain money you need to have (scientific) credit, and to have credit you need to have papers with your name on it... so this model of research does not fit in my opinion with the way research is governed. Anyway we had a discussion on the Ariadnet on how to use it, and one idea was to do this kind of collaborative research; idea that was quickly abandoned...
  •  
    I don't really see much the problem with giving credit. It is not the first time a group of researchers collectively take credit for a result under a group umbrella, e.g., see Nicolas Bourbaki: http://en.wikipedia.org/wiki/Bourbaki Again, if the research process is completely transparent and publicly accessible there's no way to fake contributions or to give undue credit, and one could cite without problems a group paper in his/her CV, research grant application, etc.
  •  
    Well my point was more that it could be a problem with how the actual system works. Let say you want a grant or a position, then the jury will count the number of papers with you as a first author, and the other papers (at least in France)... and look at the impact factor of these journals. Then you would have to set up a rule for classifying the authors (endless and pointless discussions), and give an impact factor to the group...?
  •  
    it seems that i should visit you guys at estec... :-)
  •  
    urgently!! btw: we will have the ACT christmas dinner on the 9th in the evening ... are you coming?
Thijs Versloot

Time 'Emerges' from #Quantum Entanglement #arXiv - 1 views

  •  
    Time is an emergent phenomenon that is a side effect of quantum entanglement, say physicists. And they have the first exprimental results to prove it
  • ...5 more comments...
  •  
    I always feel like people make too big a deal out of entanglement. In my opinion it is just a combination of a conserved quantity and an initial lack of knowledge. Imagine that I had a machine that always creates one blue and one red ping-pong ball at the same time (|b > and |r > respectively). The machine now puts both balls into identical packages (so I cannot observe them) and one of the packages is sent to Tokio. I did not know which ball was sent to Tokio and which stayed with me - they are in a superposition (|br >+|rb >), meaning that either the blue ball is with me and the red one in Tokio or vice versa - they are entangled. So far no magic has happened. Now I call my friend in Tokio who got the ball: "What color was the ball you received in that package?" He replies: "The ball that I got was blue. Why did you send me ball in the first place?" Now, the fact that he told me makes the superpositon wavefunction collapse (yes, that is what the Copenhagen interpretation would tell us). As a result I know without opening my box that it contains a red ball. But this is really because there is an underlying conservation law and because now I know the other state. I don't see how just looking at the conserved quantity I am in a timeless state outside of the 'universe' - this is just one way of interpreting it. By the way, the wave function for my box with the undetermined ball does not collapse when the other ball is observed by my friend in Tokio. Only when he tells me does the wavefunction collapse - he did not even know that I had a complementary ball. On the other hand if he knew about the way the experiment was conducted then he would have known that I had to have a red ball - the wavefunction collapses as soon as he observed his ball. For him it is determined that my ball must be red. For me however the superposition is intact until he tells me. ;-)
  •  
    Sorry, Johannes, you just develop a simple hidden-parameters theory and it's experimentally proven that these don't work. Entangeled states are neither the blue nor the red ball they are really bluered (or redblue) till the point the measurement is done.
  •  
    Hm, to me this looks like a bad joke... The "emergent time" concept used is still the old proposal by Page and Whotters where time emerges from something fundamentally unobservable (the wave function of the Universe). That's as good as claiming that time emerges from God. If I understand correctly, the paper now deals with the situation where a finite system is taken as "Mini-Universe" and the experimentalist in the lab can play "God of the Mini-Universe". This works, of course, but it doesn't really tell us anything about emergent time, does it?
  •  
    Actually, it has not been proven conclusively that hidden variable theories don' work - although this is the opinion of most physicists these days. But a non-local hidden variable would still be allowed - I don't see why that could not be equivalent to a conserved quantity within the system. As far as the two balls go it is fine to say they are undetermined instead of saying they are in bluered or redblue state - for all intents and purposes it does not affect us (because if it would the wavefunction would have collapsed) so we can't say anything about it in the first place.
  •  
    Non-local hidden variables may work, but in my opinion they don't add anything to the picture. The (at least to non-physicists) contraintuitive fact that there cannot be a variable that determines ab initio the color of the ball going to Tokio will remain (in your example this may not even be true since the example is too simple...).
  •  
    I guess I tentatively agree with you on both points. In the end there might anyway be surprisingly little overlap between the way that we describe what nature does and HOW it does it... :-D
  •  
    Congratulations! 100% agree.
Nina Nadine Ridder

Robots collaborate to deliver meds, supplies, and even drinks - 2 views

  •  
    At the recent Robotics Science and Systems (RSS) conference, a CSAIL team presented a new system of three robots that can work together to deliver items quickly, accurately and, perhaps most importantly, in unpredictable environments. The team says its models could extend to a variety of other applications, including hospitals, disaster situations, and even restaurants and bars.
pacome delva

Neural Networks Designed to 'See' are Quite Good at 'Hearing' As Well - 2 views

  • Neural networks -- collections of artificial neurons or nodes set up to behave like the neurons in the brain -- can be trained to carry out a variety of tasks, often having something to do with pattern or sequence recognition. As such, they have shown great promise in image recognition systems. Now, research coming out of the University of Hong Kong has shown that neural networks can hear as well as see. A neural network there has learned the features of sound, classifying songs into specific genres with 87 percent accuracy.
  • Similar networks based on auditory cortexes have been rewired for vision, so it would appear these kinds of neural networks are quite flexible in their functions. As such, it seems they could potentially be applied to all sorts of perceptual tasks in artificial intelligence systems, the possibilities of which have only begun to be explored.
duncan barker

Fractal Scaling Models of Natural Oscillations in Chain Systems and the Mass Distributi... - 1 views

  •  
    Luzi: no critical comment on this? would love to hear your opinion ...
Giusi Schiavone

The importance of stupidity in scientific research. - 10 views

  •  
    I suggest you this easy reading ( is on a peer-reviewed scientific journal, IF = 6.14) 'We just don't know what we're doing!!!'
  • ...2 more comments...
  •  
    as a start of a peer reviewed paper this is an interesting first paragraph: "I recently saw an old friend for the first time in many years. We had been Ph.D. students at the same time, both studying science, although in different areas. She later dropped out of graduate school, went to Harvard Law School and is now a senior lawyer for a major environmental organization. At some point, the conversation turned to why she had left graduate school. To my utter astonishment, she said it was because it made her feel stupid. After a couple of years of feeling stupid every day, she was ready to do something else."
  •  
    Hilarious! Mr Schwartz, who made a PhD at Stanford(!) and apparently is working as a postdoc now, has finally discovered what science is about!!! Quote: "That's when it hit me: nobody did. That's why it was a research problem." And he seems so excited about it! I think he should not only get published in 6.14 journal, but also get the Nobel Prize immediately! Seriously, after reading something like this, how one may not have superstitions about the educational system in the US?
  •  
    I tend to agree with you but I think that you are too harsh - its still only an "essay" and one of his points of making sure that education at post graduate level is not about indoctrinating what we know already is valid ...
  •  
    I think this quote by Richard Horton is relevant to the discussion: "We portray peer review to the public as a quasi-sacred process that helps to make science our most objective truth teller. But we know that the system of peer review is biased, unjust, unaccountable, incomplete, easily fixed, often insulting, usually ignorant, occasionally foolish, and frequently wrong." :P
« First ‹ Previous 61 - 80 of 341 Next › Last »
Showing 20 items per page