Skip to main content

Home/ About The Indian Ocean/ Group items tagged oc

Rss Feed Group items tagged

Jérôme OLLIER

Contribution of aged organic carbon to suspended particulate organic carbon in the west... - 0 views

  •  
    We investigated dual carbon isotopes within the vertical water column at sites 67-1 and 67-2 of the western equatorial Indian Ocean to determine the source and age of particulate organic carbon (POC) and thus evaluated the contributions of modern and fossil (aged) POC. The concentration of POC ranged from 7 to 47.3 μgC L−1, δ13CPOC values ranged from -31.8 to -24.4‰, and Δ14CPOC values ranged from -548 to -111‰. Higher values of δ13CPOC and Δ14CPOC near the surface indicated an influence of autochthonous POC, whereas decreasing trends toward the bottom suggested a contribution of aged OC sources to the total POC pool. The contribution of fossil POC was lower near the surface, accounting for only 12% and 6% of the total POC at sites 67-1 and 67-2, respectively; however, in the deeper layers below 1,000 m, the contribution of fossil POC increased to 52% and 44% of the total POC at the two sites. Mechanisms for the increased contributions of fossil OC within deeper POC include the inflow of aged OC from sediments resuspended near slopes, the adsorption of old dissolved organic carbon in deep water masses, and the impact of aged OC that may originate from hydrothermal sources. This study highlights the importance of aged OC in the carbon cycle of the equatorial Indian Ocean.
Jérôme OLLIER

Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and S... - 0 views

  •  
    Chlorophyll-a can be used as a proxy for phytoplankton and thus is an essential water quality parameter. The presence of phytoplankton in the ocean causes selective absorption of light by chlorophyll-a pigment resulting in change of the ocean color that can be identified by ocean color remote sensing. The accuracy of chlorophyll-a concentration (Chl-a) estimated from remote sensing sensors depends on the bio-optical algorithm used for the retrieval in specific regional waters. In this work, it is attempted to estimate Chl-a from two currently active satellite sensors with relatively good spatial resolutions considering ocean applications. Suitability of two standard bio-optical Ocean Color (OC) Chlorophyll algorithms, OC-2 (2-band) and OC-3 (3-band) in estimating Chl-a for turbid waters of the northern coastal Bay of Bengal is assessed. Validation with in-situ data showed that OC-2 algorithm gives an estimate of Chl-a with a better correlation of 0.795 and least bias of 0.35 mg/m3. Further, inter-comparison of Chl-a retrieved from the two sensors, Landsat-8 OLI and Sentinel-2 MSI was also carried out. The variability of Chl-a during winter, pre-monsoon, and post-monsoon seasons over the study region were inter-compared. It is observed that during pre-monsoon and post-monsoon seasons, Chl-a from MSI is over estimated compared to OLI. This work is a preliminary step toward estimation of Chl-a in the coastal oceans utilizing available better spatially resolved sensors.
Jérôme OLLIER

India discovers producible natural gas hydrates in Indian Ocean - PTI via @livemint - 0 views

  •  
    India has discovered a large, highly enriched accumulations of natural gas hydrates in the Bay of Bengal that has the potential to be tapped
1 - 4 of 4
Showing 20 items per page