Skip to main content

Home/ About The Indian Ocean/ Group items tagged Irrawaddy

Rss Feed Group items tagged

Jérôme OLLIER

The Irrawaddy River Jet in the Andaman Sea During the Summer Monsoon - @FrontMarineSci - 0 views

  •  
    The Irrawaddy (IR) is the largest river discharging into the Andaman Sea and plays an important role in the salinity distribution and the mixed layer physics of the Andaman Sea. This study presents the first report of the IR plume pathways in the Andaman Sea during the summer monsoon and the mechanisms behind them. An ocean circulation model is employed to conduct idealized experiments in which the freshwater forcing, due to rivers other than IR as well as precipitation, are ignored. Our simulations reveal that, during the summer monsoon, the discharge from Irrawaddy spreads as a freshwater jet oriented towards southeast and accumulates over the shelf at the eastern coast of the Andaman Sea. Climatology of Chlorophyll-a concentration measured by satellite and surface currents from global ocean model reanalysis indicates the presence of the Irrawaddy freshwater jet during the summer monsoon. The evolution of surface salinity and currents along the jet suggests that the IR freshwater traps momentum imparted by winds. The momentum balance in the Irrawaddy jet is between Coriolis and wind friction term, indicating that the freshwater jet is completely driven by winds during the summer monsoon. Surface distribution of wind friction term also shows that the northwest-southeast orientation of the Irrawaddy jet is due to the southwesterly orientation of the summer monsoon winds. Further experiments with three different wind forcing scenarios (no winds, winds over the equator only, and winds over the Bay of Bengal only) reveal that the flow of Irrawaddy jet during the summer monsoon is completely controlled by the local winds.
Jérôme OLLIER

The sources and transport pathways of sediment in the northern Ninety-east Ridge of the... - 0 views

  •  
    The Ninety-east Ridge (NER) is located in the southern Bay of Bengal in the northeast Indian Ocean and is composed of pelagic and hemipelagic sediments. In addition to contributions from marine biomass, the ridge also contains terrestrially sourced sedimentary material. However, considerable disagreement remains regarding the origin of these terrestrial materials and transport pathways. This paper discusses the collection of seafloor surface sediments and three sediment cores recovered from the northern region of the NER, as well as the analysis of clay minerals, Sr-Nd isotopes, and sediment grain size. The ages of the three core sediments are constrained by AMS 14C dating to better establish the source and transport pathways of the terrestrial materials within NER sediments over the past 35000 years. The research results show that the Qinghai-Tibet Plateau is the predominate source of terrigenous sedimentary material in the NER. In the plateau, the crustal materials were weathered and stripped and then transported to the Andaman Sea via the Irrawaddy River. From there, the material was transported westward by monsoon-driven circulation to the northernmost part of the NER before being transported to the south for final deposition. This transport mode has changed little over the past 35000 years. However, during the rapidly changing climate of the Younger Dryas (12.9~11.5 ka BP), there were some variations in the input amount, grain size, and Sr-Nd isotope value of the source material. The above conclusions are significant for re-evaluating the source of terrigenous sediments, the temporal and spatial changes in transport modes, and the sensitivity of the NER to climatic shifts.
1 - 3 of 3
Showing 20 items per page