Skip to main content

Home/ WSU Virology/ Contents contributed and discussions participated by rmeloche10

Contents contributed and discussions participated by rmeloche10

rmeloche10

PLOS Pathogens: Different Modes of Retrovirus Restriction by Human APOBEC3A and APOBEC3... - 22 views

  • One such family of restriction factors is the apolipoprotein B editing complex 3 (A3) cellular cytidine deaminases (CDA). While A3 genes are found in all mammals, their number differs from species to species. For example, humans have 7 A3 genes (A3A to A3H) while mice have only one gene. All proteins in this family contain at least one CDA domain that deaminates carbon 4 of cytidine in single-stranded DNA, resulting in a uracil that causes G to A transitions in the opposing strand [3].
  • viral cDNA accumulation
  • Packaging of A3G into virions is counteracted by HIV Vif (viral infectivity factor) protein. In virus-producer cells, Vif binds to A3G as well other A3 family members, and recruits cellular E3 ubiquitin ligase complexes, leading to ubiquitination and subsequent proteasomal degradation, thereby preventing packaging of A3G into budding virions [12]–[14]. Lentiviral Vif proteins show strong species-specificity. For example, HIV-1 Vif counteracts human A3G but only certain simian A3G homologues [15], [16]; it also does not interact with mouse A3 [17].
  • ...5 more annotations...
  • Other members of the A3 family are believed to affect other exogenous viruses as well as endogenous retrovirus/retroelement movement within the genome. In particular, human A3A is a potent inhibitor of IAP and MusD and other retrotransposons such as LINE-1 and this inhibition is CDA-independent, at least in cultured cells [18]–[20]. A3A also inhibits adeno-associated virus replication, a nuclear-replicating parvovirus, via CDA-independent means [20]. In monocytes, A3A restricts HIV-1 infection and the decrease in A3A levels that occurs during monocyte-to-macrophage development is concomitant with increased susceptibility to HIV-1 infection [21]. A3A is not packaged into HIV virions and is thought to restrict infection by targeting incoming virus [22]–[24]. In contrast, A3A is packaged in human T-lymphotropic virus type-I virions and restricts infection, at least in transfected cells [25]. A3A preferentially deaminates cytidines that are in a TC motif [26].
  • Different A3 family members block infection by diverse retroviruses from different species, including HIV-2 [27], porcine endogenous retrovirus [28], [29], xenotropic, Friend (F-MLV) and Moloney murine leukemia virus (M-MLV) [30]–[32] and mouse mammary tumor virus (MMTV) [33]. Additionally, A3 proteins may restrict other virus families, including parvoviruses [20], [34], hepatitis B virus [35]–[37], papillomaviruses [38] and herpes simplex virus I [39]. Thus, it has been suggested that A3 proteins exist, at least in part, to prevent zoonotic transmission of viruses [40].
  • Here, we show that transgenic mice expressing the human A3A or A3G proteins restrict murine retrovirus infection in vivo in disparate ways. A3G was packaged into virions in vivo, leading to the deamination of both MLV and MMTV viral genomes. In contrast, A3A was not packaged, and appeared to restrict infection in a largely CDA-independent manner. Finally, we show that Vif/A3G interactions can be studied in this in vivo model, thus providing a potentially useful system for the analysis of small molecule inhibitors of A3 proteins and Vif.
  • To determine the level of transgene expression, we first isolated RNA from different tissues, including peripheral blood mononuclear cells (PBMCs), and performed reverse-transcribed real-time quantitative PCR (RT-qPCR). RNA from human H9 cultured cells and human and C57BL/6 mouse PBMCs served as controls. For each transgene, there was one high- (A3Ghigh, A3Ahigh) and one low- (A3Glow, A3Alow) expressing strain, defined by their relative expression in lymphoid tissues. The A3Ghigh strain expressed higher levels of the transgene than the endogenous mouse gene in spleen and thymus, but similar A3G levels in mouse and human PBMCs, while the A3Glow strain expressed approximately 10-fold lower levels in these tissues (Figure 1A). In contrast, the A3Ahigh strain expressed similar or lower levels than mouse A3; there was also about 2-fold lower expression of A3A in mouse PBMCs than in human PBMCs (Figure 1B). The A3Alow strain had very low but detectable levels of expression in several tissues. Since the β-actin regulatory region was used, transgene expression was seen in many tissues and in several at levels higher than endogenous mouse A3 (e.g. heart, brain and liver) (Figure 1A and 1B). We also performed western blots on different tissues from the 4 different mouse strains, using antiserum that detects both A3A and A3G. The relative protein expression levels were similar to that seen at the RNA level (Figure S1A and S1B).
  • We next determined if the in vivo-produced A3A and A3G proteins were functionally active. Extracts were prepared from primary splenocyte cultures and equal amounts (total protein concentration/volume) were incubated with FAM-labeled substrates containing the A3A- or A3G-preferred target sequence (S50-TTC and S50-CCC, respectively). As controls, we also performed these assays with extracts prepared from 293T cell lines transfected with A3A or A3G. Activity could be readily detected in transgenic mice expressing high levels of A3A or A3G. Further, in accord with the known specificity of the cytidine deaminases, extracts from the A3Ahigh mice deaminated the TTC- more efficiently than CCC-containing substrates, while those from A3Ghigh mice more efficiently deaminated the CCC substrate (Figure 2). For both A3Alow and A3G low, trace amounts of activity were detectable with the preferred substrates, while no activity was detectable with either endogenous mA3 or from mA3 knockout splenocytes. No deaminase activity was detected with WT mouse extracts, perhaps because the mouse protein has lower overall activity or expression. These data show that the transgenic mice expressed catalytically active human deaminases in these heterologous cells.
  •  
    This will be the focus paper for 11/14.
rmeloche10

Rabies Virus Hijacks and Accelerates the p75NTR Retrograde Axonal Transport Machinery - 14 views

  • ence there are likely to be additional ways for RABV to merge into the p75NTR-RABV endosome
    • rmeloche10
       
      Is there any sort of idea on the other ways that RABV can merge into an endosome, or is this just theoretical?
rmeloche10

Virus-Mediated Compartmentalization of the Host Translational Machinery - 22 views

  • Most reovirus strains form filamentous VF through an association with stabilized microtubules. However, the T3D strain used in these experiments contains a temperature-sensitive mutation in the viral protein μ2 that prevents this association, resulting in the production of globular VF at 37°C (27, 28). Therefore, to evaluate if PMY labeling occurs within filamentous viral factories, we infected cells with the serotype 1 Lang (T1L) strain. As we found for T3D-infected cells, the PMY labeling localized to T1L VF at 18 h postinfection
    • rmeloche10
       
      Is this temperature sensitive mutation put in place by the authors? Or is the mutation a natural feature of the virus, if it is would there be any reason for inhibiting the micro tubule stabalization? 
rmeloche10

HSV carrying WT REST establishes latency but reactivates only if the synthesis of REST ... - 7 views

  • Between 5 and 24 h after excision, mRNAs representative of all viral gene kinetic groups increase 100-fold in amount. Viral DNA also increases in amount, indicating that viral proteins are made. At the same time, viral LAT and miRNA concentrations decrease at least 10-fold (34). It is convenient to define the initial phase lasting no more than 5 h as the preactivation phase and the remaining time interval as the activation phase.
    • rmeloche10
       
      I'm having trouble grasping why the massive disparity between viral DNA and viral LAT. Obviously there would be some disparity when reactivation occurs, but wouldn't the production of more DNA contribute to even a small amount of LAT production and not a minimal 10 fold decrease?
rmeloche10

Norovirus Translation Requires an Interaction between the C Terminus of the Genome-link... - 75 views

  • We recently analyzed the solution structure of the core domain of VPg using nuclear magnetic resonance (NMR) spectroscopy and found that the MNV VPg protein consists of a compact structured core formed by a pair of α-helices that is flanked by long, flexible N and C termini (35). The region we have identified as being involved in the direct interaction with eIF4G, namely the C-terminal domain, is disordered and, therefore, is likely to adopt a fixed structure only upon interaction with eIF4G.
    • rmeloche10
       
      Using this advanced spectroscopy to find the structured core is an awesome break in technology. It shows the C-terminal is disordered until interaction with the initiation factor, does this disorder provide any advantage within the virus?
1 - 5 of 5
Showing 20 items per page