Skip to main content

Home/ BI-TAGS/ Group items tagged financial

Rss Feed Group items tagged

cezarovidiu

Top Mistakes to Avoid in Analytics Implementations | StatSlice Business Intelligence an... - 0 views

  • Mistake 1.  Not putting a strong interdisciplinary team together. It is impossible to put together an analytics platform without understanding the needs of the customers who will use it.  Sounds simple, right?  Who wouldn’t do that?  You’d be surprised how many analytics projects are wrapped up by IT because “they think” they know the customer needs.  Not assembling the right team is clearly the biggest mistake companies make.  Many times what is on your mind (and if you’re an IT person willing to admit it) is that you are considering converting all those favorite company reports.  Your goal should not be that.  Your goal is to create a system—human engineered with customers, financial people, IT folks, analysts, and others—that give people new and exciting ways to look at information.  It should give you new insights. New competitive information.  If you don’t get the right team put together, you’ll find someone longing for the good old days and their old dusty reports.  Or worse yet, still finding ways to generate those old dusty reports. Mistake 2.  Not having the right talent to design, build, run and update your analytics system.  It is undeniable that there is now high demand for business analytics specialists.  There are not a lot of them out there that really know what to do unless they’ve been burned a few times and have survived and then built successful BA systems.  This is reflected by the fact you see so many analytics vendors offer, or often recommend, third-party consulting and training to help the organization develop their business analytic skills.  Work hard to build a three-way partnership between the vendor, your own team, and an implementation partner.  If you develop those relationships, risk of failure goes way down.
  • Mistake 3.  Putting the wrong kind of analyst or designer on the project. This is somewhat related to Mistake 2 but with some subtle differences.  People have different skillsets so you need to make sure the person you’re considering to put on the project is the right “kind.”  For example, when you put the design together you need both drill-down and summary models.  Both have different types of users.  Does this person know how to do both?  Or, for example, inexperience in an analyst might lead to them believing vendor claims and not be able to verify them as to functionality or time to implement. Mistake 4.  Not understanding how clean the data is you are getting and the time frame to get it clean.  Profile your data to understand the quality of your source data.  This will allow you to adjust your system accordingly to compensate for some of those issues or more importantly push data fixes to your source systems.  Ensure high quality data or your risk upsetting your customers.  If you don’t have a good understanding of the quality of your data, you could easily find yourself way behind schedule even though the actual analytics and business intelligence framework you are building is coming along fine. Mistake 5.  Picking the wrong tools.  How often do organizations buy software tools that just sit on the shelve?  This often comes from management rushing into a quick decision based on a few demos they have seen.  Picking the right analytics tools requires an in-depth understanding of your requirements as well as the strengths and weaknesses of the tools you are evaluating.  The best way to achieve this understanding is by getting an unbiased implementation partner to build a proof of concept with a subset of your own data and prove out the functionality of the tools you are considering. Bottom Line.  Think things through carefully. Make sure you put the right team together.  Have a data cleansing plan.  If the hype sounds too good to be true—have someone prove it to you.
cezarovidiu

Filling a Critical Role in Business Today: The Data Translator - Microsoft Business Int... - 0 views

  • a lot of articles calling data scientists and statisticians the jobs of the future
  • there are more immediate needs that, when addressed, will have a much greater business impact.
  • Right now we have huge opportunities to make the data more accessible, more “joinable” and more consumable. Leaders don’t want more data – they want more information they can use to run their businesses.
  • ...5 more annotations...
  • Every company has hundreds of millions of records about their sales, expenses, employees and so on, with dozens of insights yet to be discovered through simple comparison or triangulation of relevant data.
  • Why don’t we focus on this? I think because it’s very difficult to do – being successful in this “data translator” role requires a unique set of skills and knowledge, the combination of which I call the BASE skillset: Business understanding Ability to synthetize and simplify Storytelling skills Expertise in data visualization
  • Business Understanding This one seems obvious, but it doesn’t mean simply understanding the financials of a business. Rather, it means truly knowing the operational details, the incentives, the install base, market growth, penetration, the competition, etc. An analyst can’t just know the technical aspect of a report or the math behind the numbers, but what is truly driving a pattern in terms of product quality, competition, incentives and/or offerings. The best analysts are able to mathematically isolate the key levers of a trend and then suggest actions to react to or take advantage of those trends. Ability to Synthetize and Simplify This is, in my opinion, the most underrated and underappreciated skill. Combing through thousands of data points and netting out 3-4 key issues in under 10 minutes, and then communicating these to a group of execs with very different analytical skills, is truly difficult. The key is to make it simple but not simplistic, which means you still capture the complexity even as you get to the few core insights. It requires a very thorough effort to gather all the relevant information before categorizing, prioritizing and deciding if it is significant. After a while, you become an expert and can sniff things out quickly. At the same time, there is the danger of missing anomalies when you jump to conclusions based only on a summary look.
  • Storytelling Skills There are stages that should be followed when explaining complex ideas, something data translators are frequently expected to do. The best storytellers start by giving context and trying to couple the current discussion to something the audience already knows, ensuring the story is well structured and connected. We have to move from a “buffet style” business review with thousands of numbers packed in tables to a layered approach that will guide the audience to focus first on the most relevant messages, diving deeper only when necessary. Minto Pyramid Principles, which are built around a process for organizing thought and communication, are helpful in making sure you really focus on what is important and relevant, versus being obsessed in telling every fact. Expertise in Data Visualization I am glad to finally see so much focus on Information Visualization and I believe this is correlated to the explosion of data. Traditional methods of organizing data do not facilitate an intuitive understanding of key information points or trends. For instance, the two examples below contain data on car sales across the U.S. The first, an alphabetized list, is much less intuitive than the second, which shows those sales on a map in Power View. With Power View, right away you can identify the states with the highest sales: CA, FL, TX, NY. (Workbook available here)
  • There is no better way to see patterns or trends than data visualization, making expertise in this area – both technical and analytical – critical for data translators.
cezarovidiu

2013 ERP research: Compelling advice for the CFO : Enterprise Irregulars - 0 views

  • ERP vendor selection. As the following graph shows, the primary candidates for ERP software were SAP, Oracle, Microsoft, Epicor, and Infor:
  • The cloud question. Despite the hype, only 14 percent of respondents are using ERP delivered as Software as a Service (SaaS). Although the best cloud vendors can deliver superior security and reliability than most internal IT departments, market momentum to ERP in the cloud is not there yet, as the following diagram illustrates:
  • Important lessons. Implementing an ERP system is always complex because the deployment drives changes to both data and processes that extend across departmental boundaries inside the organization.
  • ...4 more annotations...
  • Software projects aren’t just technical endeavors. They’re also political, financial, emotional, structural, strategic, process and people-centric initiatives. Ignoring any one of these dimensions is done at the project manager’s peril.
  • Today’s CFO must balance the demands of two competing forces: the extraordinary wave of innovation (and the process changes these bring) against the regulatory, control-driven forces who want every process, every exception, and device to be documented, controlled and secured. In recent years, CFOs have spent tens of billions of dollars (or more) with audit firms to document the control points and risks within their existing ERP solutions.
  • ERP can bring significant benefit but implementation requires careful attention to both business planning and technology activities. For this reason, achieving project success and business value demand that CFO and CIO work together as a collaborative unit.
  • Therefore, it is essential to create this partnership and show your entire organization that the business and technology teams can communicate, collaborate, and share knowledge on a systematic and consistent basis. This collaboration is the true underlying strategy for gaining maximum value from ERP or any other enterprise initiative.
cezarovidiu

PowerPivot, Power View and Inquire availability - the definitive Microsoft answer - 0 views

  • With their inclusion in Excel standalone, at a cost of less than £100, any financial barrier to obtaining the benefit of these features is greatly reduced.
  • Excel 2013 Standalone Volume License and Standalone Retail 32-bit and 64-bit.
  • PowerPivot and the two new add-ins - PowerView and Inquire, are only available on certain SKUs (versions). These include:
1 - 5 of 5
Showing 20 items per page