Skip to main content

Home/ uydudoktoru.com/ Group items tagged at

Rss Feed Group items tagged

Ahmet UZUN

Precison Power Supply, 0-40V/2A (0-40V/2A Güç Kaynağı) - 0 views

  •  
    " Precision Power Supply © 1986 Doug Bedrosian and 2010 Tony van Roon "This Precision Power Supply is a nice addition on your workbench as primary, or in my case, a supplementary power supply. With zero to 40V and 2A with adjustable current limiting it will surely gets lots of use on your bench. On average the most amperage for a power supply someone needs is around two or three amps. The sensitivity for current limiting is fully adjustable. Have fun building!" Introduction: Test instruments are considered to be some of the most useful tools available when constructing a project. They are also considered to be the most expensive tools one could buy. For instance, a power supply of any quality and usefulness can range from several hundred dollars to several thousand dollars. The alternative to buying a power supply is to build one. The power supply in this article has a voltage range from 0 to 40V and a current range from 0 to 2 amps with current limiting set by the user. The quality of the supply is determined by the time and care the builder takes while constructing it. How It Works: The power supply is best understood when divided into separate parts. The first parts to look at are the two power supply sections. The output supply section consists of XFMR1, Br1, C1, and C2. They supply the appropriate voltage and current required at the output. The IC supply consists of XFMR2, Br2, and C3. The two power supply sections must be separate from each other because a floating ground is required for IC1. The next section is the voltage control. RV1 and R2 determine the operating point of a constant current source out of pin 3 of IC1. By varying RV1 the maximum output voltage will be set. Pins 8 and 9 are inputs to a high gain differential amplifier contained in IC1. By adjusting potentiometer P1 the voltage at pin 8 will vary; this will cause the voltage at the output to change until it is equal to the voltage at pin 8. Due to the high gain of the differenti
  •  
    Precision Power Supply © 1986 Doug Bedrosian and 2010 Tony van Roon "This Precision Power Supply is a nice addition on your workbench as primary, or in my case, a supplementary power supply. With zero to 40V and 2A with adjustable current limiting it will surely gets lots of use on your bench. On average the most amperage for a power supply someone needs is around two or three amps. The sensitivity for current limiting is fully adjustable. Have fun building!" Introduction: Test instruments are considered to be some of the most useful tools available when constructing a project. They are also considered to be the most expensive tools one could buy. For instance, a power supply of any quality and usefulness can range from several hundred dollars to several thousand dollars. The alternative to buying a power supply is to build one. The power supply in this article has a voltage range from 0 to 40V and a current range from 0 to 2 amps with current limiting set by the user. The quality of the supply is determined by the time and care the builder takes while constructing it. How It Works: The power supply is best understood when divided into separate parts. The first parts to look at are the two power supply sections. The output supply section consists of XFMR1, Br1, C1, and C2. They supply the appropriate voltage and current required at the output. The IC supply consists of XFMR2, Br2, and C3. The two power supply sections must be separate from each other because a floating ground is required for IC1. The next section is the voltage control. RV1 and R2 determine the operating point of a constant current source out of pin 3 of IC1. By varying RV1 the maximum output voltage will be set. Pins 8 and 9 are inputs to a high gain differential amplifier contained in IC1. By adjusting potentiometer P1 the voltage at pin 8 will vary; this will cause the voltage at the output to change until it is equal to the voltage at pin 8. Due to the
Ahmet UZUN

0-30 vdc stabılızed power supply wıth current control 0.002-3 a - 0 views

  •  
    "0-30 VDC STABILIZED POWER SUPPLY WITH CURRENT CONTROL 0.002-3 A 0-30 VDC STABİLİZE GÜÇ KAYNAĞI İLE AKIM KONTROL,002-3 A Orijinal görüntüsünü görmek için buraya tıklayın. 925x541 px. General Description This is a high quality power supply with a continuously variable stabilised output adjustable at any value between 0 and 30VDC. The circuit also incorporates an electronic output current limiter that effectively controls the output current from a few milliamperes (2 mA) to the maximum output of three amperes that the circuit can deliver. This feature makes this power supply indispensable in the experimenters laboratory as it is possible to limit the current to the typical maximum that a circuit under test may require, and power it up then, without any fear that it may be damaged if something goes wrong. There is also a visual indication that the current limiter is in operation so that you can see at a glance that your circuit is exceeding or not its preset limits. Technical Specifications - Characteristics Input Voltage: ................ 24 VAC Input Current: ................ 3 A (max) Output Voltage: ............. 0-30 V adjustable Output Current: ............. 2 mA-3 A adjustable Output Voltage Ripple: . 0.01 % maximum FEATURES - Reduced dimensions, easy construction, simple operation. - Output voltage easily adjustable. - Output current limiting with visual indication. - Complete protection of the supplied device against over loads and malfunction. How it Works To start with, there is a step-down mains transformer with a secondary winding rated at 24 V/3 A, which is connected across the input points of the circuit at pins 1 & 2. (the quality of the supplies output will be directly proportional to the quality of the transformer). The AC voltage of the transformers secondary winding is rectified by the bridge formed by the four diodes D1-D4. The DC voltage taken across the output of the bridge is smoothed by the filter formed by the
  •  
    0-30 vdc stabılızed power supply wıth current control 0.002-3 a
Ahmet UZUN

14Vdc at 2Watt Switching Power Supply Circuit - 0 views

  • 6 volt giriş voltajını 2watt güçünde 14 volt yapıyor kolay bir devredir..
  •  
    14Vdc at 2Watt Switching Power Supply Circuit
Ahmet UZUN

Acer Monitör Şemaları - 0 views

  • Zip File Contents: [0] AC711 schematic.zip [1] Acer 34ts-sch.pdf.zip [2] Acer 56e-sch.pdf.zip [3] Acer 76is-sch.pdf.zip [4] acer AL722 TFT.pdf.zip [5] Acer AL-1912.pdf.zip [6] Acer AL2623Wx.pdf.zip [7] ACER AT4202P english SM.pdf.zip [8] Acer Ferrari 3000 Series Notebook.pdf.zip [9] ac-series.zip Acer_monitor_semalari_arsivi_uydudoktoru.com_2.böl üm.zip FileSwap.com : Acer_monitor_semalari_arsivi_uydudoktoru.com_2.böl üm.zip download free
  •  
    Zip File Contents: [0] AC711 schematic.zip [1] Acer 34ts-sch.pdf.zip [2] Acer 56e-sch.pdf.zip [3] Acer 76is-sch.pdf.zip [4] acer AL722 TFT.pdf.zip [5] Acer AL-1912.pdf.zip [6] Acer AL2623Wx.pdf.zip [7] ACER AT4202P english SM.pdf.zip [8] Acer Ferrari 3000 Series Notebook.pdf.zip [9] ac-series.zip Acer_monitor_semalari_arsivi_uydudoktoru.com_2.böl üm.zip FileSwap.com : Acer_monitor_semalari_arsivi_uydudoktoru.com_2.böl üm.zip download free
  •  
    Zip File Contents: [0] AC711 schematic.zip [1] Acer 34ts-sch.pdf.zip [2] Acer 56e-sch.pdf.zip [3] Acer 76is-sch.pdf.zip [4] acer AL722 TFT.pdf.zip [5] Acer AL-1912.pdf.zip [6] Acer AL2623Wx.pdf.zip [7] ACER AT4202P english SM.pdf.zip [8] Acer Ferrari 3000 Series Notebook.pdf.zip [9] ac-series.zip Acer_monitor_semalari_arsivi_uydudoktoru.com_2.böl üm.zip FileSwap.com : Acer_monitor_semalari_arsivi_uydudoktoru.com_2.böl üm.zip download free
Ahmet UZUN

Actual Diablo Keys - 0 views

  • 02/06/11 Bulsatcom 39°E [Key02[04] Active - (Fausto Emulator/Ipnosys EMU and others Not Underworld) - thx MEMEDİM 11/05/11*AJA Contribution 36°E Biss - thx marokino08 07/05/11 1 Auto (aka Pershiy Avtomobilniy) 4.8°E P/T Biss Key (Events Only, eg F1) - thx dimaxa213 05/05/11 RAI 13°E Key0C [Active, June2011] (for Diablo use RAI card or Fausto Emulator) - thx Verdeoro 03/05/11 Telespazio Hungary 4°W Key0C [Active, June2011] (for Diablo use Telespazio Hungary card or Fausto Emulator) - thx dimaxa213 21/04/11*Libya Satellite Channel 8°W Biss - thx marokino08 17/04/11 Monitor Games 13°E Biss - thx ManSour NeghiMish 17/04/11 Opap TV 13°E Biss - thx 2010dz 14/04/11 CNN Turkey 42°E Biss - thx Informed® 14/04/11 Cartoon Net Arabic 13°E Biss - thx 2010dz Constant Control Words: Turn Fixed CW [ON] also in most cases turn Auto PMT [OFF] Unless Control Word CAID not in CAID file - None at Presant.
  •  
    02/06/11 Bulsatcom 39°E [Key02[04] Active - (Fausto Emulator/Ipnosys EMU and others Not Underworld) - thx MEMEDİM 11/05/11*AJA Contribution 36°E Biss - thx marokino08 07/05/11 1 Auto (aka Pershiy Avtomobilniy) 4.8°E P/T Biss Key (Events Only, eg F1) - thx dimaxa213 05/05/11 RAI 13°E Key0C [Active, June2011] (for Diablo use RAI card or Fausto Emulator) - thx Verdeoro 03/05/11 Telespazio Hungary 4°W Key0C [Active, June2011] (for Diablo use Telespazio Hungary card or Fausto Emulator) - thx dimaxa213 21/04/11*Libya Satellite Channel 8°W Biss - thx marokino08 17/04/11 Monitor Games 13°E Biss - thx ManSour NeghiMish 17/04/11 Opap TV 13°E Biss - thx 2010dz 14/04/11 CNN Turkey 42°E Biss - thx Informed® 14/04/11 Cartoon Net Arabic 13°E Biss - thx 2010dz Constant Control Words: Turn Fixed CW [ON] also in most cases turn Auto PMT [OFF] Unless Control Word CAID not in CAID file - None at Presant.
  •  
    02/06/11 Bulsatcom 39°E [Key02[04] Active - (Fausto Emulator/Ipnosys EMU and others Not Underworld) - thx MEMEDİM 11/05/11*AJA Contribution 36°E Biss - thx marokino08 07/05/11 1 Auto (aka Pershiy Avtomobilniy) 4.8°E P/T Biss Key (Events Only, eg F1) - thx dimaxa213 05/05/11 RAI 13°E Key0C [Active, June2011] (for Diablo use RAI card or Fausto Emulator) - thx Verdeoro 03/05/11 Telespazio Hungary 4°W Key0C [Active, June2011] (for Diablo use Telespazio Hungary card or Fausto Emulator) - thx dimaxa213 21/04/11*Libya Satellite Channel 8°W Biss - thx marokino08 17/04/11 Monitor Games 13°E Biss - thx ManSour NeghiMish 17/04/11 Opap TV 13°E Biss - thx 2010dz 14/04/11 CNN Turkey 42°E Biss - thx Informed® 14/04/11 Cartoon Net Arabic 13°E Biss - thx 2010dz Constant Control Words: Turn Fixed CW [ON] also in most cases turn Auto PMT [OFF] Unless Control Word CAID not in CAID file - None at Presant.
Ahmet UZUN

1.3W VHF RF Amplifier 2SC1970 88-108 MHz - 0 views

  • This RF power amplifier is based on the transistor 2SC1970 and 2N4427. The output power is about 1.3W and the input driving power is 30-50mW. It will still get your RF signal quit far and I advice you to use a good 50 ohm resistor as dummy load. To tune this amplifier you can either use a power meter/wattmeter, SWR unit or you can do using a RF field meter. RF Amplifier Assembly Good grounding is very important in a RF system. I use bottom layer as Ground and I connect it with the top with wires to get a good grounding. Make sure you have some cooling at the transistor. In my case I put the 2SC1970 close to the PCB to handle the heat. With good tuning the transistor shouldn't become hot. RF Amplifier Printed Circuit Board You can download a pdf file which is the black PCB. The PCB is mirrored because the printed side side should be faced down the board during UV exposure. To the right you will find a pic showing the assembly of all components on the same board. This is how the real board should look when you are going to solder the components. It is a board made for surface mounted components, so the copper is on the top layer. I am sure you can still use hole mounted components as well. Grey area is copper and each component is draw in different colors all to make it easy to identify for you. The scale of the pdf is 1:1 and the picture at right is magnified with 4 times. Click on the pic to enlarge it. Low-Pass Filter Some of you might want to add a low-pass filter at the output. I have not added any extra low pass filter in my construction because I don't think it is needed. You can easy find several homepages about low pass filter and how to build them.
  •  
    1.3W VHF RF Amplifier 2SC1970 88-108 MHz
  •  
    1.3W VHF RF Amplifier 2SC1970 88-108 MHz
Ahmet UZUN

13.8V 40A Switching Power Supply By LM3524,LM324 - 0 views

  • This is circuit 13.8V, 40A Switching Power Supply,It is high current power supply switching regulator.And Nice Circuit for power user. This article was originally published (in a slightly modified form) in the QST magazine, December 1998 and January 1999, and in the Radio Amateur's Handbook, 1999. Visit the American Radio Relay League for information on these publications, and a world of ham radio related things! Design decisions There are several different topologies for switchers in common use, and the first decision a designer must take is which of them to consider. Among the factors affecting the decision are the power level, the number of outputs needed, the range of input voltage to be accepted, the desired tradeoff between complexity, quality and cost, and many more. For this power supply I decided to use the half bridge forward converter design. This topology connects the power transformer to a bridge formed by two power transistors and two capacitors. It is reasonably simple, puts relatively low stress on the power transistors, and makes efficient use of the transformer's magnetic capabilities.The second basic decision is which switching frequency to use. The present trend is to use ever higher frequencies. But by doing so it becomes more difficult to filter out the RF noise inevitably generated by the switching. So I decided to stay at a low switching frequency of only 25 kHz for the full cycle, which due to the frequency doubling effect of the rectifiers results in 50 kHz on the output filter. For the main switching elements, bipolar transistors or MOSFETs can be used. Bipolars have lower conduction losses, while MOSFETs switch faster. As in this design I wanted to keep the RF noise at an absolute minimum, very fast switching was not desired, so I used bipolar transistors. But these tend to become too slow if the driving is heavier than necessary. So, if the transistors have to switch at varying current levels, the drive to them must also be varied. This is called proportional driving, and is used in this project. The half bridge converter is best controlled by pulse width modulation. There are several ICs available for this exact purpose. I chose the 3524, which is very simple to use and easy to find. Any 3524 will do the job. It can be an LM3524, SG3524, etc. This basically ends the big decisions. From now on, designing the circuit is a matter of calculating proper values for everything.
  •  
    13.8V 40A Switching Power Supply By LM3524,LM324
  •  
    13.8V 40A Switching Power Supply By LM3524,LM324
Ahmet UZUN

LM741 Entegresi ile yapılmış 0-15V / 5A Ayarlı Güç kaynağı devresi - 0 views

  • LM741 Entegresi ile yapılmış 0-15V / 5A Ayarlı Güç kaynağı devresi This regulated power supply can be adjusted between a few volts and 15V with P1 and with P2 adjust the upper limit ( 15.0V ). R6 value is 0.7V / Imax where Imax is the maximum current. At Imax = 5A, R6 is 0.14Ω Orijinal görüntüsünü görmek için buraya tıklayınız. T1 and T2 must have heatsinks because power losses are great at a low output voltage and a Imax equal current but you can connect the lamp L to reduce this losses. I’ve build this adjustable power supply and works great! I hope you’ll enjoy it too and have fun build this great stabilized power supply.
  •  
    LM741 Entegresi ile yapılmış 0-15V / 5A Ayarlı Güç kaynağı devresi
  •  
    LM741 Entegresi ile yapılmış 0-15V / 5A Ayarlı Güç kaynağı devresi
Ahmet UZUN

12Volt 1Amper Ayarlı Güç Kaynağı Devresi - 0 views

  • POWER SUPPLY WITH ADJUSTABLE OUTPUT 0-15V / 1A The objective of the schematic is to create a power supply that would produce an output of 0 V to 15 V at 1 A current. - 2N3055 – a complementary Silicon Epitaxial-Base planar NPN transistor mounted in TO-3 metal case for use as power transistor- Bridge Diode – also known as bridge rectifier which has four diodes arranged in a bridge configuration where the output voltage has the same polarity with either polarity of the input voltage The construction of this power supply schematic is very simple in such a way that the components used are easy to be located while the cost is very cheap. With the biggest provided current at 1 A, the output voltage is adjusted for minimal ripple effect and stabilized in the range of 0 V to 15 V DC. This is made possible by the standard transformer output of 1.5 A with a primary winding voltage of 220 V and secondary voltage of 18 V. The current is being limited by the Zener diode D1 with a rating of 18 V and 1.5 W. The linear potentiometer R2 is responsible for the regulation of current. The power transistor Q1 is a classic type that would require to be placed in a suitable heatsink to suppress the high heat dissipation during the operation of the circuit. The heat dissipation will be continuous during the presence of the highest current. The bridge diode GR1 will provide full wave rectification from the AC input which will also convert the incoming alternating current (AC) input into direct current (DC) output. One good feature of the bridge diode is maintaining the same polarity of the output regardless of the polarity of the input. R1= 56ohm 2W R2= 330ohm Lin. pot. C1= 2200uF 35V C2= 100uF 35V C3= 10uF 25V C4= 220uF 25V C5= 100nF 100V GR1= 4 X 1N4007 Q1= 2N3055 T1=220V@18V 1.5A D1= 18V 1.5W zener The 15V/1 A power supply may be used to handle home automation control system which can be powered by 12 Vdc. They can be made into power adapter models to support a wide variety of applications such as TFT monitors, broadcasting, laptops, digital cameras, telecommunications, PSP’s, routers, notebooks, guitar effects pedals, KVM extenders, iPod’s, scanners, CCTV’s, printers, cassette players, radios, and other portable applications. POWER SUPPLY WITH ADJUSTABLE OUTPUT 0-15V 1A.pdf Alternatif Link FileSwap.com : POWER SUPPLY WITH ADJUSTABLE OUTPUT 0-15V 1A.pdf download free
  •  
    12Volt 1Amper Ayarlı Güç Kaynağı Devresi
  •  
    12Volt 1Amper Ayarlı Güç Kaynağı Devresi
Ahmet UZUN

TV Transmitter (TV Verici devresi) - 0 views

  • If you are interested to build TV transmitter for your electronic project this Advanced TV Transmitter With Sound designed by Tetsuo Kogawa could be good idea for you. TV transmitter consists of of the two sections: video transmitter and audio amplifying. Both of them actually is transmitters. The main one generates video carrier while the smaller one generates the exact 4.5 (5.5 in some countries) MHz FM audio carrier. When it is supplied to the main section, the combination generates the audio carrier that is the total of the video frequency plus 4.5 MHz (this is the same in the US but different in other countries: 3.5 in the UK, 5.0 in Italy, 5.5 in Australia and so on: see the channel plans). The Audio section (1)Coil: The most difficult point is the coil. You can use any type of coil as long as it fits the inductance. But the size of coil for 4.5 MHz is quite large if you use usual type of coils. Here I will use Ferrite Troidal core that is made by Amidon Associates. Wind 0.2 ECW (enamel-coated wire) around the "FT-50-43" (Amidon) in 24 turns. (2)Transistor: You can use popular ones such as 2SC2001, 2SC1815, 2SC1907, etc. But you must keep the pins (E, C, B). How to adjust: Connecting the prove of the frequency counter at "#to the audio-in". Then adjust "Trimer cap. (80PF)" as the frequency counter shows exactly 4.5MHz. Sometimes, you have to add some capacitors (depending 100-1000PF) at the "E(mitter)" position of the transistor in order to adjust the frequency.
  •  
    "TV Transmitter (TV Verici devresi) "
  •  
    TV Transmitter (TV Verici devresi)
Ahmet UZUN

1W FM Transmitter Circuit Diagram - 0 views

  • Components values: T1 = T2 = T3 = BF199 T4 = 2N4427, BLX65, 2N3866, 2N3553 L1 = rf choke (20 turns, 0.2mm on ferrite core, 0.3mm) L2 = 4 t, 0.7mm, 4mm L3 = 6 t, 0.8mm, 6mm, at first turn from T3 L4 = 10 t, 0.2mm over ferrite core L5 = 7 t, 0.8mm, 6mm L6 = 4 t, 1mm, 8mm, 10mm long This 1 watt fm transmitter has been tested and is working as mentioned in this article. If you use replacement components the performances can vary a lot.
  •  
    1W FM Transmitter Circuit Diagram
  •  
    1W FM Transmitter Circuit Diagram
Ahmet UZUN

RF amplifier with BLY90 - 0 views

  • project of circuit potency lineal RF amplifier with BLY90 for Fm transmitter or vhf transmitter Circuit for lineal amplifier for VHF with power source and printed circuit board, using the transistor Bly90 It is to be used as amplifier of potency of RF in the high strip of of the power source that should be capable to supply a tension of 13 volts with a current of 10 amperes. it demands right care in the assembly of the source. Terrified armored transformer, and three shocks of RF to filter the components of high frequency. XRF1 and XRF2 are 30 you turns of wire 25 AWG in a nucleus of ferrite of 1 cm of diameter and 5 cm length. It can use one of a source at/atx bad, it is easier. XRF3 are 100 you turns of wire 25 AWG in a ferrite nucleus and 1cm of diameter for 5cm of length. Or use an usually found in the exits of sources ATX’s. something around 100µH. The capacitors C1, C2, C3, C4 should be ceramic of 600 V or more and the capacitors of 10nF are for 100v. RX cannot be of wire. Power supply circuit for the rf lineal amplifier Orijinal görüntüsünü görmek için buraya tıklayın. 512x223 px. About the transistor BLY90 The Transistor BLY90 was developed to work in the classes THE, B and C, with 12.5V current of 8A. For applications above 175MHZ. Below we have the diagram circuit of the amplifier using an only transistor BLY90. All capacitors should be ceramic. The resistor of 10Ω for 1 w should not be of wire, the entrance impedance and exit is of 50Ω , soon it should be linked with cable of 50Ω . It should be observed the legal restrictions as the operation of that equipment type. Diagram circuit of the project for the rf lineal amplifier Orijinal görüntüsünü görmek için buraya tıklayın. 522x297 px. Printed circuit board for the lineal amplifier with bly90 Below we have the drawing of the printed circuit board of the transmitter, observe that the components are mounted beside the copper and with the terminals the shortest possible, use heatsink in BLY90. lists of material for assembly of the lineal RF potency amplifier Power Supply RX = 22KΩ 1W C1,C2,C3,C4 = 100nF 600V Ceramic C5,C6,C7,C8, =10NF 100V C9 = 100NF C10 = 4700µF C11 = 2200µF D1,D2,D3,D4 = 1N5401 or equivalent. XRF1,XRF2 = 30 turns of wire 25 AWG in nucleus of ferrite of 1cm diameter for 5 length. Optional, use a shock of RF of a computer source, those of the entrance of the net. XRF3 = 100 turns of wire 25 AWG in a nucleus of ferrite of 1 x 5. T1 = Transformer of 12 Volts for 10 Ámperes with screening. Several = box, plugs, cables, etc. Amplifier of RF Q = BLY90 R = 10Ω 2W C1 =15PF C2,C3,C4,C5 = 100PF C6 = 470NF C7,C10,C11 = 470PF C8 = 47PF C9 = 56PF C12 = 22PF CV1,CV2 = TRIMMER 4 – 40PF CV3,CV4 = TRIMMER 60PF MAX. L1 = 3 turns of wire 24 AWG with diameter of 7mm, nucleus of air. L2 = Shock of RF of 0.22µH. L3 = 15 turns of wire 24 AWG around a resistor of 47Ω x 2W (it doesn’t serve as wire) L4 = 3 turns of wire 24 AWG with diameter of 7 mm, nucleus of air. L5 = 1 turns (sees fig. below for details) L6 = 3 turns of wire 24 AWG with diameter of 7 mm., nucleus of air. L7 = 4 turns of wire 24 AWG with diameter of 7mm, nucleus of air. Several = printed circuit board, antenna, cables, heatsink, box, etc. Detail of L5. That project is just for ends of didactic test, that doesn’t implicate in any responsibility of the idealizator about the non operation or illegality of operation of the equipment.
  •  
    RF amplifier with BLY90
  •  
    RF amplifier with BLY90
Ahmet UZUN

circuit audio power amplifier circuit three channels of 25W mute stand-by circuit lm4782 - 0 views

  • Circuit audio power amplifier using integrated lm4782 overtureTM for three channels of 25W with mute and stand-by LM4782 is audio amplifier of three channels capable to supply 25W of potency for channel. LM4782 uses the system of protection of National Self Peak Instantaneous Temperature (˚Ke) (SPiKeTM). Spike protects the exit of the lm4782 of on tension on load, short of the source for gnd, temperature protection and picks instantaneous of temperature. Each amplifier of the lm4782 has a mute circuit and internal stand-by, that can be controlled by logic it expresses. LM4782 can be configured to be used in bridge or in parallel way without complications, it exists several ways to use integrated him. To know more on spike it seeks for AN-898 in the site national.com . Description of the operation of the circuit of the amplifier with lm4782 The circuit described here it is treated of the application suggested by the national semiconductors for an amplifier of potency of three channels with having integrated lm4782. To determine the heat-sink to be used it sees the datasheet of the lm4782. In the way stand-by the drain of current of the source VCC is less than 30µA for all amplifiers and chain drained of the source VEE is typically of 8mA. Bypassing Capacitors To eliminate possible oscillations or instability in low frequency high frequency either is used a capacitor electrolytic or of tantalum to absorb variations in low frequency and a ceramic capacitor to prevent feedback in discharges frequencies. those components are placed in the power lines. Filter high raisin The combination of it Laughs with ci it creates a filter high raisin. The frequency answer is determined by those two components. The point of -3dB can be found using the equation below: fi=1/(2ÀRiCi) (Hz) If a capacitor of blockade dc be used, there is another filter it passes discharge servant with the combination of Cin and Rin. When great values of Rin are used it can happen oscillations in the exit. To determine the type of the heat-sink and other assembly configurations it sees the datasheet of the lm4782. Source for the circuit That proposed circuit requests a symmetrical source of +-25volts that is capable of ?¤ “teão is necessary that is regulated. Just use a good transformer, rectificators and great capacitors of filter of at least 10000µF. The transformer uses transformer torodal preferably, they exist virtual stores that sell transformers and they dispatch for the whole brazil. Schematic of the circuit of the potent amplifier with lm4782 Orijinal görüntüsünü görmek için buraya tıklayın. 524x566 px. Printed circuit board (couple face) side of the it welds suggested by the national for assembly of the potent amplifier of three channels Circuit board (couple face) printed side of the components suggested by the national for assembly of the amplifier Assembly of the components of the amplifier in the board silkscreen of the board of the amplifier It lists of material for assembly of the amplifier Name value tolerance type /description RIN1,RIN2,RIN3 33kP6; 5% 1/4 watt RB1,RB2,RB3 1kP6; 1% 1/4 watt RF1,RF2,RF3 20kP6; 1% 1/4 watt Ri1,Ri2,Ri3 1kP6; 1% 1/4 watt RSN1,RSN2,RSN3 4.7P6; 5% 2 watt ID 2.7P6; 5% 1/4 watt RV 5.1kP6; 5% 1/4 watt CIN1,CIN2,CIN3 1µF 10% Film metallic polyester CN1,CN2,CN3 15pF 20% Ceramic Ci1,Ci2,Ci3 68µF 20% Ceramic Radial / 35V CSN1,CSN2,CSN3 0.1µF 20% Ceramic CV 0.1µF 20% Ceramic CS1,CS2 0.1µF 20% Ceramic CS3,CS4 10µF 20% Radial Ceramic /50V CS5,CS6 2,200µF 20% Ceramic Radial / 50V S1,S2 Key SPDT (on-on) J1,J2,J3 PCB Montage RCA Jack J5,J7,J9,J11 PCB Banana Jack – Black J4,J6,J8,J10,J12 PCB Banana Jack – Red VZD 5.1V Zener Diode 1W U1 LM4782 TO-220 For more information to do download of the datasheet of the lm4782
  •  
    circuit audio power amplifier circuit three channels of 25W mute stand-by circuit lm4782
  •  
    circuit audio power amplifier circuit three channels of 25W mute stand-by circuit lm4782
  •  
    circuit audio power amplifier circuit three channels of 25W mute stand-by circuit lm4782
Ahmet UZUN

0.30 Volt 5 Amper Güç Kaynağı Devresi - 0 views

  • Orijinal görüntüsünü görmek için buraya tıklayın. 1202x905 px. Orijinal görüntüsünü görmek için buraya tıklayın. 1098x683 px. Orijinal görüntüsünü görmek için buraya tıklayın. 944x1484 px. current limiting. Without '' RX '' and with attached S1 maximally possible output current is to the user at the disposal. This must however logical-proves no to be to be read as in the heading if the used trafo cannot supply these rivers, one such rivers to use will also not be able IC1 uA723 /LM 723CN T1 BC237 T2 BD136 T3;4 2N3055 D1.....4 DIODE BY252 ZD1 Z-DIODE 27V - ZPD 27V0 R6 22K R7 100R R8 560R R9 1K R10 100K R11 22K R12 4K7 R13 22K R14;15 4K7 R16 680R R17 47R R18;19 4K7 R20 1K2 R21 4K7 R26 680R R1 1k8 R2 1R0 R3 =RX R4 0R 27 R5 0R 27 R22.....25 0R 27 P1 10K C1 4700UF C2 47NF C3 4,7NF C4 150pF C5 10UF C6 47UF
  •  
    0.30 Volt 5 Amper Güç Kaynağı Devresi
  •  
    0.30 Volt 5 Amper Güç Kaynağı Devresi
1 - 14 of 14
Showing 20 items per page