Skip to main content

Home/ uydudoktoru.com/ Group items tagged Input

Rss Feed Group items tagged

Ahmet UZUN

0-30 vdc stabılızed power supply wıth current control 0.002-3 a - 0 views

  •  
    "0-30 VDC STABILIZED POWER SUPPLY WITH CURRENT CONTROL 0.002-3 A 0-30 VDC STABİLİZE GÜÇ KAYNAĞI İLE AKIM KONTROL,002-3 A Orijinal görüntüsünü görmek için buraya tıklayın. 925x541 px. General Description This is a high quality power supply with a continuously variable stabilised output adjustable at any value between 0 and 30VDC. The circuit also incorporates an electronic output current limiter that effectively controls the output current from a few milliamperes (2 mA) to the maximum output of three amperes that the circuit can deliver. This feature makes this power supply indispensable in the experimenters laboratory as it is possible to limit the current to the typical maximum that a circuit under test may require, and power it up then, without any fear that it may be damaged if something goes wrong. There is also a visual indication that the current limiter is in operation so that you can see at a glance that your circuit is exceeding or not its preset limits. Technical Specifications - Characteristics Input Voltage: ................ 24 VAC Input Current: ................ 3 A (max) Output Voltage: ............. 0-30 V adjustable Output Current: ............. 2 mA-3 A adjustable Output Voltage Ripple: . 0.01 % maximum FEATURES - Reduced dimensions, easy construction, simple operation. - Output voltage easily adjustable. - Output current limiting with visual indication. - Complete protection of the supplied device against over loads and malfunction. How it Works To start with, there is a step-down mains transformer with a secondary winding rated at 24 V/3 A, which is connected across the input points of the circuit at pins 1 & 2. (the quality of the supplies output will be directly proportional to the quality of the transformer). The AC voltage of the transformers secondary winding is rectified by the bridge formed by the four diodes D1-D4. The DC voltage taken across the output of the bridge is smoothed by the filter formed by the
  •  
    0-30 vdc stabılızed power supply wıth current control 0.002-3 a
Ahmet UZUN

AutoPlay Media Studio şifrele / şifre çöz Yapımı - 0 views

  • AutoPlay Media Studio şifrele / şifre çöz Yapımı çok basit bir şekilde yapabilirsiniz ben foruma programlarını ekliyorum.Şifreleme ve şifre çözme ayrı ayrı hazırladım program sayesinde ams ile hazırladığınız gizlenmesini istediğiniz linkleri yada yazıları gizleyebilirsiniz.. Şifrelemek için kullandığım kod Butona yazılacak PHP Kodu: Input.SetText("Input1", Crypto.BlowfishEncryptString(Input.GetText("Input1"), "sha"), false)  kodu butana yazdıktan sonra bir tane input object eklemeniz yeterli olacaktır.. Şifrelediğini yazıyı yada linki çözmek için ise aşağıdaki kodu kullanınız PHP Kodu: Input.SetText("Input1", Crypto.BlowfishDecryptString(Input.GetText("Input1"), "sha"), false)  şifrele şifre çöz.zip FileSwap.com : şifrele şifre çöz.zip download free Apz dosyaları FileSwap.com : şifrele şifre çöz apz.zip download free şifrele şifre çöz apz.zip
  •  
    AutoPlay Media Studio şifrele / şifre çöz Yapımı
  •  
    AutoPlay Media Studio şifrele / şifre çöz Yapımı
Ahmet UZUN

Precison Power Supply, 0-40V/2A (0-40V/2A Güç Kaynağı) - 0 views

  •  
    " Precision Power Supply © 1986 Doug Bedrosian and 2010 Tony van Roon "This Precision Power Supply is a nice addition on your workbench as primary, or in my case, a supplementary power supply. With zero to 40V and 2A with adjustable current limiting it will surely gets lots of use on your bench. On average the most amperage for a power supply someone needs is around two or three amps. The sensitivity for current limiting is fully adjustable. Have fun building!" Introduction: Test instruments are considered to be some of the most useful tools available when constructing a project. They are also considered to be the most expensive tools one could buy. For instance, a power supply of any quality and usefulness can range from several hundred dollars to several thousand dollars. The alternative to buying a power supply is to build one. The power supply in this article has a voltage range from 0 to 40V and a current range from 0 to 2 amps with current limiting set by the user. The quality of the supply is determined by the time and care the builder takes while constructing it. How It Works: The power supply is best understood when divided into separate parts. The first parts to look at are the two power supply sections. The output supply section consists of XFMR1, Br1, C1, and C2. They supply the appropriate voltage and current required at the output. The IC supply consists of XFMR2, Br2, and C3. The two power supply sections must be separate from each other because a floating ground is required for IC1. The next section is the voltage control. RV1 and R2 determine the operating point of a constant current source out of pin 3 of IC1. By varying RV1 the maximum output voltage will be set. Pins 8 and 9 are inputs to a high gain differential amplifier contained in IC1. By adjusting potentiometer P1 the voltage at pin 8 will vary; this will cause the voltage at the output to change until it is equal to the voltage at pin 8. Due to the high gain of the differenti
  •  
    Precision Power Supply © 1986 Doug Bedrosian and 2010 Tony van Roon "This Precision Power Supply is a nice addition on your workbench as primary, or in my case, a supplementary power supply. With zero to 40V and 2A with adjustable current limiting it will surely gets lots of use on your bench. On average the most amperage for a power supply someone needs is around two or three amps. The sensitivity for current limiting is fully adjustable. Have fun building!" Introduction: Test instruments are considered to be some of the most useful tools available when constructing a project. They are also considered to be the most expensive tools one could buy. For instance, a power supply of any quality and usefulness can range from several hundred dollars to several thousand dollars. The alternative to buying a power supply is to build one. The power supply in this article has a voltage range from 0 to 40V and a current range from 0 to 2 amps with current limiting set by the user. The quality of the supply is determined by the time and care the builder takes while constructing it. How It Works: The power supply is best understood when divided into separate parts. The first parts to look at are the two power supply sections. The output supply section consists of XFMR1, Br1, C1, and C2. They supply the appropriate voltage and current required at the output. The IC supply consists of XFMR2, Br2, and C3. The two power supply sections must be separate from each other because a floating ground is required for IC1. The next section is the voltage control. RV1 and R2 determine the operating point of a constant current source out of pin 3 of IC1. By varying RV1 the maximum output voltage will be set. Pins 8 and 9 are inputs to a high gain differential amplifier contained in IC1. By adjusting potentiometer P1 the voltage at pin 8 will vary; this will cause the voltage at the output to change until it is equal to the voltage at pin 8. Due to the
Ahmet UZUN

10-50mW giriş sinyalı ile 5 Watts Çıkış gücü (10-50mW Input Gives 5 Watts Out... - 0 views

  •  
    10-50mW giriş sinyalı ile 5 Watts Çıkış gücü (10-50mW Input Gives 5 Watts Output) Devresi
  •  
    10-50mW giriş sinyalı ile 5 Watts Çıkış gücü (10-50mW Input Gives 5 Watts Output) Devresi
Ahmet UZUN

12Volt 1Amper Ayarlı Güç Kaynağı Devresi - 0 views

  • POWER SUPPLY WITH ADJUSTABLE OUTPUT 0-15V / 1A The objective of the schematic is to create a power supply that would produce an output of 0 V to 15 V at 1 A current. - 2N3055 – a complementary Silicon Epitaxial-Base planar NPN transistor mounted in TO-3 metal case for use as power transistor- Bridge Diode – also known as bridge rectifier which has four diodes arranged in a bridge configuration where the output voltage has the same polarity with either polarity of the input voltage The construction of this power supply schematic is very simple in such a way that the components used are easy to be located while the cost is very cheap. With the biggest provided current at 1 A, the output voltage is adjusted for minimal ripple effect and stabilized in the range of 0 V to 15 V DC. This is made possible by the standard transformer output of 1.5 A with a primary winding voltage of 220 V and secondary voltage of 18 V. The current is being limited by the Zener diode D1 with a rating of 18 V and 1.5 W. The linear potentiometer R2 is responsible for the regulation of current. The power transistor Q1 is a classic type that would require to be placed in a suitable heatsink to suppress the high heat dissipation during the operation of the circuit. The heat dissipation will be continuous during the presence of the highest current. The bridge diode GR1 will provide full wave rectification from the AC input which will also convert the incoming alternating current (AC) input into direct current (DC) output. One good feature of the bridge diode is maintaining the same polarity of the output regardless of the polarity of the input. R1= 56ohm 2W R2= 330ohm Lin. pot. C1= 2200uF 35V C2= 100uF 35V C3= 10uF 25V C4= 220uF 25V C5= 100nF 100V GR1= 4 X 1N4007 Q1= 2N3055 T1=220V@18V 1.5A D1= 18V 1.5W zener The 15V/1 A power supply may be used to handle home automation control system which can be powered by 12 Vdc. They can be made into power adapter models to support a wide variety of applications such as TFT monitors, broadcasting, laptops, digital cameras, telecommunications, PSP’s, routers, notebooks, guitar effects pedals, KVM extenders, iPod’s, scanners, CCTV’s, printers, cassette players, radios, and other portable applications. POWER SUPPLY WITH ADJUSTABLE OUTPUT 0-15V 1A.pdf Alternatif Link FileSwap.com : POWER SUPPLY WITH ADJUSTABLE OUTPUT 0-15V 1A.pdf download free
  •  
    12Volt 1Amper Ayarlı Güç Kaynağı Devresi
  •  
    12Volt 1Amper Ayarlı Güç Kaynağı Devresi
Ahmet UZUN

Ayarlanabilir Power Supply - 0 views

  • When testing electronic projects a good adjustable power supply is indispensable. The LM317 provides the basis for a quality regulated dc power supply. This kit combines an LM317 with a thumbwheel potentiometer to allow you to easily set the output voltage from 1.5V up to 2V less than the input. Three preset voltages (5, 9, 12V) can also be selected. Input power comes from an external source such as the power adapter available below. The kit includes a circuit board, parts, and a printed manual. Kit assembly requires soldering and some of the parts are surface mount. If you've never soldered surface mount parts before, you may be surprised to discover how easy it is. See the manual for more details.
  •  
    Ayarlanabilir Power Supply
  •  
    Ayarlanabilir Power Supply
Ahmet UZUN

10-50mW giriş sinyalı ile 5 Watts Çıkış gücü (10-50mW Input Gives 5 Watts Out... - 0 views

  •  
    "10-50mW giriş sinyalı ile 5 Watts Çıkış gücü"
  •  
    10-50mW giriş sinyalı ile 5 Watts Çıkış gücü
Ahmet UZUN

DC24V to AC220V Inverter 300W by NE555,CA3130,MJ15003 - 0 views

  • PCB DC24V to AC220V Inverter 300W by NE555,CA3130,MJ15003 This is circuit Inverter 300, Input battery 24V to Output 220V 50Hz 300W. Use Component IC 4027,NE555,CA3130,7805 and Transister MJ15003. Orijinal Resmi Görebilmek için buraya tıklayınız. Orijinal Resmi Görebilmek için buraya tıklayınız.
  •  
    DC24V to AC220V Inverter 300W by NE555,CA3130,MJ15003
Ahmet UZUN

1.3W VHF RF Amplifier 2SC1970 88-108 MHz - 0 views

  • This RF power amplifier is based on the transistor 2SC1970 and 2N4427. The output power is about 1.3W and the input driving power is 30-50mW. It will still get your RF signal quit far and I advice you to use a good 50 ohm resistor as dummy load. To tune this amplifier you can either use a power meter/wattmeter, SWR unit or you can do using a RF field meter. RF Amplifier Assembly Good grounding is very important in a RF system. I use bottom layer as Ground and I connect it with the top with wires to get a good grounding. Make sure you have some cooling at the transistor. In my case I put the 2SC1970 close to the PCB to handle the heat. With good tuning the transistor shouldn't become hot. RF Amplifier Printed Circuit Board You can download a pdf file which is the black PCB. The PCB is mirrored because the printed side side should be faced down the board during UV exposure. To the right you will find a pic showing the assembly of all components on the same board. This is how the real board should look when you are going to solder the components. It is a board made for surface mounted components, so the copper is on the top layer. I am sure you can still use hole mounted components as well. Grey area is copper and each component is draw in different colors all to make it easy to identify for you. The scale of the pdf is 1:1 and the picture at right is magnified with 4 times. Click on the pic to enlarge it. Low-Pass Filter Some of you might want to add a low-pass filter at the output. I have not added any extra low pass filter in my construction because I don't think it is needed. You can easy find several homepages about low pass filter and how to build them.
  •  
    1.3W VHF RF Amplifier 2SC1970 88-108 MHz
  •  
    1.3W VHF RF Amplifier 2SC1970 88-108 MHz
Ahmet UZUN

13.8V 40A Switching Power Supply By LM3524,LM324 - 0 views

  • This is circuit 13.8V, 40A Switching Power Supply,It is high current power supply switching regulator.And Nice Circuit for power user. This article was originally published (in a slightly modified form) in the QST magazine, December 1998 and January 1999, and in the Radio Amateur's Handbook, 1999. Visit the American Radio Relay League for information on these publications, and a world of ham radio related things! Design decisions There are several different topologies for switchers in common use, and the first decision a designer must take is which of them to consider. Among the factors affecting the decision are the power level, the number of outputs needed, the range of input voltage to be accepted, the desired tradeoff between complexity, quality and cost, and many more. For this power supply I decided to use the half bridge forward converter design. This topology connects the power transformer to a bridge formed by two power transistors and two capacitors. It is reasonably simple, puts relatively low stress on the power transistors, and makes efficient use of the transformer's magnetic capabilities.The second basic decision is which switching frequency to use. The present trend is to use ever higher frequencies. But by doing so it becomes more difficult to filter out the RF noise inevitably generated by the switching. So I decided to stay at a low switching frequency of only 25 kHz for the full cycle, which due to the frequency doubling effect of the rectifiers results in 50 kHz on the output filter. For the main switching elements, bipolar transistors or MOSFETs can be used. Bipolars have lower conduction losses, while MOSFETs switch faster. As in this design I wanted to keep the RF noise at an absolute minimum, very fast switching was not desired, so I used bipolar transistors. But these tend to become too slow if the driving is heavier than necessary. So, if the transistors have to switch at varying current levels, the drive to them must also be varied. This is called proportional driving, and is used in this project. The half bridge converter is best controlled by pulse width modulation. There are several ICs available for this exact purpose. I chose the 3524, which is very simple to use and easy to find. Any 3524 will do the job. It can be an LM3524, SG3524, etc. This basically ends the big decisions. From now on, designing the circuit is a matter of calculating proper values for everything.
  •  
    13.8V 40A Switching Power Supply By LM3524,LM324
  •  
    13.8V 40A Switching Power Supply By LM3524,LM324
Ahmet UZUN

50 Watt Fm verici yükseltici Devresi (Skema PCB Rangkaian Boster FM 50 Watt) - 0 views

  • Orijinal görüntüsünü görmek için buraya tıklayın. 780x506 px. Daftar Komponen : TR1 ………………. SC1971. TR2 ………………. SC1964. C1, 4 ……………… 8 pF ( kondensator trimmer batu ). C2, 5 . ……………..10 pF ( Kondensator trimmer batu). C7, 8 ……………….20 pF ( Kondensator trimmer batu). C3, 6 ……………… 2200 mF/50 V. L1, 4, 7 …………. Diameter kawat 2mm Diameter inti udara 8mm . Jumlah lilitan= 3 lilit. L2, 5 …………… Diameter kawat 2mm Diameter inti udara 8mm Jumlah lilitan= 9 lilit . R1, 2 …………….. 100 ohm / 2 watt. L3, 6 …………….. Diameter kawat 0,4mm *.Catatan : Untuk R1, 2 dan L3, 6 dililitkan bersama . Cara merakitnya : 1. Kamu beli papan PCB polos di toko elektronik, lalu kamu lukis menggunakan spidol hitam hitam sesuai dengan gambar di atas kemudian rendam pada larutan feriClorida .Tunggu sampai bagian yang tidak terkena spidol hilang . 1. Kamu beli papan PCB polos di toko elektronik, lalu kamu lukis menggunakan spidol hitam hitam sesuai dengan gambar di atas kemudian rendam pada larutan feriClorida .Tunggu sampai bagian yang tidak terkena spidol hilang . 2. Setelah papan PCB sudah jadi, bersikan sisa tinta spidol dengan menggunakan kertas amplas halus kemudiaan libangilah pada bagian transistor( TR1, 2 ) membentuk kotak sesuai dengan bentuk transistor itu agar bisa menempel pada plat pendingin . 3. Pasanglah komponen-komponen pada tempatnya sesuai dengan gambar di atas, ingat kaki transistor jangan sampai terbalik . 4. Setelah semua komponen telah terpasang, sambungkan output dari pemancar 5 watt ke input Booster . 5. Di bagian output Booster, kamu pasang Dummy Load sebagai pengganti antena sekaligus untuk mengukur besaran daya keluaran dari Booster yang telah kamu rakit . 6. Sambungkan juga kabel tegangan DC 12V pada Booster, ingan jangan sampai terbalik kabel(+) dan (-) nya . 7. Untuk mengoptimalkan daya keluaran pada booster, lakukan penyetelan dengan mentrim kondensator trimmer (C1, 2, 4, 5, 7, 8 ) dan merenggangkan Lilitan( L1, 4, 7 ) sampai kamu mendapat daya keluaran yang maksimal . 8. Bila Daya keluran Booster sudah maksimal, kamu bisa mencobanya dengan menyambungkan ke Antena Pemancar FM . 9. Untuk mengetahui kekuatan modulasi dan mengatur ketepatan antena, gunakan SWR Meter . 10. Untuk kabel antena gunakan kabel koaksial RG 58 atau RG 8 yang berimpedansi 50 ohm . merakit boster pemancar fm 50w.pdf
  •  
    50 Watt Fm verici yükseltici Devresi (Skema PCB Rangkaian Boster FM 50 Watt)
  •  
    50 Watt Fm verici yükseltici Devresi (Skema PCB Rangkaian Boster FM 50 Watt)
Ahmet UZUN

50 Watt Fm verici yükseltici Devresi (Skema PCB Rangkaian Boster FM 50 Watt) - 0 views

  • Orijinal görüntüsünü görmek için buraya tıklayın. 780x506 px. Daftar Komponen : TR1 ………………. SC1971. TR2 ………………. SC1964. C1, 4 ……………… 8 pF ( kondensator trimmer batu ). C2, 5 . ……………..10 pF ( Kondensator trimmer batu). C7, 8 ……………….20 pF ( Kondensator trimmer batu). C3, 6 ……………… 2200 mF/50 V. L1, 4, 7 …………. Diameter kawat 2mm Diameter inti udara 8mm . Jumlah lilitan= 3 lilit. L2, 5 …………… Diameter kawat 2mm Diameter inti udara 8mm Jumlah lilitan= 9 lilit . R1, 2 …………….. 100 ohm / 2 watt. L3, 6 …………….. Diameter kawat 0,4mm *.Catatan : Untuk R1, 2 dan L3, 6 dililitkan bersama . Cara merakitnya : 1. Kamu beli papan PCB polos di toko elektronik, lalu kamu lukis menggunakan spidol hitam hitam sesuai dengan gambar di atas kemudian rendam pada larutan feriClorida .Tunggu sampai bagian yang tidak terkena spidol hilang . 1. Kamu beli papan PCB polos di toko elektronik, lalu kamu lukis menggunakan spidol hitam hitam sesuai dengan gambar di atas kemudian rendam pada larutan feriClorida .Tunggu sampai bagian yang tidak terkena spidol hilang . 2. Setelah papan PCB sudah jadi, bersikan sisa tinta spidol dengan menggunakan kertas amplas halus kemudiaan libangilah pada bagian transistor( TR1, 2 ) membentuk kotak sesuai dengan bentuk transistor itu agar bisa menempel pada plat pendingin . 3. Pasanglah komponen-komponen pada tempatnya sesuai dengan gambar di atas, ingat kaki transistor jangan sampai terbalik . 4. Setelah semua komponen telah terpasang, sambungkan output dari pemancar 5 watt ke input Booster . 5. Di bagian output Booster, kamu pasang Dummy Load sebagai pengganti antena sekaligus untuk mengukur besaran daya keluaran dari Booster yang telah kamu rakit . 6. Sambungkan juga kabel tegangan DC 12V pada Booster, ingan jangan sampai terbalik kabel(+) dan (-) nya . 7. Untuk mengoptimalkan daya keluaran pada booster, lakukan penyetelan dengan mentrim kondensator trimmer (C1, 2, 4, 5, 7, 8 ) dan merenggangkan Lilitan( L1, 4, 7 ) sampai kamu mendapat daya keluaran yang maksimal . 8. Bila Daya keluran Booster sudah maksimal, kamu bisa mencobanya dengan menyambungkan ke Antena Pemancar FM . 9. Untuk mengetahui kekuatan modulasi dan mengatur ketepatan antena, gunakan SWR Meter . 10. Untuk kabel antena gunakan kabel koaksial RG 58 atau RG 8 yang berimpedansi 50 ohm . merakit boster pemancar fm 50w.pdf
  •  
    50 Watt Fm verici yükseltici Devresi (Skema PCB Rangkaian Boster FM 50 Watt)
1 - 12 of 12
Showing 20 items per page