A variety of methods have been developed over the past few decades to allow mapping of the functioning human brain. Two basic classes of mapping technique have evolved: those that map (or localise) the underlying electrical activity of the brain; and those that map local physiological or metabolic consequences of altered brain electrical activity. Among the former are the non-invasive neural electromagnetic techniques of electroencephalography (EEG) and magnetoencephalography (MEG). These methods allow exquisite temporal resolution of neural processes (typically over a 10–100 ms time scale), but suffer from poor spatial resolution (between 1 and several centimetres). Functional MRI (fMRI) methods are in the second category. They can be made sensitive to the changes in regional blood perfusion, blood volume (for example, using injected magnetic resonance contrast agents), or blood oxygenation that accompany neuronal activity. Blood oxygenation level dependent (BOLD) fMRI, which is sensitive primarily to the last of these variables, allows an image spatial resolution that is of the order of a few millimetres, with a temporal resolution of a few seconds (limited by the haemodynamic response itself). An accessible and more detailed introduction to the technique than is possible in this brief review is found in a recent book.1