Skip to main content

Home/ TOK Friends/ Group items tagged promotion

Rss Feed Group items tagged

11More

A Marketplace of Girl Influencers Managed by Moms and Stalked by Men - The New York Times - 0 views

  • Thousands of accounts examined by The Times offer disturbing insights into how social media is reshaping childhood, especially for girls, with direct parental encouragement and involvement.
  • Some parents are the driving force behind the sale of photos, exclusive chat sessions and even the girls’ worn leotards and cheer outfits to mostly unknown followers. The most devoted customers spend thousands of dollars nurturing the underage relationships.
  • The large audiences boosted by men can benefit the families, The Times found. The bigger followings look impressive to brands and bolster chances of getting discounts, products and other financial incentives, and the accounts themselves are rewarded by Instagram’s algorithm with greater visibility on the platform, which in turn attracts more followers.
  • ...8 more annotations...
  • One calculation performed by an audience demographics firm found 32 million connections to male followers among the 5,000 accounts examined by The Times.
  • Interacting with the men opens the door to abuse. Some flatter, bully and blackmail girls and their parents to get racier and racier images. The Times monitored separate exchanges on Telegram, the messaging app, where men openly fantasize about sexually abusing the children they follow on Instagram and extol the platform for making the images so readily available.
  • “It’s like a candy store
  • The troubling interactions on Instagram come as social media companies increasingly dominate the cultural landscape and the internet is seen as a career path of its own.
  • Nearly one in three preteens lists influencing as a career goal, and 11 percent of those born in Generation Z, between 1997 and 2012, describe themselves as influencers.
  • The so-called creator economy surpasses $250 billion worldwide, according to Goldman Sachs, with U.S. brands spending more than $5 billion a year on influencers.
  • Health and technology experts have recently cautioned that social media presents a “profound risk of harm” for girls. Constant comparisons to their peers and face-altering filters are driving negative feelings of self-worth and promoting objectification of their bodies, researchers found.
  • he pursuit of online fame, particularly through Instagram, has supercharged the often toxic phenomenon, The Times found, encouraging parents to commodify their children’s images. Some of the child influencers earn six-figure incomes, according to interviews.
20More

AlphaProof, a New A.I. from Google DeepMind, Scores Big at the International Math Olymp... - 0 views

  • Last week the DeepMind researchers got out the gong again to celebrate what Alex Davies, a lead of Google DeepMind’s mathematics initiative, described as a “massive breakthrough” in mathematical reasoning by an A.I. system.
  • A pair of Google DeepMind models tried their luck with the problem set in the 2024 International Mathematical Olympiad, or I.M.O., held from July 11 to July 22 about 100 miles west of London at the University of Bath.
  • The event is said to be the premier math competition for the world’s “brightest mathletes,” according to a promotional post on social media.
  • ...17 more annotations...
  • The human problem-solvers — 609 high school students from 108 countries — won 58 gold medals, 123 silver and 145 bronze. The A.I. performed at the level of a silver medalist, solving four out of six problems for a total of 28 points. It was the first time that A.I. has achieved a medal-worthy performance on an Olympiad’s problems.
  • Nonetheless, Dr. Kohli described the result as a “phase transition” — a transformative change — “in the use of A.I. in mathematics and the ability of A.I. systems to do mathematics.”
  • Dr. Gowers added in an email: “I was definitely impressed.” The lab had discussed its Olympiad ambitions with him a couple of weeks beforehand, so “my expectations were quite high,” he said. “But the program met them, and in one or two instances significantly surpassed them.” The program found the “magic keys” that unlocked the problems, he said.
  • Haojia Shi, a student from China, ranked No. 1 and was the only competitor to earn a perfect score — 42 points for six problems; each problem is worth seven points for a full solution. The U.S. team won first place with 192 points; China placed second with 190.
  • The Google system earned its 28 points for fully solving four problems — two in algebra, one in geometry and one in number theory. (It flopped at two combinatorics problems.) The system was allowed unlimited time; for some problems it took up to three days. The students were allotted only 4.5 hours per exam.
  • “The fact that we’ve reached this threshold, where it’s even possible to tackle these problems at all, is what represents a step-change in the history of mathematics,” he added. “And hopefully it’s not just a step-change in the I.M.O., but also represents the point at which we went from computers only being able to prove very, very simple things toward computers being able to prove things that humans can’t.”
  • “Mathematics requires this interesting combination of abstract, precise and creative reasoning,” Dr. Davies said. In part, he noted, this repertoire of abilities is what makes math a good litmus test for the ultimate goal: reaching so-called artificial general intelligence, or A.G.I., a system with capabilities ranging from emerging to competent to virtuoso to superhuman
  • In January, a Google DeepMind system named AlphaGeometry solved a sampling of Olympiad geometry problems at nearly the level of a human gold medalist. “AlphaGeometry 2 has now surpassed the gold medalists in solving I.M.O. problems,” Thang Luong, the principal investigator, said in an email.
  • Dr. Hubert’s team developed a new model that is comparable but more generalized. Named AlphaProof, it is designed to engage with a broad range of mathematical subjects. All told, AlphaGeometry and AlphaProof made use of a number of different A.I. technologies.
  • One approach was an informal reasoning system, expressed in natural language. This system leveraged Gemini, Google’s large language model. It used the English corpus of published problems and proofs and the like as training data.
  • The informal system excels at identifying patterns and suggesting what comes next; it is creative and talks about ideas in an understandable way. Of course, large language models are inclined to make things up — which may (or may not) fly for poetry and definitely not for math. But in this context, the L.L.M. seems to have displayed restraint; it wasn’t immune to hallucination, but the frequency was reduced.
  • Another approach was a formal reasoning system, based on logic and expressed in code. It used theorem prover and proof-assistant software called Lean, which guarantees that if the system says a proof is correct, then it is indeed correct. “We can exactly check that the proof is correct or not,” Dr. Hubert said. “Every step is guaranteed to be logically sound.”
  • Another crucial component was a reinforcement learning algorithm in the AlphaGo and AlphaZero lineage. This type of A.I. learns by itself and can scale indefinitely, said Dr. Silver, who is Google DeepMind’s vice-president of reinforcement learning. Since the algorithm doesn’t require a human teacher, it can “learn and keep learning and keep learning until ultimately it can solve the hardest problems that humans can solve,” he said. “And then maybe even one day go beyond those.”
  • Dr. Hubert added, “The system can rediscover knowledge for itself.” That’s what happened with AlphaZero: It started with zero knowledge, Dr. Hubert said, “and by just playing games, and seeing who wins and who loses, it could rediscover all the knowledge of chess. It took us less than a day to rediscover all the knowledge of chess, and about a week to rediscover all the knowledge of Go. So we thought, Let’s apply this to mathematics.”
  • Dr. Gowers doesn’t worry — too much — about the long-term consequences. “It is possible to imagine a state of affairs where mathematicians are basically left with nothing to do,” he said. “That would be the case if computers became better, and far faster, at everything that mathematicians currently do.”
  • “There still seems to be quite a long way to go before computers will be able to do research-level mathematics,” he added. “It’s a fairly safe bet that if Google DeepMind can solve at least some hard I.M.O. problems, then a useful research tool can’t be all that far away.”
  • A really adept tool might make mathematics accessible to more people, speed up the research process, nudge mathematicians outside the box. Eventually it might even pose novel ideas that resonate.
« First ‹ Previous 221 - 222 of 222
Showing 20 items per page