Skip to main content

Home/ Sensorica Knowledge/ Group items tagged activism

Rss Feed Group items tagged

Tiberius Brastaviceanu

Proposal - Food SFS-08-2014 - 1 views

  • development of more resource-efficient and sustainable food production and processing
  • competitive and innovative
    • Tiberius Brastaviceanu
       
      We are proposing collaborative ways, here the accent is put on competitive ways 
    • Tiberius Brastaviceanu
       
      We are proposing collaborative methods. Here, the accent is put on COMPETITIVE ways for a "sustainable circular economy"
  • ...29 more annotations...
  • reduction in water and energy use
  • gas emissions and waste generation
  • improving the efficiency
  • ensuring or improving shelf life, food safety and quality
  • competitive eco-innovative processes should be developed
  • sustainable circular economy
  • Intellectual Property (IP)
  • In phase 1, a feasibility study
  • technological/practical as well as economic viability of an innovation idea/concept with considerable novelty to the industry sector
  • to establish a solid high-potential innovation project
  • increase profitability of the enterprise through innovation
  • increase the return in investment in innovation activities
  • The proposal should contain an initial business plan based on the proposed idea/concept.
  • apply to phase 1 with a view to applying to phase 2 at a later date, or directly to phase 2.
  • EUR 50,000. Projects should last around 6 months
    • Tiberius Brastaviceanu
       
      Phase 1 has a classical language. We would need to mask our true identity and beliefs writing this grant proposal. I don't think it's for us... But this is only my opinion. 
  • In phase 2, innovation projects will be supported that address the specific challenge of Sustainable Food Security
  • demonstrate high potential in terms of company competitiveness and growth underpinned by a strategic business plan
    • Tiberius Brastaviceanu
       
      This is more about individual companies and their competitive advantage. Not about networks and not about collaboration and sharing. 
    • Tiberius Brastaviceanu
       
      Moreover, they put emphasis on IP protection and ownership, when we must talk about commons, knowledge commons applied to agriculture, sharing platforms, etc. 
  • Proposals shall be based on an elaborated business plan either developed through phase 1 or another means.
  • Particular attention must be paid to IP protection and ownership
  • Successful beneficiaries will be offered coaching and mentoring support during phase 1 and phase 2.
  • Enhancing profitability
  • competitive solutions
  • global business opportunities
  • sustainable
  • turnover
  • IP management
  • return on investment and profit
Tiberius Brastaviceanu

INFRASUPP-1-2014 - 0 views

  • Topic: Innovation support measures
  • Research infrastructures
  • have an innovation potential that has not always been sufficiently exploited in the past
  • ...9 more annotations...
  • enterprises (including SMEs) may not realise that they have the opportunity to benefit
  • due to a lack of awareness
  • industry may find entry barriers to this sector
  • There is therefore a need to stimulate innovation both from within the research infrastructures themselves and in their supplier industry
  • Development of a portal of calls, tenders and future needs and technology transfer opportunities in research infrastructures of pan European interest;
  • Networking of procurement professionals to encourage exchange of good practices across research infrastructure sectors;
  •   Awareness campaign towards industry (including SMEs) on the potential of research infrastructures for their activities in selected R&D areas;
  • As a first step a repository
  • The Commission expects to fund a single proposal under this heading.
  •  
    "Topic: Innovation support measures"
Kurt Laitner

Buddhist Economics: How to Stop Prioritizing Goods Over People and Consumption Over Cre... - 0 views

  •  
    Review of EF Schumacher's book "Small is Beautiful: Economics as if People Mattered" published in 1973, very relevant today
Kurt Laitner

Digital Reality | Edge.org - 0 views

  • When you snap the bricks together, you don't need a ruler to play Lego; the geometry comes from the parts
  • first attribute is metrology that comes from the parts
  • digitizing composites into little linked loops of carbon fiber instead of making giant pieces
  • ...75 more annotations...
  • In a 3D printer today, what you can make is limited by the size of the machine. The geometry is external
  • is the Lego tower is more accurate than the child because the constraint of assembling the bricks lets you detect and correct errors
  • That's the exponential scaling for working reliably with unreliable parts
  • Because the parts have a discrete state, it means in joining them you can detect and correct errors
  • detect and correct state to correct errors to get an exponential reduction in error, which gives you an exponential increase in complexity
  • The next one is you can join Lego bricks made out of dissimilar materials.
  • The last one is when you're done with Lego you don't put it in the trash; you take it apart and reuse it because there's state in the materials. In a forest there's no trash; you die and your parts get disassembled and you're made into new stuff. When you make a 3D print or laser cut, when you're done there's recycling attempts but there's no real notion of reusing the parts
  • The metrology coming from the parts, detecting and correcting errors, joining dissimilar materials, disconnecting, reusing the components
  • On the very smallest scale, the most exciting work on digital fabrication is the creation of life from scratch. The cell does everything we're talking about. We've had a great collaboration with the Venter Institute on microfluidic machinery to load designer genomes into cells. One step up from that we're developing tabletop chip fab instead of a billion dollar fab, using discrete assembly of blocks of electronic materials to build things like integrated circuits in a tabletop process
  • a child can make a Lego structure bigger than themself
  • There's a series of books by David Gingery on how to make a machine shop starting with charcoal and iron ore.
  • There are twenty amino acids. With those twenty amino acids you make the motors in the molecular muscles in my arm, you make the light sensors in my eye, you make my neural synapses. The way that works is the twenty amino acids don't encode light sensors, or motors. They’re very basic properties like hydrophobic or hydrophilic. With those twenty properties you can make you. In the same sense, digitizing fabrication in the deep sense means that with about twenty building blocks—conducting, insulating, semiconducting, magnetic, dielectric—you can assemble them to create modern technology
  • By discretizing those three parts we can make all those 500,000 resistors, and with a few more parts everything else.
  • Now, there's a casual sense, which means a computer controls something to make something, and then there's the deep sense, which is coding the materials. Intellectually, that difference is everything but now I'm going to explain why it doesn't matter.
  • Then in turn, the next surprise was they weren't there for research, they weren't there for theses, they wanted to make stuff. I taught additive, subtractive, 2D, 3D, form, function, circuits, programming, all of these skills, not to do the research but just using the existing machines today
  • What they were answering was the killer app for digital fabrication is personal fabrication, meaning, not making what you can buy at Walmart, it’s making what you can't buy in Walmart, making things for a market of one person
  • The minicomputer industry completely misread PCs
  • the Altair was life changing for people like me. It was the first computer you could own as an individual. But it was almost useless
  • It was hard to use but it brought the cost from a million dollars to 100,000 and the size from a warehouse down to a room. What that meant is a workgroup could have one. When a workgroup can have one it meant Ken Thompson and Dennis Ritchie at Bell Labs could invent UNIX—which all modern operating systems descend from—because they didn't have to get permission from a whole corporation to do it
  • At the PC stage what happened is graphics, storage, processing, IO, all of the subsystems got put in a box
  • To line that up with fabrication, MIT's 1952 NC Mill is similar to the million-dollar machines in my lab today. These are the mainframes of fab. You need a big organization to have them. The fab labs I'll tell you about are exactly analogous to the cost and complexity of minicomputers. The machines that make machines I'll tell you about are exactly analogous to the cost and complexity of the hobbyist computers. The research we're doing, which is leading up to the Star Trek Replicator, is what leads to the personal fabricator, which is the integrated unit that makes everything
  • conducting, resistive, insulating.
  • The fab lab is 2 tons, a $100,000 investment. It fills a few thousand square feet, 3D scanning and printing, precision machining, you can make circuit boards, molding and casting tooling, computer controlled cutting with a knife, with a laser, large format machining, composite layup, surface mount rework, sensors, actuators, embedded programming— technology to make technology.
  • Ten years you can just plot this doubling. Today, you can send a design to a fab lab and you need ten different machines to turn the data into something. Twenty years from now, all of that will be in one machine that fits in your pocket.
  • We've been living with this notion that making stuff is an illiberal art for commercial gain and it's not part of the means of expression. But, in fact, today, 3D printing, micromachining, and microcontroller programming are as expressive as painting paintings or writing sonnets but they're not means of expression from the Renaissance. We can finally fix that boundary between art and artisans
  • You don't go to a fab lab to get access to the machine; you go to the fab lab to make the machine.
  • Over the next maybe five years we'll be transitioning from buying machines to using machines to make machines. Self-reproducing machines
  • But they still have consumables like the motors, and they still cut or squirt. Then the interesting transition comes when we go from cutting or printing to assembling and disassembling, to moving to discretely assembled materials
  • because if anybody can make anything anywhere, it challenges everything
    • Kurt Laitner
       
      great quote (replace challenges with changes for effect)
  • Now, the biggest surprise for me in this is I thought the research was hard. It's leading to how to make the Star Trek Replicator. The insight now is that's an exercise in embodied computation—computation in materials, programming their construction. Lots of work to come, but we know what to do
  • And that's when you do tabletop chip fab or make airplanes. That's when technical trash goes away because you can disassemble. 
  • irritated by the maker movement for the failure in mentoring
  • At something like a Maker Faire, there's hall after hall of repeated reinventions of bad 3D printers and there isn't an easy process to take people from easy to hard
  • We started a project out of desperation because we kept failing to succeed in working with existing schools, called the Fab Academy. Now, to understand how that works, MIT is based on scarcity. You assume books are scarce, so you have to go there for the library; you assume tools are scarce, so you have to go there for the machines; you assume people are scarce, so you have to go there to see them; and geography is scarce. It adds up to we can fit a few thousand people at a time. For those few thousand people it works really well. But the planet is a few billion people. We're off by six orders of magnitude. 
  • Next year we're starting a new class with George Church that we've called "How to Grow Almost Anything", which is using fab labs to make bio labs and then teach biotech in it. What we're doing is we're making a new global kind of university
  • Amusingly, I went to my friends at Educause about accrediting the Fab Academy and they said, "We love it. Where are you located?" And I said, "Yes" and they said, "No." Meaning, "We're all over the earth." And they said, "We have no mechanism. We're not allowed to do that. There's no notion of global accreditation."
  • Then they said something really helpful: "Pretend."
  • Once you have a basic set of tools, you can make all the rest of the tools
  • The way the Fab Academy works, in computing terms, it's like the Internet. Students have peers in workgroups, with mentors, surrounded by machines in labs locally. Then we connect them globally by video and content sharing and all of that. It's an educational network. There are these critical masses of groups locally and then we connect them globally
  • You still have Microsoft or IBM now but, with all respect to colleagues there, arguably that's the least interesting part of software
  • To understand the economic and social implications, look at software and look at music to understand what's happening now for fabrication
  • There's a core set of skills a place like MIT can do but it alone doesn't scale to a billion people. This is taking the social engineering—the character of MIT—but now doing it on this global scale.
  • Mainframes didn't go away but what opened up is all these tiers of software development that weren't economically viable
  • If you look at music development, the most interesting stuff in music isn't the big labels, it's all the tiers of music that weren't viable before
  • You can make music for yourself, for one, ten, 100, 1,000, a million. If you look at the tracks on your device, music is now in tiers that weren't economically viable before. In that example it's a string of data and it becomes a sound. Now in digital fab, it's a string of data and it becomes a thing.
  • What is work? For the average person—not the people who write for Edge, but just an average person working—you leave home to go to a place you'd rather not be, doing a repetitive operation you'd rather not do, making something designed by somebody you don't know for somebody you'll never see, to get money to then go home and buy something. But what if you could skip that and just make the thing?
    • Kurt Laitner
       
      !!!
  • It took about ten years for the dot com industry to realize pretty much across the board you don't directly sell the thing. You sell the benefits of the thing
  • 2016 it's in Shenzhen because they're pivoting from mass manufacturing to enabling personal fabrication. We've set Shenzhen as the goal in 2016 for Fab Lab 2.0, which is fab labs making fab labs
  • To rewind now, you can send something to Shenzhen and mass manufacture it. There's a more interesting thing you can do, which is you go to market by shipping data and you produce it on demand locally, and so you produce it all around the world.
  • But their point was a lot of printers producing beautiful pages slowly scales if all the pages are different
  • In the same sense it scales to fabricate globally by doing it locally, not by shipping the products but shipping the data.
  • It doesn't replace mass manufacturing but mass manufacturing becomes the least interesting stuff where everybody needs the same thing. Instead, what you open up is all these tiers that weren't viable before
  • There, they consider IKEA the enemy because IKEA defines your taste. Far away they make furniture and flat pack it and send it to a big box store. Great design sense in Barcelona, but 50 percent youth unemployment. A whole generation can't work. Limited jobs. But ships come in from the harbor, you buy stuff in a big box store. And then after a while, trucks go off to a trash dump. They describe it as products in, trash out. Ships come in with products, trash goes out
    • Kurt Laitner
       
      worse actually.. the trash stays
  • The bits come and go, globally connected for knowledge, but the atoms stay in the city.
  • instead of working to get money to buy products made somewhere else, you can make them locally
    • Kurt Laitner
       
      this may solve greece's problem, walk away from debt, you can't buy other people's (country's) stuff anymore, so make it all yourself
  • The biggest tool is a ShotBot 4'x8'x1' NC mill, and you can make beautiful furniture with it. That's what furniture shops use
  • Anything IKEA makes you can make in a fab lab
  • it means you can make many of the things you consume directly rather than this very odd remote economic loop
  • the most interesting part of the DIY phone projects is if you're making a do-it-yourself phone, you can also start to make the things that the phones talk to. You can start to build your own telco providers where the users provide the network rather than spending lots of money on AT&T or whoever
  • Traditional manufacturing is exactly replaying the script of the computer companies saying, "That's a toy," and it's shining a light to say this creates entirely new economic activity. The new jobs don't come back to the old factories. The ability to make stuff on demand is creating entirely new jobs
  • To keep playing that forward, when I was in Barcelona for the meeting of all these labs hosted by the city architect and the city, the mayor, Xavier Trias, pushed a button that started a forty-year countdown to self-sufficiency. Not protectionism
  • I need high-torque efficient motors with integrated lead screws at low cost, custom-produced on demand. All sorts of the building blocks that let us do what I'm doing currently rest on a global supply chain including China's manufacturing agility
  • The short-term answer is you can't get rid of them because we need them in the supply chain. But the long-term answer is Shenzhen sees the future isn't mass producing for everybody. That's a transitional stage to producing locally
  • My description of MIT's core competence is it's a safe place for strange people
  • The real thing ultimately that's driving the fab labs ... the vacuum we filled is a technical one. The means to make stuff. Nobody was providing that. But in turn, the spaces become magnets. Everybody talks about innovation or knowledge economy, but then most things that label that strangle it. The labs become vehicles for bright inventive people who don't fit locally. You can think about the culture of MIT but on this global scale
  • My allegiance isn't to any one border, it's to the brainpower of the planet and this is building the infrastructure to scale to that brainpower
  • If you zoom from transistors to microcode to object code to a program, they don't look like each other. But if we take this room and go from city, state, country, it's hierarchical but you preserve geometry
  • Computation violates geometry unlike most anything else we do
  • The reason that's so important for the digital fabrication piece is once we build molecular assemblers to build arbitrary systems, you don't want to then paste a few lines of code in it. You need to overlay computation with geometry. It's leading to this complete do-over of computer science
  • If you take digital fab, plus the real sense of Internet of Things—not the garbled sense—plus the real future of computing aligning hardware and software, it all adds up to this ability to program reality
  • I run a giant video infrastructure and I have collaborators all over the world that I see more than many of my colleagues at MIT because we're all too busy on campus. The next Silicon Valley is a network, it's not a place. Invention happens in these networks.
  • When Edwin Land was kicked out of Polaroid, he made the Rowland Institute, which was making an ideal research institute with the best facilities and the best people and they could do whatever they want. But almost nothing came from it because there was no turnover of the gene pool, there was no evolutionary pressure.  
  • the wrong way to do research, which is to believe there's a privileged set of people that know more than anybody else and to create a barrier that inhibits communication from the inside to the outside
  • you need evolutionary pressure, you need traffic, you need to be forced to deal with people you don't think you need to encounter, and you need to recognize that to be disruptive it helps to know what people know
  • For me the hardest thing isn't the research. That's humming along nicely. It's that we're finding we have to build a completely new kind of social order and that social entrepreneurship—figuring out how you live, learn, work, play—is hard and there's a very small set of people who can do that kind of organizational creation.
    • Kurt Laitner
       
      our challenge in the OVN space
  •  
    what is heavy is local, what is light is global, and increasingly manufacturing is being recreated along this principle
sebastianklemm

Stay foundation Stuttgart - Stay Stiftung - 1 views

  •  
    What does the Stay Foundation do once the social enterprises have found each other? In the truest sense of the word development-aid.These local social enterprises lack the financial support to exploit their development potential. The team of the Stay Foundation in Stuttgart is sure that if funds are provided by industrial nations, which are then used for the expansion of existing social enterprises, it is development-aid on an equal footing. The challenge in Germany is therefore to attract companies and private individuals to invest in social enterprises in developing countries. In order to raise awareness of Africa and the local social enterprises which are active there, the team organises events for entrepreneurs, is present at events on the subject of Africa, informs private individuals about the foundation and its objectives, examines possibilities for funding and cooperation with the aim of supporting the remaining development in Africa.
Tiberius Brastaviceanu

The Fab Foundation - 0 views

  •  
    Explore if they are active on the social and cultural levels, as means to achieve higher dependency levels.
Tiberius Brastaviceanu

Humanitarian Makers - 0 views

  •  
    Website doesn't seem to be active since 2021.
Tiberius Brastaviceanu

The New Normal in Funding University Science | Issues in Science and Technology - 1 views

  • Government funding for academic research will remain limited, and competition for grants will remain high. Broad adjustments will be needed
  • he sequester simply makes acute a chronic condition that has been getting worse for years.
  • the federal budget sequester
  • ...72 more annotations...
  • systemic problems that arise from the R&D funding system and incentive structure that the federal government put in place after World War II
  • Researchers across the country encounter increasingly fierce competition for money.
  • unding rates in many National Institutes of Health (NIH) and National Science Foundation (NSF) programs are now at historical lows, declining from more than 30% before 2001 to 20% or even less in 2011
  • even the most prominent scientists will find it difficult to maintain funding for their laboratories, and young scientists seeking their first grant may become so overwhelmed that individuals of great promise will be driven from the field
  • anxiety and frustration
  • The growth of the scientific enterprise on university campuses during the past 60 years is not sustainable and has now reached a tipping point at which old models no longer work
  • Origins of the crisis
  • ederal funding agencies must work with universities to ensure that new models of funding do not stymie the progress of science in the United States
  • The demand for research money greatly exceeds the supply
  • the demand for research funding has gone up
  • The deeper sources of the problem lie in the incentive structure of the modern research university, the aspirations of scientists trained by those universities, and the aspirations of less research-intensive universities and colleges across the nation
  • competitive grants system
  • if a university wants to attract a significant amount of sponsored research money, it needs doctoral programs in the relevant fields and faculty members who are dedicated to both winning grants and training students
  • The production of science and engineering doctorates has grown apace
  • Even though not all doctorate recipients become university faculty, the size of the science and engineering faculty at U.S. universities has grown substantially
  • proposal pressure goes up
  • These strategies make sense for any individual university, but will fail collectively unless federal funding for R&D grows robustly enough to keep up with demand.
  • At the very time that universities were enjoying rapidly growing budgets, and creating modes of operation that assumed such largess was the new normal, Price warned that it would all soon come to a halt
  • the human and financial resources invested in science had been increasing much faster than the populations and economies of those regions
  • growth in the scientific enterprise would have to slow down at some point, growing no more than the population or the economy.
  • Dead-end solutions
  • studies sounded an alarm about the potential decline in U.S. global leadership in science and technology and the grave implications of that decline for economic growth and national security
  • Although we are not opposed to increasing federal funding for research, we are not optimistic that it will happen at anywhere near the rate the Academies seek, nor do we think it will have a large impact on funding rates
  • universities should not expect any radical increases in domestic R&D budgets, and most likely not in defense R&D budgets either, unless the discretionary budgets themselves grow rapidly. Those budgets are under pressure from political groups that want to shrink government spending and from the growth of spending in mandatory programs
  • The basic point is that the growth of the economy will drive increases in federal R&D spending, and any attempt to provide rapid or sustained increases beyond that growth will require taking money from other programs.
  • The demand for research money cannot grow faster than the economy forever and the growth curve for research money flattened out long ago.
  • Path out of crisis
  • The goal cannot be to convince the government to invest a higher proportion of its discretionary spending in research
  • Getting more is not in the cards, and some observers think the scientific community will be lucky to keep what it has
  • The potential to take advantage of the infrastructure and talent on university campuses may be a win-win situation for businesses and institutions of higher education.
  • Why should universities and colleges continue to support scientific research, knowing that the financial benefits are diminishing?
  • esearch culture
  • attract good students and faculty as well as raise their prestige
  • mission to expand the boundaries of human knowledge
  • faculty members are committed to their scholarship and will press on with their research programs even when external dollars are scarce
  • training
  • take place in
  • research laboratories
  • it is critical to have active research laboratories, not only in elite public and private research institutions, but in non-flagship public universities, a diverse set of private universities, and four-year colleges
  • How then do increasingly beleaguered institutions of higher education support the research efforts of the faculty, given the reality that federal grants are going to be few and far between for the majority of faculty members? What are the practical steps institutions can take?
  • change the current model of providing large startup packages when a faculty member is hired and then leaving it up to the faculty member to obtain funding for the remainder of his or her career
  • universities invest less in new faculty members and spread their internal research dollars across faculty members at all stages of their careers, from early to late.
    • Tiberius Brastaviceanu
       
      Sharing of resources, see SENSORICA's NRP
  • national conversation about changes in startup packages and by careful consultations with prospective faculty hires about long-term support of their research efforts
  • Many prospective hires may find smaller startup packages palatable, if they can be convinced that the smaller packages are coupled with an institutional commitment to ongoing research support and more reasonable expectations about winning grants.
  • Smaller startup packages mean that in many situations, new faculty members will not be able to establish a functioning stand-alone laboratory. Thus, space and equipment will need to be shared to a greater extent than has been true in the past.
  • construction of open laboratory spaces and the strategic development of well-equipped research centers capable of efficiently servicing the needs of an array of researchers
  • phaseout of the individual laboratory
  • enhanced opportunities for communication and networking among faculty members and their students
  • Collaborative proposals and the assembly of research teams that focus on more complex problems can arise relatively naturally as interactions among researchers are facilitated by proximity and the absence of walls between laboratories.
  • An increased emphasis on team research
  • investments in the research enterprise
  • can be directed at projects that have good buy-in from the faculty
  • learn how to work both as part of a team and independently
  • Involvement in multiple projects should be encouraged
  • The more likely trajectory of a junior faculty member will evolve from contributing team member to increasing leadership responsibilities to team leader
  • nternal evaluations of contributions and potential will become more important in tenure and promotion decisions.
    • Tiberius Brastaviceanu
       
      Need value accounting system
  • relationships with foundations, donors, state agencies, and private business will become increasingly important in the funding game
  • The opportunities to form partnerships with business are especially intriguing
    • Tiberius Brastaviceanu
       
      The problem is to change the model and go open source, because IP stifles other processes that might benefit Universities!!!
  • Further complicating university collaborations with business is that past examples of such partnerships have not always been easy or free of controversy.
  • some faculty members worried about firms dictating the research priorities of the university, pulling graduate students into proprietary research (which could limit what they could publish), and generally tugging the relevant faculty in multiple directions.
  • developed rules and guidelines to control them
  • University faculty and businesspeople often do not understand each other’s cultures, needs, and constraints, and such gaps can lead to more mundane problems in university/industry relations, not least of which are organizational demands and institutional cultures
    • Tiberius Brastaviceanu
       
      Needs for mechanisms to govern, coordinate, structure an ecosystem -See SENSORICA's Open Alliance model
  • n addition to funding for research, universities can receive indirect benefits from such relationships. High-profile partnerships with businesses will underline the important role that universities can play in the economic development of a region.
  • Universities have to see firms as more than just deep pockets, and firms need to see universities as more than sources of cheap skilled labor.
  • foundations or other philanthropy
  • We do not believe that research proposed and supervised by individual principal investigators will disappear anytime soon. It is a research model that has proven to be remarkably successful and enduring
  • However, we believe that the most vibrant scientific communities on university and college campuses, and the ones most likely to thrive in the new reality of funding for the sciences, will be those that encourage the formation of research teams and are nimble with regard to funding sources, even as they leave room for traditional avenues of funding and research.
mayssamd

Operating system - PREMIUM COLLECTIVE - 4 views

  •  
    Unfortunately this organization seems to be dead or sleeping. Twitter activity stopped in 2001, Facebook page is not loading and the Wiki front page has been last updated in 2017 I PROPOSE TO DELETE THE "IoPA" TAG = taking this out of the IoPA collection but keeping it on Diigo for other purposes.
Tiberius Brastaviceanu

Beyond Blockchain: Simple Scalable Cryptocurrencies - The World of Deep Wealth - Medium - 0 views

  • I clarify the core elements of cryptocurrency and outline a different approach to designing such currencies rooted in biomimicry
  • This post outlines a completely different strategy for implementing cryptocurrencies with completely distributed chains
  • Rather than trying to make one global, anonymous, digital cash
  • ...95 more annotations...
  • we are interested in the resilience that comes from building a rich ecosystem of interoperable currencies
  • What are the core elements of a modern cryptocurrency?
  • Digital
  • Holdings are electronic and only exist and operate by virtue of a community’s agreement about how to interpret digital bits according to rules about operation and accounting of the currency.
  • Trustless
  • don’t have to trust a 3rd party central authority
  • Decentralized
  • Specifically, access, issuance, transaction accounting, rules & policies, should be collectively visible, known, and held.
  • Cryptographic
  • This cryptographic structure is used to enable a variety of people to host the data without being able to alter it.
  • Identity
  • there must be a way to associate these bits with some kind of account, wallet, owner, or agent who can use them
  • Other things that many take for granted in blockchains may not be core but subject to decisions in design and implementation, so they can vary between implementations
  • It does not have to be stored in a synchronized global ledger
  • does not have to be money. It may be a reputation currency, or data used for identity, or naming, etc
  • Its units do not have to be cryptographic tokens or coins
  • It does not have to protect the anonymity of users, although it may
  • if you think currency is only money, and that money must be artificially scarce
  • Then you must tackle the problem of always tracking which coins exist, and which have been spent. That is one approach — the one blockchain takes.
  • You might optimize for anonymity if you think of cryptocurrency as a tool to escape governments, regulations, and taxes.
  • if you want to establish and manage membership in new kinds of commons, then identity and accountability for actions may turn out to be necessary ingredients instead of anonymity.
  • In the case of the MetaCurrency Project, we are trying to support many use cases by building tools to enable a rich ecosystem of communities and current-sees (many are non-monetary) to enhance collective intelligence at all scales.
  • Managing consensus about a shared reality is a central challenge at the heart of all distributed computing solutions.
  • If we want to democratize money by having cryptocurrencies become a significant and viable means of transacting on a daily basis, I believe we need fundamentally more scalable approaches that don’t require expensive, dedicated hardware just to participate.
  • We should not need system wide consensus for two people to do a transaction in a cryptocurrency
  • Blockchain is about managing a consensus about what was “said.” Ceptr is about distributing a consensus about how to “speak.”
  • how nature gets the job done in massively scalable systems which require coordination and consistency
  • Replicate the same processes across all nodes
  • Empower every node with full agency
  • Hold this transformed state locally and reliably
  • Establish protocols for interaction
  • Each speaker of a language carries the processes to understand sentences they hear, and generate sentences they need
  • we certainly don’t carry some kind of global ledger of everything that’s ever been said, or require consensus about what has been said
  • Language IS a communication protocol we learn by emulating the processes of usage.
  • Dictionaries try to catch up when the usage
  • there is certainly no global ledger with consensus about the state of trillions of cells. Yet, from a single zygote’s copy of DNA, our cells coordinate in a highly decentralized manner, on scales of trillions, and without the latency or bottlenecks of central control.
  • Imagine something along the lines of a Java Virtual Machine connected to a distributed version of Github
  • Every time this JVM runs a program it confirms the hash of the code it is about to execute with the hash signed into the code repository by its developers
  • This allows each node that intends to be honest to be sure that they’re running the same processes as everyone else. So when two parties want to do a transaction, and each can have confidence their own code, and the results that your code produces
  • Then you treat it as authoritative and commit it to your local cryptographically self-validating data store
  • Allowing each node to treat itself as a full authority to process transactions (or interactions via shared protocols) is exactly how you empower each node with full agency. Each node runs its copy of the signed program/processes on its own virtual machine, taking the transaction request combined with the transaction chains of the parties to the transaction. Each node can confirm their counterparty’s integrity by replaying their transactions to produce their current state, while confirming signatures and integrity of the chain
  • If both nodes are in an appropriate state which allows the current transaction, then they countersign the transaction and append to their respective chains. When you encounter a corrupted or dishonest node (as evidenced by a breach of integrity of their chain — passing through an invalid state, broken signatures, or broken links), your node can reject the transaction you were starting to process. Countersigning allows consensus at the appropriate scale of the decision (two people transacting in this case) to lock data into a tamper-proof state so it can be stored in as many parallel chains as you need.
  • When your node appends a mutually validated and signed transaction to its chain, it has updated its local state and is able to represent the integrity of its data locally. As long as each transaction (link in the chain) has valid linkages and countersignatures, we can know that it hasn’t been tampered with.
  • If you can reliably embody the state of the node in the node itself using Intrinsic Data Integrity, then all nodes can interact in parallel, independent of other interactions to maximize scalability and simultaneous processing. Either the node has the credits or it doesn’t. I don’t have to refer to a global ledger to find out, the state of the node is in the countersigned, tamper-proof chain.
  • Just like any meaningful communication, a protocol needs to be established to make sure that a transaction carries all the information needed for each node to run the processes and produce a new signed and chained state. This could be debits or credits to an account which modify the balance, or recoding courses and grades to a transcript which modify a Grade Point Average, or ratings and feedback contributing to a reputation score, and so on.
  • By distributing process at the foundation, and leveraging Intrinsic Data Integrity, our approach results in massive improvements in throughput (from parallel simultaneous independent processing), speed, latency, efficiency, and cost of hardware.
  • You also don’t need to incent people to hold their own record — they already want it.
  • Another noteworthy observation about humans, cells, and atoms, is that each has a general “container” that gets configured to a specific use.
  • Likewise, the Receptors we’ve built are a general purpose framework which can load code for different distributed applications. These Receptors are a lightweight processing container for the Ceptr Virtual Machine Host
  • Ceptr enables a developer to focus on the rules and transactions for their use case instead of building a whole framework for distributed applications.
  • how units in a currency are issued
  • Most people think that money is just money, but there are literally hundreds of decisions you can make in designing a currency to target particular needs, niches, communities or patterns of flow.
  • Blockchain cryptocurrencies are fiat currencies. They create tokens or coins from nothing
  • These coins are just “spoken into being”
  • the challenging task of
  • ensure there is no counterfeiting or double-spending
  • Blockchain cryptocurrencies are fiat currencies
  • These coins are just “spoken into being”
  • the challenging task of tracking all the coins that exist to ensure there is no counterfeiting or double-spending
  • You wouldn’t need to manage consensus about whether a cryptocoin is spent, if your system created accounts which have normal balances based on summing their transactions.
  • In a mutual credit system, units of currency are issued when a participant extends credit to another user in a standard spending transaction
  • Alice pays Bob 20 credits for a haircut. Alice’s account now has -20, and Bob’s has +20.
  • Alice spent credits she didn’t have! True
  • Managing the currency supply in a mutual credit system is about managing credit limits — how far people can spend into a negative balance
  • Notice the net number units in the system remains zero
  • One elegant approach to managing mutual credit limits is to set them based on actual demand.
  • concerns about manufacturing fake accounts to game credit limits (Sybil Attacks)
  • keep in mind there can be different classes of accounts. Easy to create, anonymous accounts may get NO credit limit
  • What if I alter my code to give myself an unlimited credit limit, then spend as much as I want? As soon as you pass the credit limit encoded in the shared agreements, the next person you transact with will discover you’re in an invalid state and refuse the transaction.
  • If two people collude to commit an illegal transaction by both hacking their code to allow a normally invalid state, the same still pattern still holds. The next person they try to transact with using untampered code will detect the problem and decline to transact.
  • Most modern community currency systems have been implemented as mutual credit,
  • Hawala is a network of merchants and businessmen, which has been operating since the middle ages, performing money transfers on an honor system and typically settling balances through merchandise instead of transferring money
  • Let’s look at building a minimum viable cryptocurrency with the hawala network as our use case
  • To minimize key management infrastructure, each hawaladar’s public key is their address or identity on the network. To join the network you get a copy of the software from another hawaladar, generate your public and private keys, and complete your personal profile (name, location, contact info, etc.). You call, fax, or email at least 10 hawaladars who know you, and give them your IP address and ask them to vouch for you.
  • Once 10 other hawaladars have vouched for you, you can start doing other transactions because the protocol encoded in every node will reject a transaction chain that doesn’t start with at least 10 vouches
  • seeding your information with those other peers so you can be found by the rest of the network.
  • As described in the Mutual Credit section, at the time of transaction each party audits the counterparty’s transaction chain.
  • Our hawala crypto-clearinghouse protocol has two categories of transactions: some used for accounting and others for routing. Accounting transactions change balances. Routing transactions maintain network integrity by recording information about hawaladar
  • Accounting Transactions create signed data that changes account balances and contains these fields:
  • The final hash of all of the above fields is used as a unique transaction ID and is what each of party signs with their private keys. Signing indicates a party has agreed to the terms of the transaction. Only transactions signed by both parties are considered valid. Nodes can verify signatures by confirming that decryption of the signature using the public key yields a result which matches the transaction ID.
  • Routing Transactions sign data that changes the peers list and contain these fields:
  • As with accounting transactions, the hash of the above fields is used as the transaction’s unique key and the basis for the cryptographic signature of both counterparties.
  • Remember, instead of making changes to account balances, routing transactions change a node’s local list of peers for finding each other and processing.
  • a distributed network of mutual trust
  • operates across national boundaries
  • everyone already keeps and trusts their own separate records
  • Hawaladars are not anonymous
  • “double-spending”
  • It would be possible for someone to hack the code on their node to “forget” their most recent transaction (drop the head of their chain), and go back to their previous version of the chain before that transaction. Then they could append a new transaction, drop it, and append again.
  • After both parties have signed the agreed upon transaction, each party submits the transaction to separate notaries. Notaries are a special class of participant who validate transactions (auditing each chain, ensuring nobody passes through an invalid state), and then they sign an outer envelope which includes the signatures of the two parties. Notaries agree to run high-availability servers which collectively manage a Distributed Hash Table (DHT) servicing requests for transaction information. As their incentive for providing this infrastructure, notaries get a small transaction fee.
  • This approach introduces a few more steps and delays to the transaction process, but because it operates on independent parallel chains, it is still orders of magnitude more efficient and decentralized than reaching consensus on entries in a global ledger
  • millions of simultaneous transactions could be getting processed by other parties and notaries with no bottlenecks.
  • There are other solutions to prevent nodes from dropping the head of their transaction chain, but the approach of having notaries serve out a DHT solves a number of common objections to completely distributed accounting. Having access to reliable lookups in a DHT provides a similar big picture view that you get from a global ledger. For example, you may want a way to look up transactions even when the parties to that transaction are offline, or to be able to see the net system balance at a particular moment in time, or identify patterns of activity in the larger system without having to collect data from everyone individually.
  • By leveraging Intrinsic Data Integrity to run numerous parallel tamper-proof chains you can enable nodes to do various P2P transactions which don’t actually require group consensus. Mutual credit is a great way to implement cryptocurrencies to run in this peered manner. Basic PKI with a DHT is enough additional infrastructure to address main vulnerabilities. You can optimize your solution architecture by reserving reserve consensus work for tasks which need to guarantee uniqueness or actually involve large scale agreement by humans or automated contracts.
  • It is not only possible, but far more scalable to build cryptocurrencies without a global ledger consensus approach or cryptographic tokens.
  •  
    Article written by Arthur Brook, founder of Metacurrency project and of Ceptr.
Tiberius Brastaviceanu

James Grier Miller, Living Systems (1978) - 0 views

  • reality as an integrated hierarchy of organizations of matter and energy
  • General living systems theory is concerned with a special subset of all systems, the living ones
  • a space is a set of elements which conform to certain postulate
  • ...266 more annotations...
  • s. Euclidean space
  • metric space
  • topological space
  • Physical space is the extension surrounding a point
  • My presentation of a general theory of living systems will employ two sorts of spaces in which they may exist, physical or geographical space and conceptual or abstracted spaces
  • Physical or geographical space
  • Euclidean space
  • distance
  • moving
  • maximum speed
  • objects moving in such space cannot pass through one another
  • friction
  • The characteristics and constraints of physical space affect the action of all concrete systems, living and nonliving.
  • information can flow worldwide almost instantly
  • Physical space is a common space
  • Most people learn that physical space exists, which is not true of many spaces
  • They can give the location of objects in it
  • Conceptual or abstracted spaces
  • Peck order
  • Social class space
  • Social distance
  • Political distance
  • life space
  • semantic space
  • Sociometric space
  • A space of time costs of various modes of transportation
  • space of frequency of trade relations among nations.
  • A space of frequency of intermarriage among ethnic groups.
  • These conceptual and abstracted spaces do not have the same characteristics and are not subject to the same constraints as physical space
  • Social and some biological scientists find conceptual or abstracted spaces useful because they recognize that physical space is not a major determinant of certain processes in the living systems they study
  • interpersonal relations
  • one cannot measure comparable processes at different levels of systems, to confirm or disconfirm cross-level hypotheses, unless one can measure different levels of systems or dimensions in the same spaces or in different spaces with known transformations among them
  • It must be possible, moreover, to make such measurements precisely enough to demonstrate whether or not there is a formal identity across levels
  • fundamental "fourth dimension" of the physical space-time continuum
  • is the particular instant at which a structure exists or a process occurs
  • or the measured or measurable period over which a structure endures or a process continues.
  • durations
  • speeds
  • rates
  • accelerations
  • irreversible unidirectionality of time
  • thermodynamics
  • negentropy
  • "time's arrow."
  • Matter and energy
  • Matter is anything which has mass (m) and occupies physical space.
  • Energy (E) is defined in physics as the ability to do work.
  • kinetic energy
  • potential energy
  • rest mass energy
  • Mass and energy are equivalent
  • Living systems need specific types of matter-energy in adequate amounts
  • Energy for the processes of living systems is derived from the breakdown of molecules
  • Any change of state of matter-energy or its movement over space, from one point to another, I shall call action.
  • It is one form of process.
  • information (H)
  • Transmission of Information
  • Meaning is the significance of information to a system which processes it: it constitutes a change in that system's processes elicited by the information, often resulting from associations made to it on previous experience with it
  • Information is a simpler concept: the degrees of freedom that exist in a given situation to choose among signals, symbols, messages, or patterns to be transmitted.
  • The set of all these possible categories (the alphabet) is called the ensemble or repertoire
  • .) The unit is the binary digit, or bit of information
  • . The amount of information is measured as the logarithm to the base 2 of the number of alternate patterns
  • Signals convey information to the receiving system only if they do not duplicate information already in the receiver. As Gabor says:
  • [The information of a message can] be defined as the 'minimum number of binary decisions which enable the receiver to construct the message, on the basis of the data already available to him.'
  • meaning cannot be precisely measured
  • Information is the negative of uncertainty.
  • information is the amount of formal patterning or complexity in any system.
  • The term marker was used by von Neumann to refer to those observable bundles, units, or changes of matter-energy whose patterning bears or conveys the informational symbols from the ensemble or repertoire.
  • If a marker can assume n different states of which only one is present at any given time, it can represent at most log2n bits of information. The marker may be static, as in a book or in a computer's memory
  • Communication of almost every sort requires that the marker move in space, from the transmitting system to the receiving system, and this movement follows the same physical laws as the movement of any other sort of matter-energy. The advance of communication technology over the years has been in the direction of decreasing the matter-energy costs of storing and transmitting the markers which bear information.
  • There are, therefore, important practical matter-energy constraints upon the information processing of all living systems exerted by the nature of the matter-energy which composes their markers.
  • organization is based upon the interrelations among parts.
  • If two parts are interrelated either quantitatively or qualitatively, knowledge of the state of one must yield some information about the state of the other. Information measures can demonstrate when such relationships exist
  • The disorder, disorganization, lack of patterning, or randomness of organization of a system is known as its entropy (S)
  • the statistical measure for the negative of entropy is the same as that for information
  • entropy becomes a measure of the probability
  • Increase of entropy was thus interpreted as the passage of a system from less probable to more probable states.
  • according to the second law, a system tends to increase in entropy over time, it must tend to decrease in negentropy or information.
  • therefore no principle of the conservation of information
  • The total information can be decreased in any system without increasing it elsewhere
  • but it cannot be increased without decreasing it elsewhere
  • . Making one or more copies of a given informational pattern does not increase information overall, though it may increase the information in the system which receives the copied information.
  • transforms information into negative entropy
  • smallest possible amount of energy used in observing one bit of information
  • calculations of the amount of information accumulated by living systems throughout growth.
  • the concept of Prigogine that in an open system (that is one in which both matter and energy can be exchanged with the environment) the rate of entropy production within the system, which is always positive, is minimized when the system is in a steady state.
  • in systems with internal feedbacks, internal entropy production is not always minimized when the system is in a stationary state. In other words, feedback couplings between the system parameters may cause marked changes in the rate of development of entropy. Thus it may be concluded that the "information flow" which is essential for this feedback markedly alters energy utilization and the rate of development of entropy, at least in some such special cases which involve feedback control. While the explanation of this is not clear, it suggests an important relationship between information and entropy
  • amount of energy actually required to transmit the information in the channel is a minute part of the total energy in the system, the "housekeeping energy" being by far the largest part of it
  • In recent years systems theorists have been fascinated by the new ways to study and measure information flows, but matter-energy flows are equally important. Systems theory is more than information theory, since it must also deal with energetics - such matters as
  • the flow of raw materials through societies
  • Only a minute fraction of the energy used by most living systems is employed for information processing
  • I have noted above that the movement of matter-energy over space, action, is one form of process. Another form of process is information processing or communication, which is the change of information from one state to another or its movement from one point to another over space
  • Communications, while being processed, are often shifted from one matter-energy state to another, from one sort of marker to another
  • transformations go on in living systems
  • One basic reason why communication is of fundamental importance is that informational patterns can be processed over space and the local matter-energy at the receiving point can be organized to conform to, or comply with, this information
  • the delivery of "flowers by telegraph."
  • Matter-energy and information always flow together
  • Information is always borne on a marker
  • . Conversely there is no regular movement in a system unless there is a difference in potential between two points, which is negative entropy or information
  • If the receiver responds primarily to the material or energic aspect, I shall call it, for brevity, a matter-energy transmission; if the response is primarily to the information, I shall call it an information transmission
  • Moreover, just as living systems must have specific forms of matter-energy, so they must have specific patterns of information
  • example
  • example
  • develop normally
  • have appropriate information inputs in infancy
  • pairs of antonyms
  • one member of which is associated with the concept of information (H)
  • the other member of which is associated with its negative, entropy (S)
  • System
  • A system is a set of interacting units with relationships among them
  • .The word "set" implies that the units have some common properties. These common properties are essential if the units are to interact or have relationships. The state of each unit is constrained by, conditioned by, or dependent on the state of other units. The units are coupled. Moreover, there is at least one measure of the sum of its units which is larger than the sum of that measure of its units.
  • Conceptual system
  • Units
  • terms
  • Relationships
  • a set of pairs of units, each pair being ordered in a similar way
  • expressed by words
  • or by logical or mathematical symbols
  • operations
  • The conceptual systems of science
  • observer
  • selects
  • particular sets to study
  • Variable
  • Each member of such a set becomes a variable of the observer's conceptual system
  • conceptual system may be loose or precise, simple or elaborate
  • Indicator
  • an instrument or technique used to measure fluctuations of variables in concrete systems
  • Function
  • a correspondence between two variables, x and y, such that for each value of x there is a definite value of y, and no two y's have the same x, and this correspondence is: determined by some rule
  • Any function is a simple conceptual system
  • Parameter
  • An independent variable through functions of which other functions may be expressed
  • The state of a conceptual system
  • the set of values on some scale, numerical or otherwise, which its variables have at a given instant
  • Formal identity
  • variables
  • varies comparably to a variable in another system
  • If these comparable variations are so similar that they can be expressed by the same function, a formal identity exists between the two systems
  • Relationships between conceptual and other sorts of systems
  • Science advances as the formal identity or isomorphism increases between a theoretical conceptual system and objective findings about concrete or abstracted systems
  • A conceptual system may be purely logical or mathematical, or its terms and relationships may be intended to have some sort of formal identity or isomorphism with units and relationships empirically determinable by some operation carried out by an observer
  • Concrete system
  • a nonrandom accumulation of matter-energy, in a region in physical space-time, which is organized into interacting interrelated subsystems or components.
  • Units
  • are also concrete systems
  • Relationships
  • spatial
  • temporal
  • spatiotemporal
  • causal
  • Both units and relationships in concrete systems are empirically determinable by some operation carried out by an observer
  • patterns of relationships or processes
  • The observer of a concrete system
  • distinguishes a concrete system from unorganized entities in its environment by the following criteria
  • physical proximity of its units
  • similarity of its units
  • common fate of its units
  • distinct or recognizable patterning of its units.
  • Their boundaries are discovered by empirical operations available to the general scientific community rather than set conceptually by a single observer
  • Variable of a concrete system
  • Any property of a unit or relationship within a system which can be recognized by an observer
  • which can potentially change over time, and whose change can potentially be measured by specific operations, is a variable of a concrete system
  • Examples
  • number of its subsystems or components, its size, its rate of movement in space, its rate of growth, the number of bits of information it can process per second, or the intensity of a sound to which it responds
  • A variable is intrasystemic
  • not to be confused with intersystemic variations which may be observed among individual systems, types, or levels.
  • The state of a concrete system
  • its structure
  • represented by the set of values on some scale which its variables have at that instant
  • Open system
  • Most concrete systems have boundaries which are at least partially permeable, permitting sizable magnitudes of at least certain sorts of matter-energy or information transmissions to pass them. Such a system is an open system. In open systems entropy may increase, remain in steady state, or decrease.
  • Closed system
  • impermeable boundaries through which no matter-energy or information transmissions of any sort can occur is a closed system
  • special case
  • No actual concrete system is completely closed
  • In closed systems, entropy generally increases, exceptions being when certain reversible processes are carried on which do not increase it. It can never decrease.
  • Nonliving system
  • the general case of concrete systems, of which living systems are a very special case. Nonliving systems need not have the same critical subsystems as living systems, though they often have some of them
  • Living system
  • a special subset of the set of all possible concrete systems
  • They all have the following characteristics:
  • open systems
  • inputs
  • throughputs
  • outputs
  • of various sorts of matter-energy and information.
  • maintain a steady state of negentropy even though entropic changes occur in them as they do everywhere else
  • by taking in inputs
  • higher in complexity or organization or negentropy
  • than their outputs
  • The difference permits them to restore their own energy and repair breakdowns in their own organized structure.
  • In living systems many substances are produced as well as broken down
  • To do this such systems must be open and have continual inputs of matter-energy and information
  • entropy will always increase in walled-off living systems
  • They have more than a certain minimum degree of complexity
  • They either contain genetic material composed of deoxyribonucleic acid (DNA)
  • or have a charter
  • blueprint
  • program
  • of their structure and process from the moment of their origin
  • may also include nonliving components.
  • They have a decider, the essential critical sub-system which controls the entire system, causing its subsystems and components to interact. Without such interaction under decider control there is no system.
  • other specific critical sub-systems or they have symbiotic or parasitic relationships with other living or nonliving systems
  • Their subsystems are integrated together to form actively self-regulating, developing, unitary systems with purposes and goals
  • They can exist only in a certain environment
  • change in their environment
  • produces stresses
  • Totipotential system
  • capable of carrying out all critical subsystem processes necessary for life is totipotential
  • Partipotential system
  • does not itself carry out all critical subsystem processes is partipotential
  • A partipotential system must interact with other systems that can carry out the processes which it does not, or it will not survive
  • parasitic
  • symbiotic
    • Tiberius Brastaviceanu
       
      The Exchange fime is a symbiotic system to SENSORICA
  • Fully functioning system
  • when it
  • Partially functioning system
  • it must do its own deciding, or it is not a system
  • Abstracted system
  • Units
  • relationships abstracted or selected by an observer in the light of his interests, theoretical viewpoint, or philosophical bias.
  • Some relationships may be empirically determinable by some operation carried out by the observer, but others are not, being only his concepts
  • Relationships
  • The relationships mentioned above are observed to inhere and interact in concrete, usually living, systems
  • these concrete systems are the relationships of abstracted systems.
  • The verbal usages of theoretical statements concerning abstracted systems are often the reverse of those concerning concrete systems
  • An abstracted system differs from an abstraction, which is a concept
  • representing a class of phenomena all of which are considered to have some similar "class characteristic." The members of such a class are not thought to interact or be interrelated, as are the relationships in an abstracted system
  • Abstracted systems are much more common in social science theory than in natural science.
  • are oriented toward relationships rather than toward the concrete systems
  • spatial arrangements are not usually emphasized
  • their physical limits often do not coincide spatially with the boundaries of any concrete system, although they may.
  • important difference between the physical and biological hierarchies, on the one hand, and social hierarchies, on the other
  • Most physical and biological hierarchies are described in spatial terms
  • we propose to identify social hierarchies not by observing who lives close to whom but by observing who interacts with whom
  • intensity of interaction
  • in most biological and physical systems relatively intense interaction implies relative spatial propinquity
  • To the extent that interactions are channeled through specialized communications and transportation systems, spatial propinquity becomes less determinative of structure.
    • Tiberius Brastaviceanu
       
      This is the case of SENSORICA, built on web-based communication and coordination tools. 
  • PARSONS
  • the unit of a partial social system is a role and not the individual.
  • culture
  • cumulative body of knowledge of the past, contained in memories and assumptions of people who express this knowledge in definite ways
  • The social system is the actual habitual network of communication between people.
  • RUESCH
  • A social system is a behavioral system
  • It is an organized set of behaviors of persons interacting with each other: a pattern of roles.
  • The roles are the units of a social system
    • Tiberius Brastaviceanu
       
      That is why we need a role system in SENSORICA
  • On the other hand, the society is an aggregate of social subsystems, and as a limiting case it is that social system which comprises all the roles of all the individuals who participate.
  • What Ruesch calls the social system is something concrete in space-time, observable and presumably measurable by techniques like those of natural science
  • To Parsons the system is abstracted from this, being the set of relationships which are the form of organization. To him the important units are classes of input-output relationships of subsystems rather than the subsystems themselves
  • system is a system of relationship in action, it is neither a physical organism nor an object of physical perception
  • evolution
  • differentiation
  • growth
  • from earlier and simpler forms and functions
  • capacities for specializations and gradients
  • [action] is not concerned with the internal structure of processes of the organism, but is concerned with the organism as a unit in a set of relationships and the other terms of that relationship, which he calls situation
  • Abstracted versus concrete systems
  • One fundamental distinction between abstracted and concrete systems is that the boundaries of abstracted systems may at times be conceptually established at regions which cut through the units and relationships in the physical space occupied by concrete systems, but the boundaries of these latter systems are always set at regions which include within them all the units and internal relationships of each system
  • A science of abstracted systems certainly is possible and under some conditions may be useful.
  • If the diverse fields of science are to be unified, it would be helpful if all disciplines were oriented either to concrete or to abstracted systems.
  • It is of paramount importance for scientists to distinguish clearly between them
Tiberius Brastaviceanu

Innovation Is About Arguing, Not Brainstorming. Here's How To Argue Productively - 0 views

  • Science shows that brainstorms can activate a neurological fear of rejection and that groups are not necessarily more creative than individuals.
  • To innovate, we need environments that support imaginative thinking, where we can go through many crazy, tangential, and even bad ideas to come up with good ones.
  • work both collaboratively and individually
  • ...20 more annotations...
  • healthy amount of heated discussion, even arguing.
  • not feel so judged
  • become defensive and shut down
  • deliberative discourse
  • “Argue. Discuss. Argue. Discuss.”
  • It refers to participative and collaborative (but not critique-free) communication.
  • Multiple positions and views are expressed with a shared understanding that everyone is focused on a common goal. There is no hierarchy. It’s not debate because there are no opposing sides trying to “win.” Rather, it’s about working together to solve a problem and create new ideas.
  • Here are five key rules of engagement that we’ve found to yield fruitful sessions and ultimately lead to meaningful ideas.
  • creating a space where everyone can truly contribute.
  • “Yes, AND”
  • “no, BECAUSE.”
  • if you’re going to say no, you better be able to say why.
    • Tiberius Brastaviceanu
       
      inter-subjectivity as a criteria for objectivity  
  • We conduct ethnographic research to inform our intuition, so we can understand people’s needs, problems, and values.
  • accountable to something other than our own opinions, and it means we can push back on colleagues’ ideas without getting personal.
  • We curate teams to create diversity
  • bring different ways of looking at the world and solving problems to the table.
  • Argument is productive for us because everyone knows that we’re working toward a shared goal.
  • The statement of purpose establishes the rules: It reminds us that we are working together to move the ball down the field. As much as we may argue and disagree, anything that happens in the room counts toward our shared goal. This enables us to argue and discuss without hurting one another.
  • Deliberative discourse is a form of play, and for play to yield great ideas, we have to take it seriously.
Tiberius Brastaviceanu

Smart key - Wikipedia - 0 views

  • Keyless Go
  • The system works by having a series of LF (low frequency 125 kHz) transmitting antennas both inside and outside the vehicle. The external antennas are located in the door handles. When the vehicle is triggered, either by pulling the handle or touching the handle, an LF signal is transmitted from the antennas to the key. The key becomes activated if it is sufficiently close and it transmits its ID back to the vehicle via RF (Radio frequency >300 MHz) to a receiver located in the vehicle. If the key has the correct ID, the PASE module unlocks the vehicle.
  • transmitting low frequency LF signals via the 125 kHz power amplifier block receiving radio frequency RF signals (> 300 MHz) from the built-in ISM receiver block encrypting and decrypting all relevant data signals (security) communicating relevant interface signals with other electronic control units microcontroller
Kurt Laitner

Towards a Material Commons | Guerrilla Translation! - 0 views

  • the modes of communication we use are very tightly coupled with the modes of production that finance them
  • I’m focused on the policy formation around this transition to a new, open knowledge and commons-based economy, and that’s the research work I’m doing here
  • The problem is I can only make a living by still working for capital.
  • ...88 more annotations...
  • We now have a technology which allows us to globally scale small group dynamics, and to create huge productive communities, self-organized around the collaborative production of knowledge, code, and design. But the key issue is that we are not able to live from that, right
  • A lot of co-ops have been neo-liberalizing, as it were, have become competitive enterprises competing against other companies but also against other co-ops, and they don’t share their knowledge
  • We cannot create our own livelihood within that sphere
  • instead of having a totally open commons, which allows multinationals to use our commons and reinforce the system of capital, the idea is to keep the accumulation within the sphere of the commons.
  • The result would be a type of open cooperative-ism, a kind of synthesis or convergence between peer production and cooperative modes of production
  • then the material work, the work of working for clients and making a livelihood, would be done through co-ops
  • But it hasn’t had much of a direct connection to this emerging commons movement, which shares so many of the values and  principles of the traditional cooperative movement.
  • There’s also a lot of peer-to-peer work going on, but it’s not very well versed around issues like cooperative organization, formal or legal forms of ownership, which are based on reciprocity and cooperation, and how to interpret the commons vision with a structure, an organizational structure and a legal structure that actually gives it economic power, market influence, and a means of connecting it to organizational forms that have durability over the long-term.
  • The young people, the developers in open source or free software, the people who are in co-working centers, hacker spaces, maker spaces. When they are thinking of making a living, they think startups
  • They have a kind of generic reaction, “oh, let’s do a startup”, and then they look for venture funds. But this is a very dangerous path to take
  • Typically, the venture capital will ask for a controlling stake, they have the right to close down your start up whenever they feel like it, when they feel that they’re not going to make enough money
  • Don’t forget that with venture capital, only 1 out of 10 companies will actually make it, and they may be very rich, but it’s a winner-take-all system
  • we don’t have what Marx used to call social reproduction
  • I would like John to talk about the solidarity co-ops, and how that integrates the notion of the commons or the common good in the very structure of the co-op
  • They don’t have a commons of design or code, they privatize and patent, just like private competitive enterprise, their knowledge
  • Cooperatives, which are basically a democratic and collective form of enterprise where members have control rights and democratically direct the operations of the co-op, have been the primary stakeholders in any given co-op – whether it’s a consumer co-op, or a credit union, or a worker co-op.
  • Primarily, the co-op is in the service of its immediate members
  • What was really fascinating about the social co-ops was that, although they had members, their mission was not only to serve the members but also to provide service to the broader community
  • In the city of Bologna, for example, over 87% of the social services provided in that city are provided through contract with social co-ops
  • democratically run
  • much more participatory, and a much more engaged model
  • The difference, however, is that the structure of social co-ops is still very much around control rights, in other words, members have rights of control and decision-making within how that organization operates
  • And it is an incorporated legal structure that has formal recognition by the legislation of government of the state, and it has the power, through this incorporated power, to negotiate with and contract with government for the provision of these public services
  • In Québec they’re called Solidarity co-ops
  • So, the social economy, meaning organizations that have a mutual aim in their purpose, based on the principles of reciprocity, collective benefit, social benefit, is emerging as an important player for the design and delivery of public services
  • This, too, is in reaction to the failure of the public market for provision of services like affordable housing or health care or education services
  • This is a crisis in the role of the state as a provider of public services. So the question has emerged: what happens when the state fails to provide or fulfill its mandate as a provider or steward of public goods and services, and what’s the role of civil society and the social economy in response?
  • we have commonses of knowledge, code and design. They’re more easily created, because as a knowledge worker, if you have access to the network and some means, however meager, of subsistence, through effort and connection you can actually create knowledge. However, this is not the case if you move to direct physical production, like the open hardware movement
  • I originally encountered Michel after seeing some talks by Benkler and Lessig at the Wizard of OS 4, in 2006, and I wrote an essay criticizing that from a materialist perspective, it was called “The creative anti-commons and the poverty of networks”, playing on the terms that both those people used.
  • In hardware, we don’t see that, because you need to buy material, machines, plastic, metal.
  • Some people have called the open hardware community a “candy” economy, because if you’re not part of these open hardware startups, you’re basically not getting anything for your efforts
  • democratic foundations like the Apache foundation
  • They conceive of peer production, especially Benkler, as being something inherently immaterial, a form of production that can only exist in the production of immaterial wealth
  • From my materialist point of view, that’s not a mode of production, because a mode of production must, in the first place, reproduce its productive inputs, its capital, its labor, and whatever natural wealth it consumes
  • From a materialist point of view, it becomes  obvious that the entire exchange value produced in these immaterial forms would be captured by the same old owners of materialist wealth
  • different definition of peer production
  • independent producers collectively sharing a commons of productive assets
  • I wanted to create something like a protocol for the formation and allocation of physical goods, the same way we have TCP/IP and so forth, as a way to allocate immaterial goods
  • share and distribute and collectively create immaterial wealth, and become independent producers based on this collective commons.
  • One was the Georgist idea of using rent, economic rent, as a fundamental mutualizing source of wealth
  • Mutualizing unearned income
  • So, the unearned income, the portion of income derived from ownership of productive assets is evenly distributed
  • This protocol would seek to normalize that, but in a way that doesn’t require administration
  • typical statist communist reaction to the cooperative movement is saying that cooperatives can exclude and exploit one another
  • But then, as we’ve seen in history, there’s something that develops called an administrative class,  which governs over the collective of cooperatives or the socialist state, and can become just as counterproductive and often exploitive as capitalist class
  • So, how do we create cooperation among cooperatives, and distribution of wealth among cooperatives, without creating this administrative class?
  • This is why I borrowed from the work of Henry George and Silvio Gesell in created this idea of rent sharing.
  • This is not done administratively, this is simply done as a protocol
  • The idea is that if a cooperative wants an asset, like, an example is if one of the communes would like to have a tractor, then essentially the central commune is like a bond market. They float a bond, they say I want a tractor, I am willing to pay $200 a month for this tractor in rent, and other members of the cooperative can say, hey, yeah, that’s a good idea,we think that’s a really good allocation of these productive assets, so we are going to buy these bonds. The bond sale clears, the person gets the tractor, the money from the rent of the tractor goes back to clear the bonds, and  after that, whatever further money is collected through the rent on this tractor – and I don’t only mean tractors, same would be applied to buildings, to land, to any other productive assets – all this rent that’s collected is then distributed equally among all of the workers.
  • The idea is that people earn income not only by producing things, but by owning the means of production, owning productive assets, and our society is unequal because the distribution of productive assets is unequal
  • This means that if you use your exact per capita share of property, no more no less than what you pay in rent and what you received in social dividend, will be equal
  • But if you’re not working at that time, because you’re old, or otherwise unemployed, then obviously the the productive assets that you will be using will be much less than the mean and the median, so what you’ll receive as dividend will be much more than what you pay in rent, essentially providing a basic income
  • venture communism doesn’t seek to control the product of the cooperatives
  • It doesn’t seek to limit, control, or even tell them how they should distribute it, or under what means; what they produce is entirely theirs, it’s only the collective management of the commons of productive assets
  • On paper this would seem to work, but the problem is that this assumes that we have capital to allocate in this way, and that is not the case for most of the world workers
  • how do we get to that stage?
  • other two being counter politics and insurrectionary finance
  • do we express our activism through the state, or do we try to achieve our goals by creating the alternative society outside
  • pre-figurative politics, versus statist politics
  • My materialist background tells me that when you sell your labor on the market, you have nothing more than your subsistence costs at the end of it, so where is this wealth meant to come from
  • I believe that the only reason that we have any extra wealth beyond subsistence is because of organized social political struggle; because we have organized in labor movements, in the co-op movement, and in other social forms
  • To create the space for prefiguring presupposes engagement with the state, and struggle within parliaments, and struggle within the public social forum
  • Instead, we should think that no, we must engage in the state in order to protect our ability to have alternative societies
  • We can only get rid of the state in these areas once we have alternative, distributed, cooperative means to provide those same functions
  • We can only eliminate the state from these areas once they actually exist, which means we actually have to build them
  • What I mean by insurrectionary finance is that we have to acknowledge that it’s not only forming capital and distributing capital, it’s also important how intensively we use capital
  • I’m not proposing that the cooperative movement needs to engage in the kind of derivative speculative madness that led to the financial crisis, but at the same time we can’t… it can’t be earn a dollar, spend a dollar
  • We have to find ways to create liquidity
  • to deal with economic cycles
  • they did things the organized left hasn’t been able to do, which is takeover industrial means of production
  • if they can take over these industrial facilities, just in order to shut them down and asset strip them, why can’t we take them over and mutualize them?
  • more ironic once you understand that the source of investment that Milken and his colleagues were working with were largely workers pension funds
  • idea of venture communism
  • pooling, based on the capture of unearned income
  • in Québec, there is a particular form of co-op that’s been developed that allows small or medium producers to pool their capital to purchase machinery and to use it jointly
  • The other idea I liked was trying to minimize a management class
  • much more lean and accountable because they are accountable to boards of directors that represent the interests of the members
  • I’ve run into this repeatedly among social change activists who immediately recoil at the notion of thinking about markets and capital, as part of their change agenda
  • I had thought previously, like so many, that economics is basically a bought discipline, and that it serves the interests of existing elites. I really had a kind of reaction against that
  • complete rethinking of economics
  • recapture the initiative around vocabulary, and vision, with respect to economics
  • reimagining and reinterpreting, for a popular and common good, the notion of market and capital
  • advocating for a vision of social change that isn’t just about politics, and isn’t just about protest, it has to be around how do we reimagine and reclaim economics
  • markets actually belong to communities and people
  • capital wasn’t just an accumulated wealth for the rich
  • I think what we’re potentially  talking about here is to make the social economy hyper-productive, hyper-competitive, hyper-cooperative
  • The paradox is that capital already knows this. Capital is investing in these peer production projects
  • Part of the proposal of the FLOK society project in Ecuador will be to get that strategic reorganization to make the social economy strategic
  •  
    A lot of really interesting points of discussion in here.
Kurt Laitner

Forget the Foundations - In These Times - 0 views

  • Their “actions” didn’t involve writing grant proposals, discussing their concerns with a board of directors or contacting state agencies. They tested water samples themselves, and, in 1979, produced a study revealing high levels of radioactive contamination, a high percentage of pregnancies complicated by excessive bleeding or terminated in abortion and large numbers of children born with birth defects. Despite their work, the Centers for Disease Control and Indian Health Services discredited the study, and WARN wasn’t vindicated until the South Dakota School of Mines substantiated their claims that same year.
  • But unlike Erin Brockovich, this tale of local activists fighting against faceless institutions doesn’t have a happy ending: The Nuclear Regulatory Commission simply raised the level of “acceptable contamination,” and Indian Health Services started providing bottled water in one area. Congress authorized a new water pipeline to the reservation in 2002–only to have the funding diverted by the financial demands of the wars in Iraq and Afghanistan.
  • who defer responsibility onto do-nothing organizations, only later to complain about their lack of agency
  • ...12 more annotations...
  • that foundations perpetuate First World interests and free-market capitalism, thus preserving many of the problems radical activists wish to eradicate, such as the unregulated concentration of wealth.
  • Foundations were created in the early 20th century by multimillionaire robber barons, such as John D. Rockefeller and Andrew Carnegie, to evade corporate and estate taxes.
  • foundations divert money away from the collective tax base
  • who are more interested in supporting milquetoast reformers than social-justice organizations
  • federal and state funding for education and healthcare has shrunk
  • This is a culture of noblesse oblige, Ahn writes, where the “privileged are obliged to help those less fortunate, without examining how that wealth was created or the dangerous implications of conceding such power to the wealthy.”
  • is the power those with money wield over community leaders.
  • consequently realigning their interests (i.e., maintaining their jobs) with maintaining the system
  • This allegiance keeps community leaders from challenging the root causes of social inequities–the social-change work–at the same time that they pedal to keep up by providing for the needs of individuals devastated by institutional exploitation.
  • Kivel concedes this is valuable work, but points out the inherent injustice of this paradigm: “When temporary shelter becomes a substitute for permanent housing, emergency food a substitute for a decent job … we have shifted our attention from the redistribution of wealth to the temporary provision of social services to keep people alive.”
  • University of Southern California Professor Ruth Wilson Gilmore urges contemporary grassroots activists to stop seeking a “pure way of doing things.” “Many are looking for an organizational structure and a resource capability that will somehow be impervious to co-optation,”
  • transitioning from foundation support to a volunteer collective reliant solely on grassroots dollars
sebastianklemm

FAO - Food and Agriculture Organization of the United Nations - 0 views

  •  
    The Food and Agriculture Organization (FAO) is a specialized agency of the United Nations that leads international efforts to defeat hunger. Our goal is to achieve food security for all and make sure that people have regular access to enough high-quality food to lead active, healthy lives. With over 194 member states, FAO works in over 130 countries worldwide. We believe that everyone can play a part in ending hunger. Join us in creating a #ZeroHunger world.
Tiberius Brastaviceanu

Open Collaboration - The Next Economic Paradigm - 0 views

  • we’re in the midst of a collapsing paradigm
  • to be replaced by something new
  • I will explain what the new paradigm
  • ...40 more annotations...
  • business
  • government
  • education
  • research
  • The old economic paradigm was a service economy built on the digital communications revolution that began in the early 1970′s.
  • financial capital has decoupled from productive capital
  • financial meltdown
  • major societal institutions have stalled
  • the funding models
  • no longer work properly
  • The new model is the Open Collaboration Paradigm
  • we will see a radical departure from old institutional models.
  • social capital is increasingly recognized
  • generating wealth for society
  • This will be a profoundly social economy, built on unprecedented capabilities to self-organize people and resources in the crowd.
  • Social media
  • connect ideas, people, and institutions
  • blur the inside/outside distinctions
  • Network connections
  • radical transparency will be the new norm
  • Another profound shift will occur in the realm of ownership
  • No longer
  • viable
  • to horde intellectual property
  •  Collaborative consumption will arise as a more robust business paradigm,
  • risk is distributed
  • implications for business
  •  Those who can leverage the wisdom of crowds for market research, product development, and efficient resource allocation will be more adept and agile in the face of rapid change.
  • Those who build walls around themselves will fail to tap into the flow of knowledge and resources running rampant in the crowd
  • governments will have to become more transparent and responsive to their citizens
  • information becomes more immersive and dynamic
  • Research has already begun to use open collaboration that goes beyond the halls of academia.
  • collaborative approach to research will become the norm,
  • The era of “user generated content” and “prosumption” — where consumers of goods and services co-create what they will consume — is now a decade along in its evolution.  We will increasingly see collaborative design and production of consumables across society.
  • In the education arena, we will see more curricula as shareware and an increased emphasis on multi-perspective teamwork as the necessary skills for engaging in collaborative projects.
  • Expert/amateur boundaries have already blurred to the point where individuals can acquire graduate-level knowledge through self-directed learning on the internet.
  • distance learning
  •  Lifetime learning
  • active pedagogy
  • So get ready for the new economic paradigm.
Tiberius Brastaviceanu

opscientia/desci - 0 views

  •  
    "We are actively building the software stack for empowering citizen science communities."
mayssamd

oomlout - 2 views

  •  
    Not sure if still active
« First ‹ Previous 41 - 60 of 62 Next ›
Showing 20 items per page