Skip to main content

Home/ Sensorica Knowledge/ Group items tagged Digital

Rss Feed Group items tagged

84More

Digital Reality | Edge.org - 0 views

  • When you snap the bricks together, you don't need a ruler to play Lego; the geometry comes from the parts
  • first attribute is metrology that comes from the parts
  • digitizing composites into little linked loops of carbon fiber instead of making giant pieces
  • ...75 more annotations...
  • In a 3D printer today, what you can make is limited by the size of the machine. The geometry is external
  • is the Lego tower is more accurate than the child because the constraint of assembling the bricks lets you detect and correct errors
  • That's the exponential scaling for working reliably with unreliable parts
  • Because the parts have a discrete state, it means in joining them you can detect and correct errors
  • detect and correct state to correct errors to get an exponential reduction in error, which gives you an exponential increase in complexity
  • The next one is you can join Lego bricks made out of dissimilar materials.
  • The last one is when you're done with Lego you don't put it in the trash; you take it apart and reuse it because there's state in the materials. In a forest there's no trash; you die and your parts get disassembled and you're made into new stuff. When you make a 3D print or laser cut, when you're done there's recycling attempts but there's no real notion of reusing the parts
  • The metrology coming from the parts, detecting and correcting errors, joining dissimilar materials, disconnecting, reusing the components
  • On the very smallest scale, the most exciting work on digital fabrication is the creation of life from scratch. The cell does everything we're talking about. We've had a great collaboration with the Venter Institute on microfluidic machinery to load designer genomes into cells. One step up from that we're developing tabletop chip fab instead of a billion dollar fab, using discrete assembly of blocks of electronic materials to build things like integrated circuits in a tabletop process
  • a child can make a Lego structure bigger than themself
  • There's a series of books by David Gingery on how to make a machine shop starting with charcoal and iron ore.
  • There are twenty amino acids. With those twenty amino acids you make the motors in the molecular muscles in my arm, you make the light sensors in my eye, you make my neural synapses. The way that works is the twenty amino acids don't encode light sensors, or motors. They’re very basic properties like hydrophobic or hydrophilic. With those twenty properties you can make you. In the same sense, digitizing fabrication in the deep sense means that with about twenty building blocks—conducting, insulating, semiconducting, magnetic, dielectric—you can assemble them to create modern technology
  • By discretizing those three parts we can make all those 500,000 resistors, and with a few more parts everything else.
  • Now, there's a casual sense, which means a computer controls something to make something, and then there's the deep sense, which is coding the materials. Intellectually, that difference is everything but now I'm going to explain why it doesn't matter.
  • Then in turn, the next surprise was they weren't there for research, they weren't there for theses, they wanted to make stuff. I taught additive, subtractive, 2D, 3D, form, function, circuits, programming, all of these skills, not to do the research but just using the existing machines today
  • What they were answering was the killer app for digital fabrication is personal fabrication, meaning, not making what you can buy at Walmart, it’s making what you can't buy in Walmart, making things for a market of one person
  • The minicomputer industry completely misread PCs
  • the Altair was life changing for people like me. It was the first computer you could own as an individual. But it was almost useless
  • It was hard to use but it brought the cost from a million dollars to 100,000 and the size from a warehouse down to a room. What that meant is a workgroup could have one. When a workgroup can have one it meant Ken Thompson and Dennis Ritchie at Bell Labs could invent UNIX—which all modern operating systems descend from—because they didn't have to get permission from a whole corporation to do it
  • At the PC stage what happened is graphics, storage, processing, IO, all of the subsystems got put in a box
  • To line that up with fabrication, MIT's 1952 NC Mill is similar to the million-dollar machines in my lab today. These are the mainframes of fab. You need a big organization to have them. The fab labs I'll tell you about are exactly analogous to the cost and complexity of minicomputers. The machines that make machines I'll tell you about are exactly analogous to the cost and complexity of the hobbyist computers. The research we're doing, which is leading up to the Star Trek Replicator, is what leads to the personal fabricator, which is the integrated unit that makes everything
  • conducting, resistive, insulating.
  • The fab lab is 2 tons, a $100,000 investment. It fills a few thousand square feet, 3D scanning and printing, precision machining, you can make circuit boards, molding and casting tooling, computer controlled cutting with a knife, with a laser, large format machining, composite layup, surface mount rework, sensors, actuators, embedded programming— technology to make technology.
  • Ten years you can just plot this doubling. Today, you can send a design to a fab lab and you need ten different machines to turn the data into something. Twenty years from now, all of that will be in one machine that fits in your pocket.
  • We've been living with this notion that making stuff is an illiberal art for commercial gain and it's not part of the means of expression. But, in fact, today, 3D printing, micromachining, and microcontroller programming are as expressive as painting paintings or writing sonnets but they're not means of expression from the Renaissance. We can finally fix that boundary between art and artisans
  • You don't go to a fab lab to get access to the machine; you go to the fab lab to make the machine.
  • Over the next maybe five years we'll be transitioning from buying machines to using machines to make machines. Self-reproducing machines
  • But they still have consumables like the motors, and they still cut or squirt. Then the interesting transition comes when we go from cutting or printing to assembling and disassembling, to moving to discretely assembled materials
  • because if anybody can make anything anywhere, it challenges everything
    • Kurt Laitner
       
      great quote (replace challenges with changes for effect)
  • Now, the biggest surprise for me in this is I thought the research was hard. It's leading to how to make the Star Trek Replicator. The insight now is that's an exercise in embodied computation—computation in materials, programming their construction. Lots of work to come, but we know what to do
  • And that's when you do tabletop chip fab or make airplanes. That's when technical trash goes away because you can disassemble. 
  • irritated by the maker movement for the failure in mentoring
  • At something like a Maker Faire, there's hall after hall of repeated reinventions of bad 3D printers and there isn't an easy process to take people from easy to hard
  • We started a project out of desperation because we kept failing to succeed in working with existing schools, called the Fab Academy. Now, to understand how that works, MIT is based on scarcity. You assume books are scarce, so you have to go there for the library; you assume tools are scarce, so you have to go there for the machines; you assume people are scarce, so you have to go there to see them; and geography is scarce. It adds up to we can fit a few thousand people at a time. For those few thousand people it works really well. But the planet is a few billion people. We're off by six orders of magnitude. 
  • Next year we're starting a new class with George Church that we've called "How to Grow Almost Anything", which is using fab labs to make bio labs and then teach biotech in it. What we're doing is we're making a new global kind of university
  • Amusingly, I went to my friends at Educause about accrediting the Fab Academy and they said, "We love it. Where are you located?" And I said, "Yes" and they said, "No." Meaning, "We're all over the earth." And they said, "We have no mechanism. We're not allowed to do that. There's no notion of global accreditation."
  • Then they said something really helpful: "Pretend."
  • Once you have a basic set of tools, you can make all the rest of the tools
  • The way the Fab Academy works, in computing terms, it's like the Internet. Students have peers in workgroups, with mentors, surrounded by machines in labs locally. Then we connect them globally by video and content sharing and all of that. It's an educational network. There are these critical masses of groups locally and then we connect them globally
  • You still have Microsoft or IBM now but, with all respect to colleagues there, arguably that's the least interesting part of software
  • To understand the economic and social implications, look at software and look at music to understand what's happening now for fabrication
  • There's a core set of skills a place like MIT can do but it alone doesn't scale to a billion people. This is taking the social engineering—the character of MIT—but now doing it on this global scale.
  • Mainframes didn't go away but what opened up is all these tiers of software development that weren't economically viable
  • If you look at music development, the most interesting stuff in music isn't the big labels, it's all the tiers of music that weren't viable before
  • You can make music for yourself, for one, ten, 100, 1,000, a million. If you look at the tracks on your device, music is now in tiers that weren't economically viable before. In that example it's a string of data and it becomes a sound. Now in digital fab, it's a string of data and it becomes a thing.
  • What is work? For the average person—not the people who write for Edge, but just an average person working—you leave home to go to a place you'd rather not be, doing a repetitive operation you'd rather not do, making something designed by somebody you don't know for somebody you'll never see, to get money to then go home and buy something. But what if you could skip that and just make the thing?
    • Kurt Laitner
       
      !!!
  • It took about ten years for the dot com industry to realize pretty much across the board you don't directly sell the thing. You sell the benefits of the thing
  • 2016 it's in Shenzhen because they're pivoting from mass manufacturing to enabling personal fabrication. We've set Shenzhen as the goal in 2016 for Fab Lab 2.0, which is fab labs making fab labs
  • To rewind now, you can send something to Shenzhen and mass manufacture it. There's a more interesting thing you can do, which is you go to market by shipping data and you produce it on demand locally, and so you produce it all around the world.
  • But their point was a lot of printers producing beautiful pages slowly scales if all the pages are different
  • In the same sense it scales to fabricate globally by doing it locally, not by shipping the products but shipping the data.
  • It doesn't replace mass manufacturing but mass manufacturing becomes the least interesting stuff where everybody needs the same thing. Instead, what you open up is all these tiers that weren't viable before
  • There, they consider IKEA the enemy because IKEA defines your taste. Far away they make furniture and flat pack it and send it to a big box store. Great design sense in Barcelona, but 50 percent youth unemployment. A whole generation can't work. Limited jobs. But ships come in from the harbor, you buy stuff in a big box store. And then after a while, trucks go off to a trash dump. They describe it as products in, trash out. Ships come in with products, trash goes out
    • Kurt Laitner
       
      worse actually.. the trash stays
  • The bits come and go, globally connected for knowledge, but the atoms stay in the city.
  • instead of working to get money to buy products made somewhere else, you can make them locally
    • Kurt Laitner
       
      this may solve greece's problem, walk away from debt, you can't buy other people's (country's) stuff anymore, so make it all yourself
  • The biggest tool is a ShotBot 4'x8'x1' NC mill, and you can make beautiful furniture with it. That's what furniture shops use
  • Anything IKEA makes you can make in a fab lab
  • it means you can make many of the things you consume directly rather than this very odd remote economic loop
  • the most interesting part of the DIY phone projects is if you're making a do-it-yourself phone, you can also start to make the things that the phones talk to. You can start to build your own telco providers where the users provide the network rather than spending lots of money on AT&T or whoever
  • Traditional manufacturing is exactly replaying the script of the computer companies saying, "That's a toy," and it's shining a light to say this creates entirely new economic activity. The new jobs don't come back to the old factories. The ability to make stuff on demand is creating entirely new jobs
  • To keep playing that forward, when I was in Barcelona for the meeting of all these labs hosted by the city architect and the city, the mayor, Xavier Trias, pushed a button that started a forty-year countdown to self-sufficiency. Not protectionism
  • I need high-torque efficient motors with integrated lead screws at low cost, custom-produced on demand. All sorts of the building blocks that let us do what I'm doing currently rest on a global supply chain including China's manufacturing agility
  • The short-term answer is you can't get rid of them because we need them in the supply chain. But the long-term answer is Shenzhen sees the future isn't mass producing for everybody. That's a transitional stage to producing locally
  • My description of MIT's core competence is it's a safe place for strange people
  • The real thing ultimately that's driving the fab labs ... the vacuum we filled is a technical one. The means to make stuff. Nobody was providing that. But in turn, the spaces become magnets. Everybody talks about innovation or knowledge economy, but then most things that label that strangle it. The labs become vehicles for bright inventive people who don't fit locally. You can think about the culture of MIT but on this global scale
  • My allegiance isn't to any one border, it's to the brainpower of the planet and this is building the infrastructure to scale to that brainpower
  • If you zoom from transistors to microcode to object code to a program, they don't look like each other. But if we take this room and go from city, state, country, it's hierarchical but you preserve geometry
  • Computation violates geometry unlike most anything else we do
  • The reason that's so important for the digital fabrication piece is once we build molecular assemblers to build arbitrary systems, you don't want to then paste a few lines of code in it. You need to overlay computation with geometry. It's leading to this complete do-over of computer science
  • If you take digital fab, plus the real sense of Internet of Things—not the garbled sense—plus the real future of computing aligning hardware and software, it all adds up to this ability to program reality
  • I run a giant video infrastructure and I have collaborators all over the world that I see more than many of my colleagues at MIT because we're all too busy on campus. The next Silicon Valley is a network, it's not a place. Invention happens in these networks.
  • When Edwin Land was kicked out of Polaroid, he made the Rowland Institute, which was making an ideal research institute with the best facilities and the best people and they could do whatever they want. But almost nothing came from it because there was no turnover of the gene pool, there was no evolutionary pressure.  
  • the wrong way to do research, which is to believe there's a privileged set of people that know more than anybody else and to create a barrier that inhibits communication from the inside to the outside
  • you need evolutionary pressure, you need traffic, you need to be forced to deal with people you don't think you need to encounter, and you need to recognize that to be disruptive it helps to know what people know
  • For me the hardest thing isn't the research. That's humming along nicely. It's that we're finding we have to build a completely new kind of social order and that social entrepreneurship—figuring out how you live, learn, work, play—is hard and there's a very small set of people who can do that kind of organizational creation.
    • Kurt Laitner
       
      our challenge in the OVN space
  •  
    what is heavy is local, what is light is global, and increasingly manufacturing is being recreated along this principle
80More

Smart Contracts - 0 views

  • Whether enforced by a government, or otherwise, the contract is the basic building block of a free market economy.
  • A smart contract is a set of promises, specified in digital form, including protocols within which the parties perform on the other promises.
  • The basic idea of smart contracts is that many kinds of contractual clauses (such as liens, bonding, delineation of property rights, etc.) can be embedded in the hardware and software we deal with, in such a way as to make breach of contract expensive (if desired, sometimes prohibitively so) for the breacher.
  • ...77 more annotations...
  • A broad statement of the key idea of smart contracts, then, is to say that contracts should be embedded in the world.
  • And where the vending machine, like electronic mail, implements an asynchronous protocol between the vending company and the customer, some smart contracts entail multiple synchronous steps between two or more parties
  • POS (Point of Sale)
  • EDI (Electronic Data Interchange
  • SWIFT
  • allocation of public network bandwidth via automated auctions
  • Smart contracts reference that property in a dynamic, proactively enforced form, and provide much better observation and verification where proactive measures must fall short.
  • The mechanisms of the world should be structured in such a way as to make the contracts (a) robust against naive vandalism, and (b) robust against sophisticated, incentive compatible (rational) breach.
  • A third category, (c) sophisticated vandalism (where the vandals can and are willing to sacrifice substantial resources), for example a military attack by third parties, is of a special and difficult kind that doesn't often arise in typical contracting, so that we can place it in a separate category and ignore it here.
  • The threat of physical force is an obvious way to embed a contract in the world -- have a judicial system decide what physical steps are to be taken out by an enforcement agency (including arrest, confiscation of property, etc.) in response to a breach of contract
  • It is what I call a reactive form of security.
  • The need to invoke reactive security can be minimized, but not eliminated, by making contractual arrangements verifiable
  • Observation of a contract in progress, in order to detect the first sign of breach and minimize losses, also is a reactive form of security
  • A proactive form of security is a physical mechanism that makes breach expensive
  • From common law, economic theory, and contractual conditions often found in practice, we can distill four basic objectives of contract design
  • observability
  • The disciplines of auditing and investigation roughly correspond with verification of contract performance
  • verifiability
  • The field of accounting is, roughly speaking, primarily concerned with making contracts an organization is involved in more observable
  • privity
  • This is a generalization of the common law principle of contract privity, which states that third parties, other than the designated arbitrators and intermediaries, should have no say in the enforcement of a contract
  • The field of security (especially, for smart contracts, computer and network security), roughly corresponds to the goal of privity.
  • enforceability
  • Reputation, built-in incentives, "self-enforcing" protocols, and verifiability can all play a strong part in meeting the fourth objective
  • Smart contracts often involve trusted third parties, exemplified by an intermediary, who is involved in the performance, and an arbitrator, who is invoked to resolve disputes arising out of performance (or lack thereof)
  • In smart contract design we want to get the most out of intermediaries and arbitrators, while minimizing exposure to them
  • Legal barriers are the most severe cost of doing business across many jurisdictions. Smart contracts can cut through this Gordian knot of jurisdictions
  • Where smart contracts can increase privity, they can decrease vulnerability to capricious jurisdictions
  • Secret sharing
  • The field of Electronic Data Interchange (EDI), in which elements of traditional business transactions (invoices, receipts, etc.) are exchanged electronically, sometimes including encryption and digital signature capabilities, can be viewed as a primitive forerunner to smart contracts
  • One important task of smart contracts, that has been largely overlooked by traditional EDI, is critical to "the meeting of the minds" that is at the heart of a contract: communicating the semantics of the protocols to the parties involved
  • There is ample opportunity in smart contracts for "smart fine print": actions taken by the software hidden from a party to the transaction.
  • Thus, via hidden action of the software, the customer is giving away information they might consider valuable or confidential, but the contract has been drafted, and transaction has been designed, in such a way as to hide those important parts of that transaction from the customer.
  • To properly communicate transaction semantics, we need good visual metaphors for the elements of the contract. These would hide the details of the protocol without surrendering control over the knowledge and execution of contract terms
  • Protocols based on mathematics, called cryptographic protocols, tre the basic building blocks that implement the improved tradeoffs between observability, verifiability, privity, and enforceability in smart contracts
  • secret key cryptography,
  • Public key cryptography
  • digital signatures
  • blind signature
  • Where smart contracts can increase observability or verifiability, they can decrease dependence on these obscure local legal codes and enforcement traditions
  • zero-knowledge interactive proof
  • digital mix
  • Keys are not necessarily tied to identities, and the task of doing such binding turns out to be more difficult than at first glance.
  • All public key operation are are done inside an unreadable hardware board on a machine with a very narrow serial-line connection (ie, it carries only a simple single-use protocol with well-verified security) to a dedicated firewall. Such a board is available, for example, from Kryptor, and I believe Viacrypt may also have a PGP-compatable board. This is economical for central sites, but may be less practical for normal users. Besides better security, it has the added advantage that hardware speeds up the public key computations.
  • If Mallet's capability is to physically sieze the machine, a weaker form of key protection will suffice. The trick is to hold the keys in volatile memory.
  • The data is still vulnerable to a "rubber hose attack" where the owner is coerced into revealing the hidden keys. Protection against rubber hose attacks might require some form of Shamir secret sharing which splits the keys between diverse phgsical sites.
  • How does Alice know she has Bob's key? Who, indeed, can be the parties to a smart contract? Can they be defined just by their keys? Do we need biometrics (such as autographs, typed-in passwords, retina scans, etc.)?
  • The public key cryptography software package "Pretty Good Privacy" (PGP) uses a model called "the web of trust". Alice chooses introducers whom she trusts to properly identify the map between other people and their public keys. PGP takes it from there, automatically validating any other keys that have been signed by Alice's designated introducers.
  • 1) Does the key actually belong to whom it appears to belong? In other words, has it been certified with a trusted signature?
  • 2) Does it belong to an introducers, someone you can trust to certify other keys?
  • 3) Does the key belong to someone you can trust to introduce other introducers? PGP confuses this with criterion (2). It is not clear that any single person has enough judgement to properly undertake task (3), nor has a reasonable institution been proposed that will do so. This is one of the unsolved problems in smart contracts.
  • PGP also can be given trust ratings and programmed to compute a weighted score of validity-- for example, two marginally trusted signatures might be considered as credible as one fully trusted signature
  • Notaries Public Two different acts are often called "notarization". The first is simply where one swears to the truth of some affidavit before a notary or some other officer entitled to take oaths. This does not require the notary to know who the affiant is. The second act is when someone "acknowledges" before a notary that he has executed a document as ``his own act and deed.'' This second act requires the notary to know the person making the acknowledgment.
  • "Identity" is hardly the only thing we might want map to a key. After all, physical keys we use for our house, car, etc. are not necessarily tied to our identity -- we can loan them to trusted friends and relatives, make copies of them, etc. Indeed, in cyberspace we might create "virtual personae" to reflect such multi-person relationships, or in contrast to reflect different parts of our personality that we do not want others to link. Here is a possible classification scheme for virtual personae, pedagogically presented:
  • A nym is an identifier that links only a small amount of related information about a person, usually that information deemed by the nym holder to be relevant to a particular organization or community
  • A nym may gain reputation within its community.
  • With Chaumian credentials, a nym can take advantage of the positive credentials of the holder's other nyms, as provably linked by the is-a-person credential
  • A true name is an identifier that links many different kinds of information about an person, such as a full birth name or social security number
  • As in magick, knowing a true name can confer tremendous power to one's enemies
  • A persona is any perstient pattern of behavior, along with consistently grouped information such as key(s), name(s), network address(es), writing style, and services provided
  • A reputable name is a nym or true name that has a good reputation, usually because it carries many positive credentials, has a good credit rating, or is otherwise highly regarded
  • Reputable names can be difficult to transfer between parties, because reputation assumes persistence of behavior, but such transfer can sometimes occur (for example, the sale of brand names between companies).
  • Blind signatures can be used to construct digital bearer instruments, objects identified by a unique key, and issued, cleared, and redeemed by a clearing agent.
  • The clearing agent prevents multiple clearing of particular objects, but can be prevented from linking particular objects one or both of the clearing nyms who transferred that object
  • These instruments come in an "online" variety, cleared during every transfer, and thus both verifiable and observable, and an "offline" variety, which can be transfered without being cleared, but is only verifiable when finally cleared, by revealing any the clearing nym of any intermediate holder who transfered the object multiple times (a breach of contract).
  • To implement a full transaction of payment for services, we need more than just the digital cash protocol; we need a protocol that guarantees that service will be rendered if payment is made, and vice versa
  • A credential is a claim made by one party about another. A positive credential is one the second party would prefer to reveal, such as a degree from a prestigious school, while that party would prefer not to reveal a negative credential such as a bad credit rating.
  • A Chaumian credential is a cryptographic protocol for proving one possesses claims made about onself by other nyms, without revealing linkages between those nyms. It's based around the is-a-person credential the true name credential, used to prove the linkage of otherwise unlinkable nyms, and to prevent the transfer of nyms between parties.
  • Another form of credential is bearer credential, a digital bearer instrument where the object is a credential. Here the second party in the claim refers to any bearer -- the claim is tied only to the reputable name of issuing organization, not to the nym or true name of the party holding the credential.
  • Smart Property We can extend the concept of smart contracts to property. Smart property might be created by embedding smart contracts in physical objects. These embedded protocols would automatically give control of the keys for operating the property to the party who rightfully owns that property, based on the terms of the contract. For example, a car might be rendered inoperable unless the proper challenge-response protocol is completed with its rightful owner, preventing theft. If a loan was taken out to buy that car, and the owner failed to make payments, the smart contract could automatically invoke a lien, which returns control of the car keys to the bank. This "smart lien" might be much cheaper and more effective than a repo man. Also needed is a protocol to provably remove the lien when the loan has been paid off, as well as hardship and operational exceptions. For example, it would be rude to revoke operation of the car while it's doing 75 down the freeway.
  • Smart property is software or physical devices with the desired characteristics of ownership embedded into them; for example devices that can be rendered of far less value to parties who lack possesion of a key, as demonstrated via a zero knowledge interactive proof
  • One method of implementing smart property is thru operation necessary data (OND): data necessary to the operation of smart property.
  • A smart lien is the sharing of a smart property between parties, usually two parties called the owner and the lienholder.
  • Many parties, especially new entrants, may lack this reputation capital, and will thus need to be able to share their property with the bank via secure liens
  • What about extending the concept of contract to cover agreement to a prearranged set of tort laws? These tort laws would be defined by contracts between private arbitration and enforcement agencies, while customers would have a choice of jurisdictions in this system of free-market "governments".
  • If these privately practiced law organizations (PPLs for short) bear ultimate responsibility for the criminal activities of their customers, or need to insure lack of defection or future payments on the part of customers, they may in turn ask for liens against their customers, either in with contractual terms allowing arrest of customers under certain conditions
  • Other important areas of liability include consumer liability and property damage (including pollution). There need to mechanisms so that, for example, pollution damage to others' persons or property can be assessed, and liens should exist so that the polluter can be properly charged and the victims paid. Where pollution is quantifiable, as with SO2 emissions, markets can be set up to trade emission rights. The PPLs would have liens in place to monitor their customer's emissions and assess fees where emission rights have been exceeded.
2More

Ponko - digital manufacturing service. - 2 views

  •  
    A creator can use the digital platform to present and sell his designs and cutting plans of a product. Customers who like a product design can pay for the design in the Pomoko online shop and download the files. After successfully downloading the files the customer can have the product manufactured by the producer of his confidence or by Ponoko. Then it is packaged and shipped to the customer.
  •  
    I went on the website, I don't think this service includes other manufacturers. This seams to be a company that offers digital fabrication services, pretty classical, if not for the high-tech digital fabrication means.
1More

Open Source 3-D Printed Nutating Mixer - Appropedia, the sustainability wiki - 0 views

  •  
    "As the open source development of additive manufacturing has led to low-cost desktop three-dimensional (3-D) printing, a number of scientists throughout the world have begun to share digital designs of free and open source scientific hardware. Open source scientific hardware enables custom experimentation, laboratory control, rapid upgrading, transparent maintenance, and lower costs in general. To aid in this trend, this study describes the development, design, assembly, and operation of a 3-D printable open source desktop nutating mixer, which provides a fixed 20° platform tilt angle for a gentle three-dimensional (gyrating) agitation of chemical or biological samples (e.g., DNA or blood samples) without foam formation. The custom components for the nutating mixer are designed using open source FreeCAD software to enable customization. All of the non-readily available components can be fabricated with a low-cost RepRap 3-D printer using an open source software tool chain from common thermoplastics. All of the designs are open sourced and can be configured to add more functionality to the equipment in the future. It is relatively easy to assemble and is accessible to both the science education of younger students as well as state-of-the-art research laboratories. Overall, the open source nutating mixer can be fabricated with US$37 in parts, which is 1/10th of the cost of proprietary nutating mixers with similar capabilities. The open source nature of the device allow it to be easily repaired or upgraded with digital files, as well as to accommodate custom sample sizes and mixing velocities with minimal additional costs."
40More

Welcome to the new reputation economy (Wired UK) - 1 views

  • banks take into account your online reputation alongside traditional credit ratings to determine your loan
  • headhunters hire you based on the expertise you've demonstrated on online forums
  • reputation data becomes the window into how we behave, what motivates us, how our peers view us and ultimately whether we can or can't be trusted.
  • ...37 more annotations...
  • At the heart of Movenbank is a concept call CRED.
  • The difference today is our ability to capture data from across an array of digital services. With every trade we make, comment we leave, person we "friend", spammer we flag or badge we earn, we leave a trail of how well we can or can't be trusted.
  • An aggregated online reputation having a real-world value holds enormous potential
  • peer-to-peer marketplaces, where a high degree of trust is required between strangers; and where a traditional approach based on disjointed information sources is currently inefficient, such as recruiting.
  • opportunity to reinvent the way people found jobs through online reputation
  • "It's not about your credit, but your credibility," King says.
  • But this wealth of data raises an important question -- who owns our reputation? Shouldn't our hard-earned online status be portable? If you're a SuperHost on Airbnb, shouldn't you be able to use that reputation to, say, get a loan, or start selling on Etsy?
  • "People are currently underusing their networks and reputation," King says. "I want to help people to understand and build their influence and reputation, and think of it as capital they can put to good use."
  • Social scientists have long been trying to quantify the value of reputation.
  • Using functional magnetic resonance imaging, the researchers monitored brain activity
  • "The implication of our study is that different types of reward are coded by the same currency system." In other words, our brains neurologically compute personal reputation to be as valuable as money.
  • Personal reputation has been a means of making socioeconomic decisions for thousands of years. The difference today is that network technologies are digitally enabling the trust we used to experience face-to-face -- meaning that interactions and exchanges are taking place between total strangers.
  • Trust and reputation become acutely important in peer-to-peer marketplaces such as WhipCar and Airbnb, where members are taking a risk renting out their cars or their homes.
  • When you are trading peer-to-peer, you can't count on traditional credit scores. A different measurement is needed. Reputation fills this gap because it's the ultimate output of how much a community trusts you.
  • Welcome to the reputation economy, where your online history becomes more powerful than your credit history.
  • Presently, reputation data doesn't transfer between verticals.
  • A wave of startups, including Connect.Me, TrustCloud, TrustRank, Legit and WhyTrusted, are trying to solve this problem by designing systems that correlate reputation data. By building a system based on "reputation API" -- a combination of a user's activity, ratings and reviews across sites -- Legit is working to build a service that gives users a score from zero to 100. In trying to create a universal metric for a person's trustworthiness, they are trying to "become the credit system of the sharing economy", says Jeremy Barton, the 27-year-old San Francisco-based cofounder of Legit.
  • His company, and other reputation ventures, face some big challenges if they are to become, effectively, the PayPal of trust. The most obvious is coming up with algorithms that can't be easily gamed or polluted by trolls. And then there's the critical hurdle of convincing online marketplaces not just to open up their reputation vaults, but create a standardised format for how they frame and collect reputation data. "We think companies will share reputation data for the same reasons banks give credit data to credit bureaux," says Rob Boyle, Legit cofounder and CTO. "It is beneficial for one company to give up their slice of reputation data if in return they get access to the bigger picture: aggregated data from other companies."
  • PeerIndex, Kred and Klout,
  • are measuring social influence, not reputation. "Influence measures your ability to drag someone into action,"
  • "Reputation is an indicator of whether a person is good or bad and, ultimately, are they trustworthy?"
  • Early influence and reputation aggregators will undoubtedly learn by trial and error -- but they will also face the significant challenge of pioneering the use of reputation data in a responsible way. And there's a challenge beyond that: reputation is largely contextual, so it's tricky to transport it to other situations.
  • Many of the ventures starting to make strides in the reputation economy are measuring different dimensions of reputation.
  • reputation is a measure of knowledge
  • a measure of trust
  • a measure of propensity to pay
  • measure of influence
  • Reputation capital is not about combining a selection of different measures into a single number -- people are too nuanced and complex to be distilled into single digits or binary ratings.
  • It's the culmination of many layers of reputation you build in different places that genuinely reflect who you are as a person and figuring out exactly how that carries value in a variety of contexts.
  • The most basic level is verification of your true identity
  • reliability and helpfulness
  • do what we say we are going to do
  • respect another person's property
  • trusted to pay on time
  • we will be able to perform a Google- or Facebook-like search and see a picture of a person's behaviour in many different contexts, over a length of time. Slivers of data that have until now lived in secluded isolation online will be available in one place. Answers on Quora, reviews on TripAdvisor, comments on Amazon, feedback on Airbnb, videos posted on YouTube, social groups joined, or presentations on SlideShare; as well as a history and real-time stream of who has trusted you, when, where and why. The whole package will come together in your personal reputation dashboard, painting a comprehensive, definitive picture of your intentions, capabilities and values.
  • idea of global reputation
  • By the end of the decade, a good online reputation could be the most valuable currency in your possession.
6More

Digital Agenda for Europe - European Commission - 0 views

  • Open Innovation 2.0 Conference and The Dublin Innovation Declaration:
  • The Dublin Innovation Declaration was co-created at the Open Innovation 2.0 Conference
  • he challenges faced in Europe and beyond are too large to tackle in isolation and thus a new approach to innovation is required
  • ...3 more annotations...
  • create new shared value through innovation
  • creative destruction model where the failure of old approaches fuels the motivation for change and shapes the future
  • quadruple helix model of innovation where civil society joins with business, academia, and government sectors to drive changes far beyond the scope of what any one organization can do on their own. 
99More

Beyond Blockchain: Simple Scalable Cryptocurrencies - The World of Deep Wealth - Medium - 0 views

  • I clarify the core elements of cryptocurrency and outline a different approach to designing such currencies rooted in biomimicry
  • This post outlines a completely different strategy for implementing cryptocurrencies with completely distributed chains
  • Rather than trying to make one global, anonymous, digital cash
  • ...95 more annotations...
  • we are interested in the resilience that comes from building a rich ecosystem of interoperable currencies
  • What are the core elements of a modern cryptocurrency?
  • Digital
  • Holdings are electronic and only exist and operate by virtue of a community’s agreement about how to interpret digital bits according to rules about operation and accounting of the currency.
  • Trustless
  • don’t have to trust a 3rd party central authority
  • Decentralized
  • Specifically, access, issuance, transaction accounting, rules & policies, should be collectively visible, known, and held.
  • Cryptographic
  • This cryptographic structure is used to enable a variety of people to host the data without being able to alter it.
  • Identity
  • there must be a way to associate these bits with some kind of account, wallet, owner, or agent who can use them
  • Other things that many take for granted in blockchains may not be core but subject to decisions in design and implementation, so they can vary between implementations
  • It does not have to be stored in a synchronized global ledger
  • does not have to be money. It may be a reputation currency, or data used for identity, or naming, etc
  • Its units do not have to be cryptographic tokens or coins
  • It does not have to protect the anonymity of users, although it may
  • if you think currency is only money, and that money must be artificially scarce
  • Then you must tackle the problem of always tracking which coins exist, and which have been spent. That is one approach — the one blockchain takes.
  • You might optimize for anonymity if you think of cryptocurrency as a tool to escape governments, regulations, and taxes.
  • if you want to establish and manage membership in new kinds of commons, then identity and accountability for actions may turn out to be necessary ingredients instead of anonymity.
  • In the case of the MetaCurrency Project, we are trying to support many use cases by building tools to enable a rich ecosystem of communities and current-sees (many are non-monetary) to enhance collective intelligence at all scales.
  • Managing consensus about a shared reality is a central challenge at the heart of all distributed computing solutions.
  • If we want to democratize money by having cryptocurrencies become a significant and viable means of transacting on a daily basis, I believe we need fundamentally more scalable approaches that don’t require expensive, dedicated hardware just to participate.
  • We should not need system wide consensus for two people to do a transaction in a cryptocurrency
  • Blockchain is about managing a consensus about what was “said.” Ceptr is about distributing a consensus about how to “speak.”
  • how nature gets the job done in massively scalable systems which require coordination and consistency
  • Replicate the same processes across all nodes
  • Empower every node with full agency
  • Hold this transformed state locally and reliably
  • Establish protocols for interaction
  • Each speaker of a language carries the processes to understand sentences they hear, and generate sentences they need
  • we certainly don’t carry some kind of global ledger of everything that’s ever been said, or require consensus about what has been said
  • Language IS a communication protocol we learn by emulating the processes of usage.
  • Dictionaries try to catch up when the usage
  • there is certainly no global ledger with consensus about the state of trillions of cells. Yet, from a single zygote’s copy of DNA, our cells coordinate in a highly decentralized manner, on scales of trillions, and without the latency or bottlenecks of central control.
  • Imagine something along the lines of a Java Virtual Machine connected to a distributed version of Github
  • Every time this JVM runs a program it confirms the hash of the code it is about to execute with the hash signed into the code repository by its developers
  • This allows each node that intends to be honest to be sure that they’re running the same processes as everyone else. So when two parties want to do a transaction, and each can have confidence their own code, and the results that your code produces
  • Then you treat it as authoritative and commit it to your local cryptographically self-validating data store
  • Allowing each node to treat itself as a full authority to process transactions (or interactions via shared protocols) is exactly how you empower each node with full agency. Each node runs its copy of the signed program/processes on its own virtual machine, taking the transaction request combined with the transaction chains of the parties to the transaction. Each node can confirm their counterparty’s integrity by replaying their transactions to produce their current state, while confirming signatures and integrity of the chain
  • If both nodes are in an appropriate state which allows the current transaction, then they countersign the transaction and append to their respective chains. When you encounter a corrupted or dishonest node (as evidenced by a breach of integrity of their chain — passing through an invalid state, broken signatures, or broken links), your node can reject the transaction you were starting to process. Countersigning allows consensus at the appropriate scale of the decision (two people transacting in this case) to lock data into a tamper-proof state so it can be stored in as many parallel chains as you need.
  • When your node appends a mutually validated and signed transaction to its chain, it has updated its local state and is able to represent the integrity of its data locally. As long as each transaction (link in the chain) has valid linkages and countersignatures, we can know that it hasn’t been tampered with.
  • If you can reliably embody the state of the node in the node itself using Intrinsic Data Integrity, then all nodes can interact in parallel, independent of other interactions to maximize scalability and simultaneous processing. Either the node has the credits or it doesn’t. I don’t have to refer to a global ledger to find out, the state of the node is in the countersigned, tamper-proof chain.
  • Just like any meaningful communication, a protocol needs to be established to make sure that a transaction carries all the information needed for each node to run the processes and produce a new signed and chained state. This could be debits or credits to an account which modify the balance, or recoding courses and grades to a transcript which modify a Grade Point Average, or ratings and feedback contributing to a reputation score, and so on.
  • By distributing process at the foundation, and leveraging Intrinsic Data Integrity, our approach results in massive improvements in throughput (from parallel simultaneous independent processing), speed, latency, efficiency, and cost of hardware.
  • You also don’t need to incent people to hold their own record — they already want it.
  • Another noteworthy observation about humans, cells, and atoms, is that each has a general “container” that gets configured to a specific use.
  • Likewise, the Receptors we’ve built are a general purpose framework which can load code for different distributed applications. These Receptors are a lightweight processing container for the Ceptr Virtual Machine Host
  • Ceptr enables a developer to focus on the rules and transactions for their use case instead of building a whole framework for distributed applications.
  • how units in a currency are issued
  • Most people think that money is just money, but there are literally hundreds of decisions you can make in designing a currency to target particular needs, niches, communities or patterns of flow.
  • Blockchain cryptocurrencies are fiat currencies. They create tokens or coins from nothing
  • These coins are just “spoken into being”
  • the challenging task of
  • ensure there is no counterfeiting or double-spending
  • Blockchain cryptocurrencies are fiat currencies
  • These coins are just “spoken into being”
  • the challenging task of tracking all the coins that exist to ensure there is no counterfeiting or double-spending
  • You wouldn’t need to manage consensus about whether a cryptocoin is spent, if your system created accounts which have normal balances based on summing their transactions.
  • In a mutual credit system, units of currency are issued when a participant extends credit to another user in a standard spending transaction
  • Alice pays Bob 20 credits for a haircut. Alice’s account now has -20, and Bob’s has +20.
  • Alice spent credits she didn’t have! True
  • Managing the currency supply in a mutual credit system is about managing credit limits — how far people can spend into a negative balance
  • Notice the net number units in the system remains zero
  • One elegant approach to managing mutual credit limits is to set them based on actual demand.
  • concerns about manufacturing fake accounts to game credit limits (Sybil Attacks)
  • keep in mind there can be different classes of accounts. Easy to create, anonymous accounts may get NO credit limit
  • What if I alter my code to give myself an unlimited credit limit, then spend as much as I want? As soon as you pass the credit limit encoded in the shared agreements, the next person you transact with will discover you’re in an invalid state and refuse the transaction.
  • If two people collude to commit an illegal transaction by both hacking their code to allow a normally invalid state, the same still pattern still holds. The next person they try to transact with using untampered code will detect the problem and decline to transact.
  • Most modern community currency systems have been implemented as mutual credit,
  • Hawala is a network of merchants and businessmen, which has been operating since the middle ages, performing money transfers on an honor system and typically settling balances through merchandise instead of transferring money
  • Let’s look at building a minimum viable cryptocurrency with the hawala network as our use case
  • To minimize key management infrastructure, each hawaladar’s public key is their address or identity on the network. To join the network you get a copy of the software from another hawaladar, generate your public and private keys, and complete your personal profile (name, location, contact info, etc.). You call, fax, or email at least 10 hawaladars who know you, and give them your IP address and ask them to vouch for you.
  • Once 10 other hawaladars have vouched for you, you can start doing other transactions because the protocol encoded in every node will reject a transaction chain that doesn’t start with at least 10 vouches
  • seeding your information with those other peers so you can be found by the rest of the network.
  • As described in the Mutual Credit section, at the time of transaction each party audits the counterparty’s transaction chain.
  • Our hawala crypto-clearinghouse protocol has two categories of transactions: some used for accounting and others for routing. Accounting transactions change balances. Routing transactions maintain network integrity by recording information about hawaladar
  • Accounting Transactions create signed data that changes account balances and contains these fields:
  • The final hash of all of the above fields is used as a unique transaction ID and is what each of party signs with their private keys. Signing indicates a party has agreed to the terms of the transaction. Only transactions signed by both parties are considered valid. Nodes can verify signatures by confirming that decryption of the signature using the public key yields a result which matches the transaction ID.
  • Routing Transactions sign data that changes the peers list and contain these fields:
  • As with accounting transactions, the hash of the above fields is used as the transaction’s unique key and the basis for the cryptographic signature of both counterparties.
  • Remember, instead of making changes to account balances, routing transactions change a node’s local list of peers for finding each other and processing.
  • a distributed network of mutual trust
  • operates across national boundaries
  • everyone already keeps and trusts their own separate records
  • Hawaladars are not anonymous
  • “double-spending”
  • It would be possible for someone to hack the code on their node to “forget” their most recent transaction (drop the head of their chain), and go back to their previous version of the chain before that transaction. Then they could append a new transaction, drop it, and append again.
  • After both parties have signed the agreed upon transaction, each party submits the transaction to separate notaries. Notaries are a special class of participant who validate transactions (auditing each chain, ensuring nobody passes through an invalid state), and then they sign an outer envelope which includes the signatures of the two parties. Notaries agree to run high-availability servers which collectively manage a Distributed Hash Table (DHT) servicing requests for transaction information. As their incentive for providing this infrastructure, notaries get a small transaction fee.
  • This approach introduces a few more steps and delays to the transaction process, but because it operates on independent parallel chains, it is still orders of magnitude more efficient and decentralized than reaching consensus on entries in a global ledger
  • millions of simultaneous transactions could be getting processed by other parties and notaries with no bottlenecks.
  • There are other solutions to prevent nodes from dropping the head of their transaction chain, but the approach of having notaries serve out a DHT solves a number of common objections to completely distributed accounting. Having access to reliable lookups in a DHT provides a similar big picture view that you get from a global ledger. For example, you may want a way to look up transactions even when the parties to that transaction are offline, or to be able to see the net system balance at a particular moment in time, or identify patterns of activity in the larger system without having to collect data from everyone individually.
  • By leveraging Intrinsic Data Integrity to run numerous parallel tamper-proof chains you can enable nodes to do various P2P transactions which don’t actually require group consensus. Mutual credit is a great way to implement cryptocurrencies to run in this peered manner. Basic PKI with a DHT is enough additional infrastructure to address main vulnerabilities. You can optimize your solution architecture by reserving reserve consensus work for tasks which need to guarantee uniqueness or actually involve large scale agreement by humans or automated contracts.
  • It is not only possible, but far more scalable to build cryptocurrencies without a global ledger consensus approach or cryptographic tokens.
  •  
    Article written by Arthur Brook, founder of Metacurrency project and of Ceptr.
43More

Partner State - P2P Foundation - 0 views

    • Tiberius Brastaviceanu
       
      we call this a custodian
    • Tiberius Brastaviceanu
       
      we call this a custodian
  • So here we have it, the new triarchy: - The state, with its public property and representative mechanisms of governance (in the best scenario) - The private sector, with the corporation and private property - The commons, with the Trust (or the for-benefit association), and which is the ‘property’ of all its members (not the right word in the context of the commons, since it has a different philosophy of ownership)
    • Tiberius Brastaviceanu
       
      so where is direct democracy in all this?
  • ...39 more annotations...
  • In a first phase, the commons simply emerges as an added alternative.
  • becoming a subsector of society, and starts influencing the whole
  • phase transition and transformation will need to occur.
  • how a commons-dominated, i.e. after the phase transition, society would look like.
  • At its core would be a collection of commons, represented by trusts and for-benefit associations, which protect their common assets for the benefit of present and future generations
  • The commons ‘rents out’ the use of its resources to entrepreneurs. In other words, business still exists, though infinite growth-based capitalism does not.
  • More likely is that the corporate forms will be influenced by the commons and that profit will be subsumed to other goals, that are congruent with the maintenance of the commons.
  • The state will still exist, but will have a radically different nature
  • Much of its functions will have been taken over by commons institutions, but since these institutions care primarily about their commons, and not the general common good, we will still need public authorities that are the guarantor of the system as a whole, and can regulate the various commons, and protect the commoners against possible abuses. So in our scenario, the state does not disappear, but is transformed, though it may greatly diminish in scope, and with its remaining functions thoroughly democratized and based on citizen participation.
  • In our vision, it is civil-society based peer production, through the Commons, which is the guarantor of value creation by the private sector, and the role of the state, as Partner State, is to enable and empower the creation of common value. The new peer to peer state then, though some may see that as a contradictio in terminis, is a state which is subsumed under the Commons, just as it is now under the private sector. Such a peer to peer state, if we are correct, will have a much more modest role than the state under a classic state society, with many of its functions taken over by civil society associations, interlinked in processes of global governance. The above then, this triarchy, is the institutional core which replaces the dual private-public binary system that is characteristic of the capitalist system that is presently the dominant format.
  • fundamental mission is to empower direct social-value creation, and to focus on the protection of the Commons sphere as well as on the promotion of sustainable models of entrepreneurship and participatory politics
  • the state becomes a 'partner state' and enables autonomous social production.
  • the state does exist, and I believe that we can’t just imagine that we live in a future state-less society
  • retreating from the binary state/privatization dilemma to the triarchical choice of an optimal mix amongst government regulation, private-market freedom and autonomous civil-society projects
  • the role of the state
  • “the peer production of common value requires civic wealth and strong civic institutions.
  • trigger the production/construction of new commons by - (co-) management of complexe resource systems which are not limited to local boundaries or specific communities (as manager and partner) - survey of rules (chartas) to care for the commons (mediator or judge) - kicking of or providing incentives for commoners governing their commons - here the point is to design intelligent rules which automatically protect the commons, like the GPL does (facilitator)"
  • the emergence of the digital commons. It is the experience of creating knowledge, culture, software and design commons, by a combination of voluntary contributions, entrepreneurial coalitions and infrastructure-protecting for-benefit associations, that has most tangibly re-introduced the idea of commons, for all to use without discrimination, and where all can contribute. It has drastically reduced the production, distribution, transaction and coordination costs for the immaterial value that is at the core also of all what we produce physically, since that needs to be made, needs to be designed. It has re-introduced communing as a mainstream experience for at least one billion internet users, and has come with proven benefits and robustness that has outcompeted and outcooperated its private rivals. It also of course offers new ways to re-imagine, create and protect physical commons.
  • stop enclosures
  • peer to peer, i.e. the ability to freely associate with others around the creation of common value
  • communal shareholding, i.e. the non-reciprocal exchange of an individual with a totality. It is totality that we call the commons.
  • It is customary to divide society into three sectors, and what we want to show is how the new peer to peer dynamic unleashed by networked infrastructures, changes the inter-relationship between these three sectors.
  • In the current ‘cognitive capitalist’ system, it is the private sector consisting of enterprises and businesses which is the primary factor, and it is engaged in competitive capital accumulation. The state is entrusted with the protection of this process. Though civil society, through the citizen, is in theory ‘sovereign’, and chooses the state; in practice, both civil society and the state are under the domination of the private sector.
  • it fulfills three contradictory functions
  • Of course, this is not to say that the state is a mere tool of private business.
  • protect the whole system, under the domination of private business
  • protector of civil society, depending on the balance of power and achievements of social movements
  • protector of its own independent interests
  • Under fascism, the state achieves great independence from the private sector , which may become subservient to the state. Under the welfare state, the state becomes a protector of the social balance of power and manages the achievements of the social movement; and finally, under the neoliberal corporate welfare state, or ‘market state’, it serves most directly the interests of the financial sector.
  • key institutions and forms of property.
  • The state managed a public sector, under its own property.
  • The private sector , under a regime of private ownership, is geared to profit, discounts social and natural externalities, both positive and negative, and uses its dominance in society to use and dominate the state.
  • civil society has a relative power as well, through its capability of creating social movements and associations
  • Capitalism has historically been a pendulum between the private and the public sector
  • However, this configuration is changing,
  • the endangerment of the biosphere through the workings of ‘selfish’ market players; the second is the role of the new digital commons.
  • participatory politics
  • Peer production gives us an advance picture of how a commons-oriented society would look like. At its core is a commons and a community contributing to it, either voluntarily, or as paid entrepreneurial employees. It does this through collaborative platforms using open standards. Around the commons emerges enterprises that create added value to operate on the marketplace, but also help the maintenance and the expansion of the commons they rely on. A third partner are the for-benefit associations that maintain the infrastructure of cooperation. Public authorities could play a role if they wanted to support existing commons or the creation of new commons, for the value they bring to society.
  • if a commons is not created as in the case of the digital commons, it is something that is inherited from nature or former generations, given in trust and usufruct, so that it can be transmitted to our descendents. The proper institution for such commons is therefore the trust, which is a corporate form that cannot touch its principal capital, but has to maintain it.
2More

Value Creating Service Systems: From Service Systems to Digital Lives - 0 views

  •  
    "Service dominant logic suggest that value is always co-created in context of use and experience. Co-creation is not an option (Vargo and Lusch, 2004, 2008). "Moving things along meant a focus on 2 key aspects. philosophy and methods. "An SD logic approach is not one that you can run a survey of attitude, behaviours or intentions. The person is embedded in his actions and practices of value creation. The focus on context means the unit of analysis is in the sociology of real life behaviours. A sociological approach makes methods a problem because we've inherited a world where we have created tools from analysing water in a bucket, not by looking at its behaviour in a river. "GD logic is compelling not only because it is entrenched for over 500 years, but also because you could measure its constructs. GDP, sales, revenues, CPI - they are all constructs of a GD logic society. What SD logic needed was better methods and new constructs. "To that end, and rather ironically, I found an ally in digital technology. Here was a world of sensors and actuators with an enthusiastic community looking for novel ways of deploying them into homes and buildings i.e. the internet-of-things. "I also found, as an ally, the thinking around new economic and business models. Here was another strand of literature largely marginalised by mainstream business literature because it was (the way I interpreted it) taking a systemic view of value proposition, value creation and value capture (ie, change one, change all) and the way the organisation had to be agile and transformed for it - which sat very nicely with SD logic. "Customised products are firm centric. Personalised products are customer initiated and empowering. Personalised products also tend to move the product into becoming platforms to afford co-creation, which advanced the notion of symmetry in value co-creation further. Finally, with the advent of platforms, the economics of 2 or multi-sided markets completed my set of theoretica
  •  
    an interesting starting point for research
7More

Key management - Wikipedia, the free encyclopedia - 1 views

  • Key management
  • his includes dealing with the generation, exchange, storage, use, and replacement of keys.
  • Key management concerns keys at the user level, either between users or systems.
  • ...4 more annotations...
  • This is in contrast to key scheduling; key scheduling typically refers to the internal handling of key material within the operation of a cipher.
  • it involves system policy, user training, organizational and departmental interactions, and coordination between all of these elements.
  • Public Key Infrastructure (PKI)
  • A public key infrastructure is a type of key management system that uses hierarchical digital certificates to provide authentication, and public keys to provide encryption. PKIs are used in World Wide Web traffic, commonly in the form of SSL and TLS.
46More

Science and Technology Consultation - Industry Canada - 0 views

  • Under this strategy
    • Yasir Siddiqui
       
      Testing
    • Yasir Siddiqui
       
      testing
  • Genome Canada, the Canadian Institute for Advanced Research and the Canada Foundation for Innovation.
  • Still, Canadian businesses continue to underperform when it comes to innovation—a primary driver of productivity growth—when compared to other competing nations. The performance of business R&D is one oft-cited measure used to gauge the level of innovative activity in a country's business sector.
  • ...38 more annotations...
  • Canadians have reached top tier global performance in reading, mathematics, problem solving and science, and Canada has rising numbers of graduates with doctoral degrees in science and engineering.
  • This valuable resource of highly qualified and skilled individuals needs to be better leveraged.
  • The ease and ability of the academic community to collaborate, including through research networks, is also well-recognized.
  • to develop technologies, products and services that add value and create high-paying jobs.
  • Canada has an impressive record when it comes to research and the quality of its knowledge base.
  • Still, the innovative performance of Canada's firms and the productivity growth continue to lag behind competing nations.
  • The government is also committed to moving forward with a new approach to promoting business innovation—one that emphasizes active business-led initiatives and focuses resources on better fostering the growth of innovative firms.
  • Achieving this requires the concerted effort of all players in the innovation system—to ensure each does what one does best and to leverage one another's strengths.
  • the government has invested more to support science, technology and innovative companies than ever before
  • Canada must become more innovative
    • Kurt Laitner
       
      problem statement
  • providing a new framework to guide federal ST&I investments and priorities. That is why the Government of Canada stated its intention to release an updated ST&I Strategy in the October 2013 Speech from the Throne.
    • Kurt Laitner
       
      exercise
  • seeking the views of stakeholders from all sectors of the ST&I system—including universities, colleges and polytechnics, the business community, and Canadians
  • written submissions from all Canadians on the policy issues and questions presented in this paper.
  • The government remains focused on creating jobs, growth and long-term prosperity for Canadians
  • encouraging partnerships with industry, attracting highly skilled researchers, continuing investments in discovery-driven research, strengthening Canada's knowledge base, supporting research infrastructure and providing incentives to private sector innovation.
  • has transformed the National Research Council, doubled its investment
  • supported research collaborations through the federal granting councils
  • created the new Venture Capital Action Plan
  • helping to promote greater commercialization of research and development
  • Our country continues to lead the G7 in spending on R&D
  • Canada has a world-class post-secondary education system that embraces and successfully leverages collaboration with the private sector, particularly through research networks
  • destination for some of the world's brightest minds
  • global race
  • businesses that embrace innovation-based strategies
  • post-secondary and research institutions that attract and nurture highly qualified and skilled talent
  • researchers who push the frontiers of knowledge
  • governments that provide the support
    • Tiberius Brastaviceanu
       
      Why a race? We need to change the way we see this!!! We need to open up. See the European Commission Horizon 2020 program  http://ec.europa.eu/programmes/horizon2020/en/ They are acknowledging that Europe cannot do it alone, and are spending money on International collaboration. 
    • Tiberius Brastaviceanu
       
      There is nothing about non-institutionalized innovation, i.e. open source! There is nothing about the public in this equation like the Europeans do in the Digital Era for Europe program  https://ec.europa.eu/digital-agenda/node/66731 
  • low taxes, strong support for new businesses, a soundly regulated banking system, and ready availability of financial services
  • reducing red tape
  • expanding training partnerships and improving access to venture capital.
  • Collaboration is key to mobilizing innovation
  • invest in partnerships between businesses and colleges and universities
    • Tiberius Brastaviceanu
    • Tiberius Brastaviceanu
       
      But the public and in people is still not in sight of the fed gov. 
  • Economic Action Plans (EAP) 2012 and 2013
  • provide incentive for innovative activity in firms, improved access to venture capital, augmented and more coordinated direct support to firms, and deeper partnerships and connections between the public and private sectors.
1More

Call for Papers: Defining the Spatiality of Co-Creation, Collaboration and Peer Product... - 0 views

  •  
    Another way to reuse work on the industry canada paper this one due Feb 10 in abstract, not sure of the process from there
1More

Scale of Social Structures - Tibi's Philosophy - 3 views

  •  
    "In April 2015 I was asked by Christine Koehler to write an article on value. She contacted me because she come across my work on open value networks, about a new organizational model that may be well-adapted to support large scale peer production of material goods. I accepted the challenge as an exercise to formalize the tacit knowledge that I have accumulated since 2008, when I became interested in the relation between the new digital technology and the shift of power structures in our modern society. I advise the reader not to consider this paper as a theoretical essay. This is only my effort to bring to my own consciousness the tacit knowledge that I am using in my efforts to help the development of the open value network model, and of the SENSORICA.co network/community, which is an instantiation of this model. As I get better at surfacing and formalizing these ideas, I also invite the reader to understand the heuristics behind my work. I let the reader place a judgment on the success of my work, which will make these heuristics and models that I am trying to expose here more or less interesting. Start with Scale of social structures and follow the links. "
58More

How Peer to Peer Communities will change the World - 0 views

  • role of p2p movement
  • historical role
  • horizontalisation of human relationships
  • ...55 more annotations...
  • allowing the free aggregation of individuals around shared values or common value creation
  • a huge sociological shift
  • new life forms, social practices and human institutions
  • emergent communities of practice are developing new social practices that are informed by the p2p paradigm
  • ethical revolution
  • openness
  • participation
  • inclusivity
  • cooperation
  • commons
  • the open content industry in the U.S. to reach one sixth of GDP.
  • political expressions
  • the movement has two wings
  • constructive
  • building new tools and practices
  • resistance to neoliberalism
  • we are at a stage of emergence
  • difficulty of implementing full p2p solutions in the current dominant system
  • At this stage, there is a co-dependency between peer producers creating value, and for-profit firms ‘capturing that value’, but they both need each other.
  • Peer producers need a business ecology to insure the social reproduction of their system and financial sustainability of its participants, and capital needs the positive externalities of social cooperation which flow from p2p collaboration.
  • peer producing communities should create their own ‘mission-oriented’ social businesses, so that the surplus value remains with the value creators, i.e. the commoners themselves, but this is hardly happening now.
  • Instead what we see is a mutual accomodation between netarchical capital on one side, and peer production communities on the other.
  • the horizontal meets the vertical
  • mostly hybrid ‘diagonal’ adaptations
  • For peer producers the question becomes, if we cannot create our own fully autonomous institutions, how can we adapt while maintaining maximum autonomy and sustainability as a commons and as a community.
  • Why p2p have failed to create successful alternatives in some areas?
  • In commons-oriented peer production, where people aggegrate around a common object which requires deep cooperation, they usually have their own infrastructures of cooperation and a ecology combining community, a for-benefit association managing the infrastructure, and for-profit companies operating on the market place; in the sharing economy, where individuals merely share their own expressions, third party platforms are the norm. It is clear that for-profit companies have different priorities, and want to enclose value so that it can be sold on the marketplace. This in fact the class struggle of the p2p era, the struggle between communities and corporations around various issues because of partly differential interests.
  • Even commercially controlled platforms are being used for a massive horizontalisation and self-aggregation of human relationships, and communities, including political and radical groups are effectively using them to mobilize. What’s important is not just to focus on the limitations and intentions of the platform owners, but to use whatever we can to strengthen the autonomy of peer communities.
  • requires a clever adaptation
  • use for our own benefit
  • The fact today is that capital is still capable of marshaling vast financial and material resources, so that it can create,
  • platforms that can easily and quickly offer services, creating network effects
  • without network effects, there is no ‘there’ there, just an empty potential platform.
  • p2p activists should work on both fronts
  • using mainstream platforms for spreading their ideas and culture and reach greater numbers of people, while also developing their own autonomous media ecologies, that can operate independently, and the latter is an engagement for the ‘long haul’, i.e. the slow construction of an alternative lifeworld.
  • The commons and p2p are really just different aspects of the same phenomena; the commons is the object that p2p dynamics are building; and p2p takes place wherever there are commons.
  • So both p2p and the commons, as they create abundant (digital) or sufficient (material) value for the commoners, at the same time create opportunities to create added value for the marketplace. There is no domain that is excluded from p2p, no field that can say, “we wouldn’t be stronger by opening up to participation and community dynamics”. And there is no p2p community that can say, we are in the long term fully sustainable within the present system, without extra resources coming from the market sector.
  • One trend is the distribution of current infrastructures and practices, i.e. introducing crowdsourcing, crowdfunding, social lending, digital currencies, in order to achieve wider participation in current practices. That is a good thing, but not sufficient. All the things that I mention above, move to a distributed infrastructure, but do not change the fundamental logic of what they are doing.
  • we are talking about the distribution of capitalism, not about a deeper change in the logic of our economy.
  • No matter how good you are, no matter how much capital you have to hire the best people, you cannot compete with the innovative potential of open global communities.
  • the p2p dynamics
  • the new networked culture
  • the opposite is also happening, as we outlined above, more and more commons-oriented value communities are creating their own entrepreneurial coalitions. Of course, some type of companies, because of their monopoly positions and legacy systems, may have a very difficult time undergoing that adaptation, in which case new players will appear that can do it more effectively.
  • the corporate form is unable to deal with ecological and sustainability issues, because its very DNA, the legal obligation to enrich the shareholders, makes its strive to lower input costs,  and ignore externalities.
  • we need new corporate structures, a new type of market entity, for which profit is a means, but not an end, dedicated to a ‘benefit‘, a ‘mission’, or the sustenance of a particular community and/or commons.
  • abundance destroys scarcity and therefore markets
  • open design community
  • will inherently design for sustainability
  • for inclusion
  • conceive more distributed forms of manufacturing
  • entrepreneurs attaching themselves to open design projects start working from an entirely different space, even if they still use the classic corporate form. Prevent the sharing of sustainability designs through IP monopolies is also in my view unethical and allowing such patents should be a minimalist option, not a maximalist one.
  • The high road scenario proposes an enlightened government that ‘enables and empowers’ social production and value creation and allows a much smoother transition to p2p models; the low road scenario is one in which no structural reforms take place, the global situation descends into various forms of chaos, and p2p becomes a survival and resilience tactic in extremely difficult social, political and economic circumstances.
  • accelerated end of capitalism
  • Making sure that we get a better alternative is actually the historical task of the p2p movement. In other words, it depends on us!
  • I don’t really think in terms of technological breakthroughs, because the essential one, globally networked collective intelligence enabled by the internetworks, is already behind us; that is the major change, all other technological breakthroughs will be informed by this new social reality of the horizontalisation of our civilisation. The important thing now is to defend and extend our communication and organisation rights, against a concerted attempt to turn back the clock. While the latter is really an impossibility, this does not mean that the attempts by governments and large corporations cannot create great harm and difficulties. We need p2p technology to enable the global solution finding and implementation of the systemic crises we are facing.
38More

How The Blockchain Will Transform Everything From Banking To Government To Our Identities - 1 views

  • The first generation of the Internet was a great tool for communicating, collaborating and connecting online, but it was not ideal for business. When you send and share information on the Internet, you’re not sending an original but a copy. That’s good for information — it means people have a printing press for information and that information becomes democratized — but if you want to send an asset, it’s a problem. If I send you $100 online, you need to be sure you have it and I don’t, and that I can’t spend the same $100 somewhere else. As a result, we need intermediaries to perform critical roles — to establish identity between two parties in a transaction, and to do all the settlement transaction logic, which includes record-keeping.
  • With blockchain, for the first time, we have a new digital medium for value where anyone can access anything of value — stocks, bonds, money, digital property, titles, deeds — and even things like identity and votes can be moved, stored and managed securely and privately. Trust is not established though a third party but with clever code and mass consensus using a network. That’s got huge implications for intermediaries and businesses and society at large
  • And also with government, as a central repository of information an entity that delivers services.
  • ...35 more annotations...
  • There’s an opportunity to disrupt how those organizations work. Intermediaries, though they do a good job, have a few problems — they’re centralized, which makes them vulnerable to attack or failure
  • They tax the system
  • They capture data
  • They exclude billions of people from the global economy
  • internet of value
  • With blockchain, we can go from redistributing wealth to distributing value and opportunity value fairly a priori, from cradle to grave.
  • creating a true sharing economy by replacing service aggregators like Uber with distributed applications on the blockchain
  • unleashing a new age of entrepreneurship
  • build accountable governments through transparency, smart contracts and revitalized models of democracy.
  • The virtual you is owned by large intermediaries
  • This virtual you knows more about you than you do sometimes
  • So there’s a strange phenomenon from the first generation of the Internet where the most important asset class that’s been created is data —and we don’t control it or own it.
  • individuals taking back their identity through your own personal avatar
  • The financial services industry
  • antiquated
  • a complicated machine that does a simple thing
  • settlement
  • an opportunity to profoundly change the nature of the entire industry. The Starbucks transaction should be instant.
  • At the heart of it, the financial services industry moves value.
  • so this is both an existential threat to the financial services industry and an historic opportunity.
  • Banks trade on trust
  • Within the decade, every single financial asset, which is really just a contract
  • will all move to a blockchain-based format
  • In the accounting world, a lot of firms rely on costly audits to drive their profits
  • With blockchain, you could have a third entry time-stamped in a distributed ledger that could be acceptable to any relevant stakeholders from regulators to shareholders, giving you a perfect record of the truth and thus the financial health of an organization.
  • Nobel-winning economist Ronald Coase argued that firms exist because transaction costs in an open market are greater than the cost of doing things inside the boundaries of the corporation.
  • four costs — of search, coordination, contracting and establishing trust
  • Blockchains will profoundly affect all of these.
  • you can now synthesize trust on an open platform and people who’ve never met can trust each other to do certain things. So this results in a whole number of new business models
  • It turns out the Internet of Everything needs a Ledger of Everything, because a lightbulb buying power from your neighbor’s solar panel definitely won’t use banks or the Visa network
  • Right now, governments take tax revenue from corporations, individuals, licenses and so on. All of that can change. We can first of all have transparency in a radical sense because sunlight is the best disinfectant. Secondly, we can open up governments in a different sense of sharing data.
  • governments can enable self-organization to occur in society where companies, civil society organizations, NGOs, academics, foundations, and government agencies and individual citizens ought to use this data to self-organize and create what we used to call services or forms of public value. The third one has to do with the relationship between citizens and their governments.
  • There are more opportunities to create government by the people for the people
  • Electronic voting won’t be delivered by traditional server technology because it won’t be trusted by citizens
1 - 20 of 64 Next › Last »
Showing 20 items per page