Skip to main content

Home/ qmstech2/ Group items matching "much" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
4More

Group items tagged pollution - qmstech2 | Diigo Groups - 0 views

    • filionmar99
       
      read this
  • The major challenge to using wind as a source of power is that it is intermittent and does not always blow when electricity is needed. Wind cannot be stored (although wind-generated electricity can be stored, if batteries are used), and not all winds can be harnessed to meet the timing of electricity demands. Further, good wind sites are often located in remote locations far from areas of electric power demand (such as cities).
  • Although wind power plants have relatively little impact on the environment compared to fossil fuel power plants, there is some concern over the noise produced by the rotor blades, aesthetic (visual) impacts, and birds and bats having been killed (avian/bat mortality) by flying into the rotors. Most of these problems have been resolved or greatly reduced through technological development or by properly siting wind plants.
  • ...1 more annotation...
  • A Renewable Non-Polluting Resource Wind energy is a free, renewable resource, so no matter how much is used today, there will still be the same supply in the future. Wind energy is also a source of clean, non-polluting, electricity. Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases. According to the U.S. Department of Energy, in 1990, California's wind power plants offset the emission of more than 2.5 billion pounds of carbon dioxide, and 15 million pounds of other pollutants that would have otherwise been produced. It would take a forest of 90 million to 175 million trees to provide the same air quality.
6More

Biofuels - 0 views

  • Biofuels are basically any fuel that can be burned in air to produce heat that is produced by biological means, normally by plant growth. Currently the most prominant biofuels are ethanol and bio-deisel because these can be burned in existing internal combustion engines and are thus a direct replacement for oil. The most important biofuel historically is wood with oth
  • Biofuels are currently cheaper than oil although this is only because we are seeing very high oil prices at the moment. Under what might be termed more 'normal' market conditions, biofuels lack any meaningful price advantage. Biofuel production is very labor intensive and very land intensive. Production of ethanol from sugar cane was pioneered by the Brazilians in the 1970's as a solution to an oil import bill they could ill afford. It worked for them as they have plenty of land they can convert to growing sugar cane and at the time, plenty of cheap labor with which to harvest it.
  • he simple truth is the world does not have enough land to produce anywhere near the quantity of biofuels we need to make any dent in our oil consumption. They are only in fashion now oil prices are high and it is cost effective to produce them. Sooner or later food prices will rise to such a point that biofuel production will cease to be economic.
  • ...2 more annotations...
  • In any case the current price of oil is unlikely to be sustained. Much of today's oil prices can be attributed to the geopolitical situation in the Middle East and the hording of oil both for security of supply and more recently as a hedge against the falling dollar.
  • e they cheaper than oil? That depends how you calculate the cost!
  •  
    "But herein lies the first problem with biofuels. They may be carbon nuetral but they are certainly not as green as they might be. Not if the land to grow sugar is coming from cutting down the Amazon jungle and not if vast quantities o"
7More

Alternative Fuels Data Center: Biodiesel Production and Distribution - 0 views

    • pettitmat99
       
      great photo on the production of biodeisels
  • he production process converts oils and fats into chemicals called long-chain mono alkyl esters, or biodiesel. These chemicals are also referred to as fatty acid methyl esters, and t
  • Biodiesel is produced from vegetable oils, yellow grease, and tallow.
  • ...3 more annotations...
  • Raw or refined plant oil, or recycled greases that have not been processed into biodiesel, are not biodiesel and should be avoided
  • Fats and oils (triglycerides) are much more viscous than biodiesel, and low-level vegetable oil blends can cause long-term engine deposits, ring sticking, lube-oil gelling, and other maintenance problems that can reduce engine life
  • Biodiesel is distributed from the point of production to retail fueling stations by truck, train, or barge.
  •  
    good website to find most information on biofuels
1More

Research Report: does solor powers pollution than CO2 when compared to fossil fuels? - 0 views

  • But as much as it poses a health risk, a group of researchers from the National Renewable Energy Laboratory point out that the relative risks are still light when compared to the use of fossil fuels
6More

Montana Environmental Information CenterCost of Wind vs. Fossil Fuels - MEIC - 0 views

  • Wind energy is cost-competitive with fossil fuels, especially coal. In Montana, wind energy is less expensive than coal for NorthWestern Energy--the state's largest utility.
  • ccording to the EIA, the total cost of wind energy without federal tax and other financial incentives is about 9.7 cents/kilowatt-hour. The total cost of conventional coal without federal tax and other financial incentives is about 9.4 cents/kilowatt-hour.
  • here are integration costs associated with intermittent renewable energy but unlike fossil fuels, wind (and solar and many other renewables) the fuel price stays the same: Zero.  Plus, wind-power technology has rapidly evolved. Turbines are much larger, growing from an average of 1.2 megawatts to 1.6 megawatts (a 33% increase in average capacity) in just three years.
  • ...2 more annotations...
  • When comparing the cost of wind vs. fossil fuels its important to consider  fuel costs, integration costs, operating costs, and the cost of tax incentives. Wind energy is cost-competitive with fossil fuels, especially coal. In Montana, wind energy is less expensive than coal for NorthWestern Energy--the state's largest utility. The graph below from the Montana Public Service Commission, compares the costs of various resources in NorthWestern's portfolio. Judith Gap wind facility is about $47.00/Megawatt-hour (or 4.7 cents/kilowatt-hour) and Colstrip Unit 4 is $68.00/Megawatt-hour or (6.8 cents/kilowatt hour).
  • Today's typical new turbine has a 2.3-megawatt capacity; 7-megawatt turbines will be available soon.  The newer turbines can wring more electric power out of the wind (especially at lower wind speeds) than older turbines could. The combination of greater output and greater capacity nearly offsets the materials and labor cost increases plaguing traditional resources.
  •  
    wind to fossil fuels 
6More

BBC NEWS | Technology | Wave farms show energy potential - 1 views

  • Ocean waves carry tremendous power, and could, in theory at least, provide much of the world's electricity.
  • "What gives us tremendous hope with this technology is that our opening costs are substantially below where wind power started 20, 25 years ago."
  • Wind power has reduced its cost by 80% since, as the technology has been deployed and optimised, he says.
  • ...3 more annotations...
  • Ms Pontes says wave energy could someday supply 20% of Portugal's power.
  • "That's equal to about six-and-a-half percent of our total capacity in the United States, equal to all the dams that we have in the US right now."
  • The European Union has proposed a commitment to generate 20% of its energy from renewable sources by the year 2020.
2More

http://www.nrel.gov/docs/fy06osti/39534.pdf - 0 views

    • smithree98
       
      chart that says how much energy hydrogen produces
    • smithree98
       
      not just hydyogen
1More

Solar Energy Facts - 0 views

  • he energy from the sun  varies from place to place and is very dependent on weather conditions. Without an atmosphere 1.4 KW/m2 per hour is available, but with an atmosphere we can only count on 1KW/m2 per hour in the absence of clouds. So, if asked how much 3 hours of sunlight on one square meter is worth what would you say?
3More

NRG Systems - Benefits of Wind Energy - 0 views

  • the world’s fastest growing renewable energy source for more than a decade with an average annual growth rate of over 20%.
  • increasing generating capacity by 50%. With more than 25,170 MW of wind energy
  • ind energy in the United States could provide as much as 10,777 billion kWh annually
24More

Wind Energy Basics - 5 views

  • Wind is a form of solar energy. Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and rotation of the earth. Wind flow patterns are modified by the earth's terrain, bodies of water, and vegetative cover. This wind flow, or motion energy, when "harvested" by modern wind turbines, can be used to generate electricity.
  • The terms "wind energy" or "wind power" describe the process by which the wind is used to generate mechanical power or electricity
  • The terms "wind energy" or "wind power" describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power
  • ...19 more annotations...
  • Wind turbines, like aircraft propeller blades, turn in the moving air and power an electric generator that supplies an electric current
  • Modern wind turbines fall into two basic groups; the horizontal-axis variety, like the traditional farm windmills used for pumping water, and the vertical-axis design, like the eggbeater-style Darrieus model
  • wind farm, and generate bulk electrical power
  • Utility-scale turbines range in size from 50 to 750 kilowatts. Single small turbines, below 50 kilowatts
  • Wind energy is very abundant in many parts of the United States. Wind resources are characterized by wind-power density classes, ranging from class 1 (the lowest) to class 7 (the highest). Good wind resources (e.g., class 3 and above, which have an average annual wind speed of at least 13 miles per hour) are found in many locations (see United States Wind Energy Resource Map)
  • free, renewable resource, so no matter how much is used today, there will still be the same supply in the future
  • clean, non-polluting, electricity. Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases
  • higher initial investment than fossil-fueled generators. Roughly 80% of the cost is the machinery, with the balance being site preparation and installation.
  • Although wind power plants have relatively little impact on the environment compared to fossil fuel power plants, there is some concern over the noise produced by the rotor blades, aesthetic (visual) impacts, and birds and bats having been killed (avian/bat mortality) by flying into the rotors. Most of these problems have been resolved or greatly reduced through technological development or by properly siting wind plants
  • remote locations far from areas of electric power demand (such as cities)
  • alternative uses may be more highly valued than electricity generation. However, wind turbines can be located on land that is also used for grazing or even farming
  • Wind is a form of solar energy. Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and rotation of the earth. Wind flow patterns are modified by the earth's terrain, bodies of water, and vegetative cover. This wind flow, or motion energy, when "harvested" by modern wind turbines, can be used to generate electricity.
  • The terms "wind energy" or "wind power" describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water) or a generator can convert this mechanical power into electricity to power homes, businesses, schools, and the like.
  • Wind turbines, like aircraft propeller blades, turn in the moving air and power an electric generator that supplies an electric current. Simply stated, a wind turbine is the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.
  • Modern wind turbines fall into two basic groups; the horizontal-axis variety, like the traditional farm windmills used for pumping water, and the vertical-axis design, like the eggbeater-style Darrieus model, named after its French inventor. Most large modern wind turbines are horizontal-axis turbines.
  • Wind is a form of solar energy
  • The terms "wind energy" or "wind power
  • describe the process by which the wind is used to generate mechanical power or electricity.
  • Wind turbines, like aircraft propeller blades, turn in the moving air and power an electric generator that supplies an electric current. Simply stated, a wind turbine is the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.
  •  
    "Wind is a form of solar energy. Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and rotation of the earth. Wind flow patterns are modified by the earth's terrain, bodies of water, and vegetative cover. This wind flow, or motion energy, when "harvested" by modern wind turbines, can be used to generate electricity."
  •  
    "Modern wind turbines fall into two basic groups; the horizontal-axis variety, like the traditional farm windmills used for pumping water, and the vertical-axis design, like the eggbeater-style Darrieus model, named after its French inventor. Most large modern wind turbines are horizontal-axis turbines."
14More

Wind power - Wikipedia, the free encyclopedia - 1 views

  • Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electricity, windmills for mechanical power, windpumps for water pumping or drainage, or sails to propel ships
  • Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electricity, windmills for mechanical power, windpumps for water pumping or drainage, or sails to propel ships.
  • The total amount of available power from the wind is considerably more than present human power use from all sources.[3] At the end of 2011, worldwide nameplate capacity of wind-powered generators was 238 gigawatts (GW), growing by 41 GW over the preceding year.[4] Wind power now (2010 data) has the capacity to generate 430 TWh annually, which is about 2.5% of worldwide electricity usage.[5][6] Over the past five years (2010 data) the average annual growth in new installations has been 27.6 percent. Wind power market penetration is expected to reach 3.35 percent by 2013 and 8 percent by 2018.[7][8] Several countries have already achieved relatively high levels of wind power penetration, such as 21% of stationary electricity production in Denmark,[5] 18% in Portugal,[5] 16% in Spain,[5] 14% in Ireland[9] and 9% in Germany in 2010.[5][10] As of 2011, 83 countries around the world are using wind power on a commercial basis
  • ...8 more annotations...
  • A large wind farm may consist of several hundred individual wind turbines which are connected to the electric power transmission network. Offshore wind power can harness the better wind speeds that are available offshore compared to on land, so offshore wind power’s contribution in terms of electricity supplied is higher.[11] Small onshore wind facilities are used to provide electricity to isolated locations and utility companies increasingly buy back surplus electricity produced by small domestic wind turbines. Although a variable source of power, the intermittency of wind seldom creates problems when using wind power to supply up to 20% of total electricity demand, but as the proportion rises, increased costs, a need to use storage such as pumped-storage hydroelectricity, upgrade the grid, or a lowered ability to supplant conventional production may occur.[12][13][14] Power management techniques such as excess capacity, storage, dispatchable backing supply (usually natural gas), exporting and importing power to neighboring areas or reducing demand when wind production is low, can mitigate these problems.
  • Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation, and uses little land. In operation, the overall cost per unit of energy produced is similar to the cost for new coal and natural gas installations.[15] The construction of wind farms is not universally welcomed, but any effects on the environment from wind power are generally much less problematic than those of any other power source
  • Wind is the movement of air across the surface of the Earth, affected by areas of high pressure and of low pressure.[35] The surface of the Earth is heated unevenly by the Sun, depending on factors such as the angle of incidence of the sun's rays at the surface (which differs with latitude and time of day) and whether the land is open or covered with vegetation. Also, large bodies of water, such as the oceans, heat up and cool down slower than the land. The heat energy absorbed at the Earth's surface is transferred to the air directly above it and, as warmer air is less dense than cooler air, it rises above the cool air to form areas of high pressure and thus pressure differentials. The rotation of the Earth drags the atmosphere around with it causing turbulence. These effects combine to cause a constantly varying pattern of winds across the surface of the Earth.[35]
  • Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electrical power, windmills for mechanical power, wind pumps for water pumping or drainage, or sails to propel ships.
  • Compared to the environmental impact of traditional energy sources, the environmental impact of wind power is relatively minor in terms of pollution
  • Wind energy is the kinetic energy of air in motion, also called wind
  • ind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation and uses little land.[2] The effects on the environment are generally less problematic than those from other powe
  • Wind power is very consistent from year to year but has significant variation over shorter time scales. The intermittency of wind seldom creates problems when used to supply up to 20% of total electricity demand,[5] but as the proportion increases, a need to upgrade the grid, and a lowered ability to supplant conventional production can occur.
  •  
    wind turbine stuff
  •  
    "Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electrical power, windmills for mechanical power, wind pumps for water pumping or drainage, or sails to propel ships."
  •  
    Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation and uses little land.[2] The effects on the environment are generally less problematic than those from other power sources. As of 2011, Denmark is generating more than a quarter of its electricity from wind and 83 countries around the world are using wind power on a commercial basis.[3] In 2010 wind energy production was over 2.5% of total worldwide electricity usage, and growing rapidly at more than 25% per annum. The monetary cost per unit of energy produced is similar to the cost for new coal and natural gas installations.[4]
8More

Wind Energy America - FAQs - 1 views

  • Simply put, an average one megawatt wind turbine will produce enough energy for the annual needs of 350 average households. The amount of energy produced by a turbine varies depending on several factors, namely the size and reliability of the turbine, and the speed that the wind is blowing. These factors together produce the turbine’s capacity. Typically modern turbines range in size from 660 kilowatts to over 3 megawatts of capacity. They are placed in fairly windy locations with minimum wind speeds in the range of six meters per second (around 13 miles per hour). Wind turbines generally run at 30 to 40 percent capacity, so a 1 MW turbine could produce around 3 million KWh of electricity in a year.
  • , wind energy could provide 20% of America’s electricity.
  • According to the American Wind Energy Association, the total U.S. production of wind power is around 25 gigawatts
  •  
    "Simply put, an average one megawatt wind turbine will produce enough energy for the annual needs of 350 average households. The amount of energy produced by a turbine varies depending on several factors, namely the size and reliability of the turbine, and the speed that the wind is blowing. These factors together produce the turbine's capacity. Typically modern turbines range in size from 660 kilowatts to over 3 megawatts of capacity. They are placed in fairly windy locations with minimum wind speeds in the range of six meters per second (around 13 miles per hour). Wind turbines generally run at 30 to 40 percent capacity, so a 1 MW turbine could produce around 3 million KWh of electricity in a year."
  • ...2 more comments...
  •  
    today's wind power
  •  
    How much wind power is currently being produced in the United States? According to the American Wind Energy Association, the total U.S. production of wind power is around 25 gigawatts. New wind projects made up 42% of the U.S.'s total new power-producing capacity constructed in 2008, adding 8.4GW of new facilities into the grid.
  •  
    What is wind power? Wind power is the result of using the wind to generate electricity. In the past windmills were used to grind grain or pump water. Today, a large wind turbine can power all the electricity needs of at least 350 homes.
  •  
    , wind energy could provide 20% of America's electricity. Today's wind turbines are very different from the windmills of the past. Moder
5More

Huge challenges in scaling up biofuels infrastructure - 1 views

  • Major changes will be needed to grow, handle, transport and store the immense quantities of biomass -- mostly lignocellulosic feedstocks such as switchgrass, crop residues and forest wastes -- necessary to continually feed electric power generation stations and produce biofuels for transportation,
  • converting to a system in which biomass provides much of the country's energy will require new ways of thinking about agriculture, energy infrastructure and rural economic development.
  • It is estimated that bioenergy has the potential to provide up to 60 percent of the world's primary energy, and biomass seems poised to provide a major alternative to fossil fuels,"
  • ...2 more annotations...
  • "Thus, the combination of expected growth in energy demand and the lower density of biomass imply that by 2050, biomass transport volumes will be greater than the current capacity of the entire energy and agricultural commodity infrastructure,
  • "For example, a large biofuel plant would require 16 to 20 tanker trucks or railcars per day to move the fuel to market, increasing both traffic and costs."
6More

Winds, Waves, Tides - Ocean Energy | Environmental News, Articles & Information | Globa... - 2 views

  • Can Already Cost Under $.06 per Kilowatt Hour * Pneumatic devices, such as the oscillating water column (OWC), use wave motion to compress and decompress air, and drive a turbine. * Float-based devices utilise a buoyant float moving with the waves, reacting against a sea bed anchor in order to harness energy. * Spillover devices utilise wave height to replenish a reservoir of seawater, which runs a turbine. * Raft-type devices use the relative motion of adjacent rafts or pontoons to harness wave energy. * Moving-body devices articulate in the water, inducing motion, which may be used to drive a hydraulic motor.
  • Tidal stream devices extract energy from the diurnal flow of tidal currents (caused by the gravitational pull of the moon). Unlike wind and wave power, tidal streams offer entirely predictable output. However, as the lunar cycle is of around 25 hours’ duration, the timing of peak outputs differs by around an hour each day and tidal energy cannot be guaranteed at times of peak demand.
  • However, several large grid-connected demonstration projects are expected to enter the water in the near future. Tidal stream is thus a few years behind wave energy.
  • ...3 more annotations...
  • Marine Current Turbines is about to field test a submerged 300 kW tidal turbine off Devon in the United Kingdom
  • The manufacturers of all these devices expect to deliver energy at a cost of 10-14 US cents per kWh, falling to below 6 US cents as experience grows and technologies mature
  • Power generation using wave energy is at a much earlier stage of development. Wave energy offers more predictable outputs than wind, but in early 2003 there was only around one megawatt of generating capacity installed worldwide, all of it essentially with demonstration prototypes. Proposed projects are likely to take this to about 6 MW over the next few years. The wave industry is characterised by a wide variety of novel devices
10More

EIA Energy Kids - Hydrogen - 2 views

  • Like electricity, hydrogen is a secondary source of energy. It stores and carries energy produced from other resources (fossil fuels, water, and biomass).
  • ydrogen is the simplest element. Each atom of hydrogen has only one proton. It is also the most plentiful gas in the universe. Stars like the sun are made primarily of hydrogen. The sun is basically a giant ball of hydrogen and helium gases. In the sun's core, hydrogen atoms combine to form helium atoms. This process — called fusion — gives off radiant energy.
  • Hydrogen gas is so much lighter than air that it rises fast and is quickly ejected from the atmosphere. This is why hydrogen as a gas (H2) is not found by itself on Earth. It is found only in compound form with other elements. Hydrogen combined with oxygen, is water (H2O). Hydrogen combined with carbon forms different compounds, including methane (CH4), coal, and petroleum.
  • ...6 more annotations...
  • Hydrogen has the highest energy content of any common fuel by weight
  • Like electricity, hydrogen is an energy carrier and must be produced from another substance. Hydrogen is not currently widely used, but it has potential as an energy carrier in the future. Hydrogen can be produced from a variety of resources (water, fossil fuels, or biomass) and is a byproduct of other chemical processes.
  • Steam reforming is currently the least expensive method of producing hydrogen and accounts for about 95% of the hydrogen produced in the United States. This method is used in industries to separate hydrogen atoms from carbon atoms in methane (CH4). But the steam reforming process results in greenhouse gas emissions that are linked with global warming.1
  • Electrolysis Creates No Emissions but Is Costly Electrolysis is a process that splits hydrogen from water. It results in no emissions, but it is currently an expensive process. New technologies are currently being developed.
  • Hydrogen fuel cells make electricity. They are very efficient, but expensive to build. Small fuel cells can power electric cars. Large fuel cells can provide electricity in remote places with no power lines.
  • Portable fuel cells are being sold to provide longer power for laptop computers, cell phones, and military applications.
  •  
    tells all about hydrogen
4More

Fuel Cells - Electrochemical Power - 1 views

  • Hydrogen as the Main Fuel of the Future Over the last decades hydrogen, (H2) has gained more and more attention as an environmentally friendly fuel and storage medium. Combustion of pure hydrogen produces only water as exhaust. Hydrocarbon and carbon oxide emissions can only come from motor oil in the combustion chamber. Nitrous oxide emissions result from the nitrogen content in the air and increase exponentially with the combustion temperature. By using H2 in fuel cells, practically no pollution occurs. In this respect, hydrogen offers emission levels that are much lower than existing and future standards.
  • Hydrogen is the most common of all elements in the universe.
  • The desire for a long-term transition to a hydrogen society is mainly based on the need to reduce polluting and climate-affecting emissions and the concern about depletion of fossil fuel resources. Today about 90 % of the world's energy consumption is covered by fossil fuels, and most of this comes from a limited number of regions in the world. Even if hydrogen will be used on a large scale in the future, there is still a need for an energy source to produce it. Renewable energy technology such as hydro electricity, wind, wave and solar power are in principle available, but are not yet mature for mass production and/or fully developed. 
  •  
    Most quality online stores. Know whether you are a trusted online retailer in the world. Whatever we can buy very good quality. and do not hesitate. Everything is very high quality. Including clothes, accessories, bags, cups. Highly recommended. This is one of the trusted online store in the world. View now www.retrostyler.com
1More

Fuel Cells 2000 : Hydrogen : Basics - 1 views

  • How much will Hydrogen fuel cost? The U.S. Department of Energy's Hydrogen, Fuel Cells & Infrastructure Technologies Program is working to achieve the following goals: By 2005, the technology will be available to produce hydrogen at the pump for $3.00 per gallon gasoline equivalent, and DOE wants to validate this technology by 2008.  By 2010, the price goal is $1.50 per gallon of gasoline equivalent (untaxed) at the station. Even $3 a gallon would save most of us money, since FCVs will be two to three times more efficient than internal combustion engine (ICE) vehicles.  If all the goals are met, FCVs offer the promise of energy at $1 a gallon - or less! 
2More

NREL: Learning - Biomass Energy Basics - 0 views

  • The use of biomass energy has the potential to greatly reduce greenhouse gas emissions. Burning biomass releases about the same amount of carbon dioxide as burning fossil fuels. However, fossil fuels release carbon dioxide captured by photosynthesis millions of years ago—an essentially "new" greenhouse gas. Biomass, on the other hand, releases carbon dioxide that is largely balanced by the carbon dioxide captured in its own growth (depending how much energy was used to grow, harvest, and process the fuel).
  •  
    Most quality online stores. Know whether you are a trusted online retailer in the world. Whatever we can buy very good quality. and do not hesitate. Everything is very high quality. Including clothes, accessories, bags, cups. Highly recommended. This is one of the trusted online store in the world. View now www.retrostyler.com
13More

Energy Resources: Biofuels - 2 views

  • By "biofuels" on this page, I mean fuels for vehicles, such as "biodiesel" and "bioethanol" - although you can also use the term "biofuel" to cover any kind of fuel made from living materials or their waste.
  • How it works Biofuels are made from two main sources: Growing crops such as corn, sugar cane, soya or rapeseed; or from palm oil Growing algae
  • Biofuels are made from two main sources: Growing crops such as corn, sugar cane, soya or rapeseed; or from palm oil Growing algae
  • ...9 more annotations...
  • iofuels are potentially carbon-neutral, because although carbon dioxide is released when we burn them, carbon dioxide is taken in by the plants as they grow. However, energy is needed to grow the crops, harvest them, and to process the results into usable products - and most of this energy will be from fossil fuels for farm machinery and power stations.
  • Biofuels are potentially carbon-neutral, because although carbon dioxide is released when we burn them, carbon dioxide is taken in by the plants as they grow. However, energy is needed to grow the crops, harvest them, and to process the results into usable products - and most of this energy will be from fossil fuels for farm machinery and power stations.
  • Producing biofuels from crops means using large amounts of land to grow those crops - that means less land for food production. We must be careful to strike a balance between crops ofr fuel and crops for food.
  • Producing biofuels from crops means using large amounts of land to grow those crops - that means less land for food production. We must be careful to strike a balance between crops ofr fuel and crops for food.
  • Algae - that's pond scum - are microscopic water plants. They reproduce and photosynthesise fast, and the algae are then filtered out of the water and the lipids (oils) are used to make biodiesel.
  • It is claimed that growing plants to make biofuels will take in that carbon dioxide again. But biologists tell us that forests are not 'the lungs of the planet' after all - they give out as much CO2 as they absorb as the plants respire. It seems that it's plant plankton in the oceans that takes in most CO2 and gives out most oxygen.
  • It takes huge areas of land in order to grow crops for biofuels, although making biofuels from algae does not have this problem
  • Biofuel production is closer to being carbon-neutral than using fossil fuels.
  • Is it renewable? Biofuels are renewable, we can plant more of the crops or grow more of the algae.
  •  
    Most quality online stores. Know whether you are a trusted online retailer in the world. Whatever we can buy very good quality. and do not hesitate. Everything is very high quality. Including clothes, accessories, bags, cups. Highly recommended. This is one of the trusted online store in the world. View now www.retrostyler.com
6More

Tidal power - Wikipedia, the free encyclopedia - 1 views

  • The first tidal power station was the Rance tidal power plant built over a period of 6 years from 1960 to 1966 at La Rance, France.[8] It has 240 MW installed capacity.
  • Historically, tide mills have been used, both in Europe and on the Atlantic coast of North America. The incoming water was contained in large storage ponds, and as the tide went out, it turned waterwheels that used the mechanical power it produced to mill grain. [1] The earliest occurrences date from the Middle Ages, or even from Roman times.[2][3] It was only in the 19th century that the process of using falling water and spinning turbines to create electricity was introduced in the U.S. and Europe.[
  • Tides are more predictable than wind energy and solar power.
  • ...3 more annotations...
  • relatively high cost and limited availability of sites with sufficiently high tidal ranges or flow velocities, thus constricting its total availability. However, many recent technological developments and improvements, both in design (e.g. dynamic tidal power, tidal lagoons) and turbine technology (e.g. new axial turbines, cross flow turbines), indicate that the total availability of tidal power may be much higher than previously assumed
  • Tidal stream generator Main article: Tidal stream generator Tidal stream generators (or TSGs) make use of the kinetic energy of moving water to power turbines, in a similar way to wind turbines that use wind to power turbines. Some tidal generators can be built into the structures of existing bridges, involving virtually no aesthetic problems. Likewise, “tidal bridging” is a relatively new advancement that is gaining recognition as a more practical and beneficial way to generate tidal power. Blue Energy Canada is a company that is focused on building bridges to match today's demands. [9]
  • The first study of large scale tidal power plants was by the US Federal Power Commission in 1924 which if built would have been located in the northern border area of the US state of Maine and the south eastern border area of the Canadian province of New Brunswick, with various dams, powerhouses and ship locks enclosing the Bay of Fundy and Passamaquoddy Bay (note: see map in reference). Nothing came of the study and it is unknown whether Canada had been approached about the study by the US Federal Power Commission.[10] There was also a report on the international commission in April 1961 entitled " Investigation of the International Passamaquoddy Tidal Power Project" produced by both the US and Canadian Federal Governments.
« First ‹ Previous 61 - 80 of 91 Next ›
Showing 20 items per page