Skip to main content

Home/ qmstech2/ Group items tagged 2

Rss Feed Group items tagged

westkea00

Ocean Wave Energy Power Technology - History - 0 views

  • Currently, numerous wave power plants (so called wave farms) have been implemented throughout the world. Many different organizations have designed various wave power systems that differ in size, cost, and effectiveness. A wave farm is a collection of wave power systems in order to create mass quantities of power. One example of a wave power plant is the Aguçadoura Wave Farm in Portugal from Pelamis Wave Power Ltd. It is the first wave farm ever established and produces 2.25 megawatts of power. It was completed in 2008. Other wave farms, with other companies involved, have been proposed.
  • Wave energy is about using the energy of ocean waves for producing electrical current. It is a renewable energy resource and often confused with Tidal Power.
  • Wave energy is considered a form of hydropower, although it is the wind blowing over the surface of the ocean causing waves. So in many ways, wave energy is also wind energy - with all the pros and cons.
  • ...3 more annotations...
  • In contrast to tidal power, ocean wave energy plants do not make use of the energy difference between high tide and low tide, but generating energy from continuous wave motion. So, wave energy generation is the conversion of the forces from the motion of waves into usable energy.
  • Wave power generation has been tested over the past century as an alternative energy source to fossil fuels to create electrical power, sea water desalinization, and reservoir pumping. Unfortunately, despite of all examinations and tests, the price for generating energy from ocean waves is still about twice as high as that of wind energy. Companies involved in wave energy generation hope to be able to cut 50% of the costs within the next couple of years.
  • During the 1970's gasoline crisis, wave power was pushed in order to be a good long term energy solution. Later, the energy crisis was resolved yet the leaps and bounds made in the innovation of wave power remained. Though there were not many wave power plants actually implemented, it has proven to be a benefit to modern resolutions with current power crises. Fuel prices are rising exponentially and the greenhouse effect is having potentially disastrous effects on the environment. There has never been more need for alternatives to fossil generated energy.
dpurdy

How we know human activity is causing warming | Environmental Defense Fund - 1 views

  • The theory of global warming is nothing new. The Nobel Prize-winning chemist Svante Arrhenius first proposed the idea of global warming in 1896. Carbon dioxide, he knew, traps heat in the Earth's atmosphere. He also knew that burning coal and oil releases carbon dioxide (CO2).
mosherrya99

Hydrogen FAQ - 0 views

  • The cost of hydrogen per mile to power a fuel cell electric vehicle is approximately competitive with the cost of gasoline at $2.30/gallon. This assumes that the hydrogen is made by reforming natural gas at the fueling station with existing commercial hydrogen fueling equipment in low production volumes (10 units). With larger scale production, we estimate that hydrogen will cost less per mile than gasoline selling at $1.50/gallon.
demboskiemm00

Solar power in the United States - Wikipedia, the free encyclopedia - 0 views

  • Solar potential from very large scale solar power plants State Land used (sq mi) Potential (GWp) Annual generation (TWh) Arizona 19,279 2,468 5,837 California 6,853 877 2,075 Colorado 2,124 272 643 Nevada 5,589 715 1,692 New Mexico 15,156 1,940 4,588 Texas 1,162 149 351 Utah 3,564 456 1,079
  • 6,877
  • Total generation in the United States is about 3,800 TWh.[11]
  • ...1 more annotation...
  • ) systems. This was double the 435 MW installed in 2009 around the U.S.[16] According to a 2011 survey conducted by independent polling firm Kelton Research, nine out of 10 Americans support the use and development of solar technology. Eight out of 10 respondents indicated that "the federal government should support solar manufacturing in the U.S. and should give federal subsidies for solar energy".[17] According to the Energy Information Administration, in 2010, subsidies to the solar power industry amounted to 8.2% ($968 million) of all federal subsidies for electricity generation.[18] Solar Energy Industries Association and GTM Research found that the amount of new solar electric capacity increased in 2012 by 76 percent from 2011, raising the United States’ market share of the world’s installations above 10 percent, up from roughly 5 to 7 percent in the last seven years. [19]
  •  
    "Total: 42,554 MW - 76,577 MW, depending on the technology used"
egglestonjoc98

How much energy can a wind farm produce? - Curiosity - 0 views

  • At 1.8 megawatts, that turbine produces 5.2 million kilowatt-hours of electricity, enough power for 600 households. As more turbines are grouped together, they collect more energy from the available wind.
filionmar99

Group items tagged pollution - qmstech2 | Diigo Groups - 0 views

    • filionmar99
       
      read this
  • The major challenge to using wind as a source of power is that it is intermittent and does not always blow when electricity is needed. Wind cannot be stored (although wind-generated electricity can be stored, if batteries are used), and not all winds can be harnessed to meet the timing of electricity demands. Further, good wind sites are often located in remote locations far from areas of electric power demand (such as cities).
  • Although wind power plants have relatively little impact on the environment compared to fossil fuel power plants, there is some concern over the noise produced by the rotor blades, aesthetic (visual) impacts, and birds and bats having been killed (avian/bat mortality) by flying into the rotors. Most of these problems have been resolved or greatly reduced through technological development or by properly siting wind plants.
  • ...1 more annotation...
  • A Renewable Non-Polluting Resource Wind energy is a free, renewable resource, so no matter how much is used today, there will still be the same supply in the future. Wind energy is also a source of clean, non-polluting, electricity. Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases. According to the U.S. Department of Energy, in 1990, California's wind power plants offset the emission of more than 2.5 billion pounds of carbon dioxide, and 15 million pounds of other pollutants that would have otherwise been produced. It would take a forest of 90 million to 175 million trees to provide the same air quality.
cheniermab99

Wind Power: clean, sustainable, and affordable | Union of Concerned Scientists - 0 views

  • Wind power generates electricity with... No air emissions No fuel to mine, transport, or store No cooling water No water pollution No wastes
  • Wind power can reduce pollution generated by fossil fuels such as coal, oil, and gas. A typical (750 kW) wind turbine provides enough power for 328 typical (non-electric heating) homes.
  • Wind power can reduce pollution generated by fossil fuels such as coal, oil, and gas. A typical (750 kW) wind turbine provides enough power for 328 typical (non-electric heating) homes.
  • ...6 more annotations...
  • Wind power can reduce pollution generated by fossil fuels such as coal, oil, and gas. A typical (750 kW) wind turbine provides enough power for 328 typical (non-electric heating) homes.
  • No fuel to mine, transport, or store
  • Wind power can reduce pollution generated by fossil fuels such as coal, oil, and gas.
  • Wind power can reduce pollution generated by fossil fuels such as coal, oil, and gas.
  • Wind power can reduce pollution generated by fossil fuels such as coal, oil, and gas
  • Wind power can reduce pollution generated by fossil fuels such as coal, oil, and gas
pettitmat99

2 studies conclude that biofuels are not so green after all - The New York Times - 0 views

  • most all biofuels used today cause more greenhouse gas emissions than conventional fuels if the pollution caused by producing these "green" fuels is taken into account, two studies published Thursday have concluded.
  • The benefits of biofuels have come under increasing attack in recent months as scientists have evaluated the global environmental cost of their production. The new studies, published by the journal Science, are likely to add to the controversy.
  • When you take this into account, most of the biofuel that people are using or planning to use would probably increase greenhouse gasses substantially," sai
  • ...5 more annotations...
  • t even that equation proved overly simplistic because the process of turning plants into fuel causes it own emissions - through refining and transport, for example
  • If vegetable oil prices go up globally, as they have because of increased demand for biofuel crops, new land is inevitably cleared as farmers in developing countries switch production. Crops from old plantations and fields go to Europe for biofuels, but new fields and plantations are created to feed people at home.
    • pettitmat99
       
      GR8 info on pollution of biofuels
  • ut the new studies suggested that when land use is taken into account few, if any biofuels, will be acceptable.
  • d: "If the whole point of biofuels directives was to reduce greenhouse gas emissions, we've found out that most biofuels are not really better than conventional fuels at that."
dpurdy

Solar Electricity and how it works - Photovoltaic Systems and Components, Grid-Connecte... - 0 views

  • A valuable feature of photovoltaic systems is the ability to connect with the existing power grid which allows owners to sell excessive electricity back to the utility with a plan known as (5) Net Metering. At times when you are not using all of the electricity produced by your system, your meter will spin backwards selling the electricity back to the (6) utility power grid at retail rate.
  • (1) Solar Electric or PV modules convert sunlight to electricity. The PV modules generate DC electricity - or direct current - sending it to the inverter. (2) The inverter transforms the DC power into AC electricity for ordinary household needs. (3) Existing electrical panel distributes solar electricity and utility power to (4) loads (appliances). For systems with a battery backup (optional), the inverter also regulates the charge of batteries. The electricity stored in the batteries can be used at night or during blackouts.
    • dpurdy
       
      Great video showing solar cell (photovoltaic) in action.
  •  
    Solar is not always connected to grid. Sometimes there are batteries, otherwise your system is connected to grid to share excess electricity.
logansar99

BBC NEWS | Technology | Wave farms show energy potential - 1 views

  • Ocean waves carry tremendous power, and could, in theory at least, provide much of the world's electricity.
  • "What gives us tremendous hope with this technology is that our opening costs are substantially below where wind power started 20, 25 years ago."
  • Wind power has reduced its cost by 80% since, as the technology has been deployed and optimised, he says.
  • ...3 more annotations...
  • Ms Pontes says wave energy could someday supply 20% of Portugal's power.
  • "That's equal to about six-and-a-half percent of our total capacity in the United States, equal to all the dams that we have in the US right now."
  • The European Union has proposed a commitment to generate 20% of its energy from renewable sources by the year 2020.
dpurdy

Wind Energy Basics - 1 views

  • The major challenge to using wind as a source of power is that it is intermittent and does not always blow when electricity is needed. Wind cannot be stored (although wind-generated electricity can be stored, if batteries are used), and not all winds can be harnessed to meet the timing of electricity demands. Further, good wind sites are often located in remote locations far from areas of electric power demand (such as cities).
  • Although wind power plants have relatively little impact on the environment compared to fossil fuel power plants, there is some concern over the noise produced by the rotor blades, aesthetic (visual) impacts, and birds and bats having been killed (avian/bat mortality) by flying into the rotors. Most of these problems have been resolved or greatly reduced through technological development or by properly siting wind plants.
  • A Renewable Non-Polluting Resource Wind energy is a free, renewable resource, so no matter how much is used today, there will still be the same supply in the future. Wind energy is also a source of clean, non-polluting, electricity. Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases. According to the U.S. Department of Energy, in 1990, California's wind power plants offset the emission of more than 2.5 billion pounds of carbon dioxide, and 15 million pounds of other pollutants that would have otherwise been produced. It would take a forest of 90 million to 175 million trees to provide the same air quality.
  • ...7 more annotations...
  • Cost Issues Even though the cost of wind power has decreased dramatically in the past 10 years, the technology requires a higher initial investment than fossil-fueled generators. Roughly 80% of the cost is the machinery, with the balance being site preparation and installation. If wind generating systems are compared with fossil-fueled systems on a "life-cycle" cost basis (counting fuel and operating expenses for the life of the generator), however, wind costs are much more competitive with other generating technologies because there is no fuel to purchase and minimal operating expenses.
    • dpurdy
       
      Good point for how we will need to change in future! To get more wind energy.
  • Wind energy is very abundant in many parts of the United States. Wind resources are characterized by wind-power density classes, ranging from class 1 (the lowest) to class 7 (the highest). Good wind resources (e.g., class 3 and above, which have an average annual wind speed of at least 13 miles per hour) are found in many locations
  • Wind speed is a critical feature of wind resources,
  • In other words, a stronger wind means a lot more power.
  • Horizontal turbine components include: blade or rotor, which converts the energy in the wind to rotational shaft energy; a drive train, usually including a gearbox and a generator; a tower that supports the rotor and drive train; and other equipment, including controls, electrical cables, ground support equipment, and interconnection equipment. Wind turbine diagram - click for enlarged image.
  • Wind is a form of solar energy. Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and rotation of the earth. Wind flow patterns are modified by the earth's terrain, bodies of water, and vegetative cover.
  • How Wind Power Is Generated The terms "wind energy" or "wind power" describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power.
gillinghammic98

How Solar Energy Works | Union of Concerned Scientists - 0 views

  • By the time it reaches Earth's surface, the energy in sunlight has fallen to about 1,000 watts per square meter at noon on a cloudless day. Averaged over the entire surface of the planet, 24 hours per day for a year, each square meter collects the approximate energy equivalent of almost a barrel of oil each year, or 4.2 kilowatt-hours of energy every day. Deserts, with very dry air and little cloud cover, receive the most sun—more than six kilowatt-hours per day per square meter. Northern climates, such as Boston, get closer to 3.6 kilowatt-hours. Sunlight varies by season as well, with some areas receiving very little sunshine in the winter. Seattle in December, for example, gets only about 0.7 kilowatt-hours per day. It should also be noted that these figures represent the maximum available solar energy that can be captured and used, but solar collectors capture only a portion of this, depending on their efficiency. For example, a one square meter solar electric panel with an efficiency of 15 percent would produce about one kilowatt-hour of electricity per day in Arizona.
efana1

Solar Panels: Tomorrow's Toxic Waste? | Mother Jones - 0 views

  • their products contain lead, a potent neurotoxin
  • contain cadmium, a known carcinogen.
  • nitrogen triflouride, a potent greenhouse gas
  • ...1 more annotation...
  • 1.5 billion pounds of solar panel waste containing 2 million pounds of lead and 600,000 pounds of cadmium will be disposed of in California alone.
tillmanash98

Biofuel potential is bleak - 3 views

  • 12.48 billion gal of ethanol
  • The 2004 US corn crop totaled about 11.7 billion bushels,
  • The entire 2004 US corn and soybean crop, converted to biomass fuels, could replace about 10.41 billion gal of petroleum (7.6 billion as ethanol and 2.81 billion as biodiesel).
  • ...3 more annotations...
  • The US consumed about 7.49 billion bbl of petroleum last year,
  • This means that the total biofuel potential of the record 2004 US corn and soybean harvests would offset about 12 days of US petroleum consumption, or about 3.3% of our total yearly petroleum consumption
  • Given that most of the US corn and soybean crop is already committed to other uses, this analysis indicates that biomass-based fuels will have a negligible role in reducing US petroleum consumption, which in turn underscores that replacing petroleum in the US economy will be a monumental challenge.
  •  
    The 2004 US corn crop totaled about 11.7 billion bushels, the largest ever
dpurdy

Hydrogen vehicle - Wikipedia, the free encyclopedia - 2 views

  • As of October 2009, Fortune magazine estimated the cost of producing the Honda Clarity at $300,000 per car
  • by 2010, the Department of Energy estimated that the cost had fallen 80% and that such fuel cells could be manufactured for $51/kW,
  • When compared to ICE vehicles using gasoline, however, fuel cell vehicles using hydrogen produced from natural gas reduce greenhouse gas emissions by 60%
  • ...6 more annotations...
    • dpurdy
       
      so an internal combustion engine releases more co2 than a fuel cell that uses natural gas as its hydrogen source. 
  • Hydrogen fuel does not occur naturally on Earth and thus is not an energy source, but is an energy carrier. Currently it is most frequently made from methane or other fossil fuels. However, it can be produced from a wide range of sources (such as wind, solar, or nuclear) that are intermittent, too diffuse or too cumbersome to directly propel vehicles. Integrated wind-to-hydrogen plants, using electrolysis of water, are exploring technologies to deliver costs low enough, and quantities great enough, to compete with traditional energy sources.[1]
  • While methods of hydrogen production that do not use fossil fuel would be more sustainable
  • The challenges facing the use of hydrogen in vehicles include production, storage, transport and distribution.
  • The hydrogen infrastructure consists mainly of industrial hydrogen pipeline transport and hydrogen-equipped filling stations like those found on a hydrogen highway. Hydrogen stations which are not situated near a hydrogen pipeline can obtain supply via hydrogen tanks, compressed hydrogen tube trailers, liquid hydrogen tank trucks or dedicated onsite production.
  • Hydrogen fuel does not occur naturally on Earth and thus is not an energy source, but is an energy carrier. Currently it is most frequently made from methane or other fossil fuels. However, it can be produced from a wide range of sources (such as wind, solar, or nuclear) that are intermittent, too diffuse or too cumbersome to directly propel vehicles. Integrated wind-to-hydrogen plants, using electrolysis of water, are exploring technologies to deliver costs low enough, and quantities great enough, to compete with traditional energy sources.[2]
  •  
    Fuel cell cars are expensive.  The fuel cell costs a lot
geczyluk99

Fuel Cell Vehicles: Challenges - 1 views

  • Fuel cell system costs have decreased significantly over the past several years but are still nearly twice as high as those for internal combustion engines. Likewise, onboard hydrogen storage costs are currently $15–$18/kWh for high-pressure gaseous storage, while the commercialization target is $2/kWh. There is potential to reduce this cost using lower-cost carbon fiber tanks or materials-based storage technologies, such as metal hydrides.
    • dpurdy
       
      as noted in the graph. the cost has been coming down. If it keeps on dropping it will be a good system in the future.
    • dpurdy
       
      Just click on the more link. 
  • FCVs will have to offer consumers a viable alternative, especially in terms of performance, durability, and cost, to survive in this ultra-competitive market.
  •  
    Cost per kilowat to generate/
  •  
    today hindi news,today news talmi,hindi news www.killdo.de.gg
conboyeri98

Fuel cell - Wikipedia, the free encyclopedia - 0 views

  • A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.[1] Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used. Fuel cells are different from batteries in that they require a constant source of fuel and oxygen to run, but they can produce electricity continually for as long as these inputs are supplied
  • A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.
  • A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.[1] Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used. Fuel cells are different from batteries in that they require a constant source of fuel and oxygen to run, but they can produce electricity continually for as long as these inputs are supplied.
  • ...8 more annotations...
  • A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent
  • There are many types of fuel cells, but they all consist of an anode (negative side), a cathode (positive side) and an electrolyte that allows charges to move between the two sides of the fuel cell.
  • The principle of the fuel cell was discovered by German scientist Christian Friedrich Schönbein in 1838
  • Stationary fuel cells are used for commercial, industrial and residential primary and backup power generation. Fuel cells are very useful as power sources in remote locations, such as spacecraft, remote weather stations, large parks, communications centers, rural locations including research stations, and in certain military applications. A fuel cell system running on hydrogen can be compact and lightweight, and have no major moving parts. Because fuel cells have no moving parts and do not involve combustion, in ideal conditions they can achieve up to 99.9999% reliability.[49] This equates to less than one minute of downtime in a six-year period.
  • Although there are currently no Fuel cell vehicles available for commercial sale, over 20 FCEVs prototypes and demonstration cars have been released since 2009. Demonstration models include the Honda FCX Clarity, Toyota FCHV-adv, and Mercedes-Benz F-Cell.[64] As of June 2011 demonstration FCEVs had driven more than 4,800,000 km (3,000,000 mi), with more than 27,000 refuelings.[65]
  • A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.[1] Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used.
  • The fuel cell he made used similar materials to today's phosphoric-acid fuel cell.
  • In 2003, U.S. President George W. Bush proposed the Hydrogen Fuel Initiative (HFI). This aimed at further developing hydrogen fuel cells and infrastructure technologies with the goal of producing commercial fuel cell vehicles. By 2008, the U.S. had contributed 1 billion dollars to this project
  •  
    "A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.[1] Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used. Fuel cells are different from batteries in that they require a constant source of fuel and oxygen to run, but they can produce electricity continually for as long as these inputs are supplied."
  • ...1 more comment...
  •  
    Explains what a fuel cell is.
  •  
    "Individual fuel cells produce relatively small electrical potentials, about 0.7 volts, so cells are "stacked", or placed in series, to increase the voltage and meet an application's requirements.[2] In addition to electricity, fuel cells produce water, heat and, depending on the fuel source, very small amounts of nitrogen dioxide and other emissions. The energy efficiency of a fuel cell is generally between 40-60%, or up to 85% efficient if waste heat is captured for use."
  •  
    "A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.[1] Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used."
camptif97

Fuel cell - Wikipedia, the free encyclopedia - 0 views

  • a fuel cell power plant using natural gas as a hydrogen source would create less than one ounce of pollution (other than CO2) for every 1,000 kW produced, compared to 25 pounds of pollutants generated by conventional combustion systems
  • Fuel Cells also produce 97% less nitrogen oxide emissions then conventional coal-fired power plants.
« First ‹ Previous 61 - 80 of 97 Next ›
Showing 20 items per page