In the field of medical device development there are a number of factors generally recognised as being important for success. Among these are the biocompatibility, sterility, reliability and adaptability of materials to their surroundings. Without a suitable approach to these issues, the majority of medical devices will not be as successful as they could be. Biocompatibility of materials, in particular, is a critical factor in the development and application of permanent and temporary implants and other devices such as catheters and tubes that are to be used in and around the body. Coating technology is the obvious and ideal solution for separating the bulk properties of a material or device from direct interaction with its surroundings. The independent modification of surface and bulk properties widens the range of features that can be incorporated into products. Bulk properties are responsible for characteristics such as mechanical strength. A suitable coating will enhance the interaction of the device with its surroundings. For example, it will provide drug-elusion (stents), anti-fouling and antibacterial properties, and a hydrophobic self-cleaning surface, referred to as lotus coating.1 The lotus effect in material science is the observed self-cleaning property found with lotus plants. A coating with this effect will make surfaces self-cleaning and will decrease the need for active cleaning of the subsequent surface; it may even enhance the sterility of surfaces.
Recently there have been some interesting developments in materials and coatings based on organic and inorganic components, which are responsible for current state-of-the-art devices. Examples include coatings for stents that provide multiple therapeutic effects in thinner layers and coatings with better adhesion to device surfaces. The future holds the promise of even greater functionality for medical coatings.
Contents contributed and discussions participated by William C
1 - 10 of 10
Showing 20▼ items per page