Skip to main content

Home/ Peppers_Biology/ Group items tagged SNP

Rss Feed Group items tagged

Lottie Peppers

Genetics of bipolar disorder - 0 views

  •  
    Bipolar disorder is a common, complex genetic disorder, but the mode of transmission remains to be discovered. Many researchers assume that common genomic variants carry some risk for manifesting the disease. The research community has celebrated the first genome-wide significant associations between common single nucleotide polymorphisms (SNPs) and bipolar disorder. Currently, attempts are under way to translate these findings into clinical practice, genetic counseling, and predictive testing. However, some experts remain cautious. After all, common variants explain only a very small percentage of the genetic risk, and functional consequences of the discovered SNPs are inconclusive. Furthermore, the associated SNPs are not disease specific, and the majority of individuals with a "risk" allele are healthy. On the other hand, population-based genome-wide studies in psychiatric disorders have rediscovered rare structural variants and mutations in genes, which were previously known to cause genetic syndromes and monogenic Mendelian disorders.
Lottie Peppers

Personal DNA Testing | Science | Classroom Resources | PBS Learning Media - 0 views

  •  
    This video segment adapted from NOVA scienceNOW examines the realm of personal DNA testing. It describes the latest tests, which look for single-nucleotide polymorphisms (SNPs). These single-letter differences in DNA sequence make humans unique from one another but may also predispose people to certain diseases. The video also discusses the Personal Genome Project, an extension of the Human Genome Project aimed at determining the root causes of many common diseases. The Personal Genome Project takes into account personal genomics as well as lifestyle information, such as one's living environment, habits, and behaviors.
Lottie Peppers

Home | 1000 Genomes - 0 views

  •  
    The 1000 Genomes Project is an international collaboration to produce an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts. This resource will support genome-wide association studies and other medical research studies. The genomes of about 2500 unidentified people from about 25 populations around the world will be sequenced using next-generation sequencing technologies. The results of the study will be freely and publicly accessible to researchers worldwide. Further information about the project is available in the About tab. Information about downloading, browsing or using the 1000 Genomes data is available in the Data tab.
Lottie Peppers

Living in a Genomic World - National Center for Case Study Teaching in Science - 0 views

  •  
    This directed case study was developed in order to present genomic data to students, allow them to interpret the impact of genetic variations on phenotype, and to explore precision medicine. Students are introduced to "Josie," a college sophomore who decides to have her genome sequenced after learning about genome-wide association studies (GWAS) in class. As students work  through the case, they learn about the different technologies that can be used in GWAS studies and interpret Josie's results for a subset of genetic markers that affect a range of traits from pharmacogenetics to disease risk alleles and non-pathogenic traits. Students are confronted with ethical issues such as duty to inform, actionable results, and variants of unknown significance (VUS). Students are also asked to reflect on their feelings about getting genomic testing for themselves. An optional activity for advanced students (included in the teaching notes) involves using the Gene database at NCBI to explore variants of the CYP2C9 gene. The case study is appropriate for use in undergraduate genetics or molecular biology classrooms.
1 - 4 of 4
Showing 20 items per page