Skip to main content

Home/ Peppers_Biology/ Group items tagged chromosomal mutations

Rss Feed Group items tagged

Lottie Peppers

Evolution of the Y Chromosome | HHMI's BioInteractive - 2 views

  •  
    The Y chromosome is only one-third the size of the X. Although the Y has a partner in X, only the tips of these chromosomes are able to recombine. Thus, most of the Y chromosome is inherited from father to son in a pattern resembling asexual, not sexual, reproduction. No recombination means no reassortment, so deleterious mutations have no opportunity to be independently selected against. The Y chromosome therefore tends to accumulate changes and deletions faster than the X. Degradation doesn't occur in X chromosomes because during female meiosis, the X has the other X as a full partner in recombination.
Lottie Peppers

Mutations: The Potential Power of a Small Change - YouTube - 0 views

  •  
    The Amoeba Sisters discuss gene and chromosome mutations and explore the significance of these changes.
Lottie Peppers

Mutations - YouTube - 0 views

  •  
    Paul Andersen describes the major mutations found in the living world. He starts with an analogy comparing the information in DNA with the information in a recipe. Changes in the DNA can result in changes to the protein, like changes in the recipe can result in changes in the food. He describes the three major point mutations; substitutions, deletions and insertions. He also describes several chromosomal mutations.
Lottie Peppers

What is a gene mutation and how do mutations occur? - Genetics Home Reference - 1 views

  •  
    A gene mutation is a permanent alteration in the DNA sequence that makes up a gene, such that the sequence differs from what is found in most people. Mutations range in size; they can affect anywhere from a single DNA building block (base pair) to a large segment of a chromosome that includes multiple genes.
Lottie Peppers

Magic Bullets - National Center for Case Study Teaching in Science - 1 views

  •  
    This clicker case was designed to teach students about basic enzyme structure, mechanisms of enzyme inhibition, and mechanisms of drug resistance. The story follows Oliver Casey, a patient afflicted with Chronic Myelogenous Leukemia (CML). CML is caused by a chromosomal mutation that affects the tyrosine kinase ABL, an enzyme important in regulating cell growth and proliferation. The chromosomal mutation gives rise to the BCR-ABL fusion gene that produces a constitutively active ABL kinase, which causes the leukemia. In May 2001, the Food and Drug Administration approved the use of a rationally designed tyrosine kinase inhibitor, imatinib (Gleevec®), for the treatment of CML. During that same month, Gleevec made the cover of TIME magazine, described as "new ammunition in the war on cancer." The case is structured for a flipped classroom environment in which students view preparatory videos (including one by the author) on their own before beginning the case. Written for a first-year introductory biology course, the case could also be adapted for AP/Honors high school biology or a cancer biology course.
Lottie Peppers

Technical approaches for mouse models of human disease - 0 views

  •  
    The mouse is the leading organism for disease research. A rich resource of genetic variation occurs naturally in inbred and special strains owing to spontaneous mutations. However, one can also obtain desired gene mutations by using the following processes: targeted mutations that eliminate function in the whole organism or in a specific tissue; forward genetic screens using chemicals or transposons; or the introduction of exogenous transgenes as DNAs, bacterial artificial chromosomes (BACs) or reporter constructs. The mouse is the only mammal that provides such a rich resource of genetic diversity coupled with the potential for extensive genome manipulation, and is therefore a powerful application for modeling human disease.
Lottie Peppers

Cancer Discovery Activities | HHMI BioInteractive - 0 views

  •  
    Students begin by watching the online video clip and completing a worksheet. After that assignment, instructors can decide which of the two activities (or both!) to use in class. In Activity 1, students identify the locations on chromosomes of genes involved in cancer, using a set of 139 "Cancer Gene Cards" and associated posters. In Activity 2, students explore the genetic basis of cancer by examining cards that list genetic mutations found in the DNA of actual cancer patients. Small-group work spurs discussion about the genes that are mutated in different types of cancers and the cellular processes that the affected genes control. The Activity 1 and 2 Overview document provides short summaries of the two activities along with key concepts and learning objectives, background information, references and rubrics, and answers to students' questions. Both cancer discovery activities are appropriate for first-year high school biology (honors or regular), AP and IB Biology. Activity 2 is also appropriate for an undergraduate freshman biology class.
Lottie Peppers

The Face of a Rare Genetic Disease - National Center for Case Study Teaching in Science... - 0 views

  •  
    This case study is designed to teach basic concepts of genetics by focusing on a rare disease, pseudoxanthoma elasticum (PXE).  Chromosome 16 is the narrator at the beginning of the case and introduces students to genes, chromosomes and mutations. The focus then shifts to the patient and his mother as she finds out about her son's disease and her subsequent efforts to connect with patient advocacy groups for support. The case concludes with students watching a TED talk given by Sharon Terry, the real-life mother on whom this story is loosely based, so that students can connect on an emotional and human level with someone who has intimate experience as a parent of children with a rare genetic disease. The case is suitable for high school general biology classes, but it can also be used by biology major or non-major undergraduates in a lower-division biology class, or in any lower-division non-major class focused on human disease.
Lottie Peppers

A Benefit of Failed Pregnancy? | The Scientist Magazine® - 0 views

  •  
    Aneuploidy-the incorrect number of chromosomes in a cell-is extremely common in early embryos and is the primary reason for pregnancy loss. A report published today (April 9) in Science reveals that one cause of this aneuploidy-aberrant cell divisions in the embryo-is linked to a genetic mutation carried by the mother. Astonishingly, this mutation turns out to be very common and appears to have been under positive selection during human evolution.
Lottie Peppers

Borrowing Immunity Through Interbreeding | The Scientist Magazine® - 0 views

  •  
    Quintana-Murci and his colleagues also took advantage of a previously published map of areas of the human genome where Neanderthal genes are present, showing that innate immune genes are generally more likely to have been borrowed from Neanderthals than genes coding other types of proteins. Specifically, they noted that 126 innate immune genes in present-day Europeans, Asians, or both groups were among the top 5 percent of genes in the genome of each population most likely to have originated in Neanderthals. The cluster of toll-like receptor genes, encoding TLR 1, TLR 6, and TLR 10, both showed signs of having been borrowed from Neanderthals and having picked up adaptive mutations at various points in history. Meanwhile, a group led by Janet Kelso of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, used both the same previously published Neanderthal introgression map that Quintana-Murci used and a second introgression map. The researchers searched for borrowed regions of the genome that were especially long and common in present-day humans, eventually zeroing in TLR6, TLR10, and TLR1. These receptors, which detect conserved microbial proteins such as flagellin, are all encoded along the same segment of DNA on chromosome four.
1 - 10 of 10
Showing 20 items per page